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Abstract This paper considers the shortest path design prob-
lem (SPDP) on bidirectional path topology as one of the best
known types of network configurations for automated guided
vehicles. An integer linear programming model has been de-
veloped to solve the problem. The model intends to minimize
the length of the path, which needs to cover all cells at least in
one edge. Due to the NP-hardness of the problem, which has
been proved previously, this model is only able to solve prob-
lemswith a small number of cells. Sowe develop an ant colony
system (ACS) algorithm to solve the problem. Comparisons of
the designed algorithm with a cutting-plane algorithm show
the efficiency of the proposed ACS algorithm for this SPDP.

Keywords Bidirectional path . Automated guided vehicle .

Block layout . Ant colony system . Branch-and-cut method

1 Introduction

As one of themost important activities in industrial engineering,
facility planning consists of two main parts: facility layout and
facility location. Facility layout deals with decisions regarding
the departments' layout, production units, manufacturing units,
storage places, and so on. Furthermore, facility layout is defined
in terms of facility system design, material handling system
design, and layout design [62]. Based on the estimation made
by Tompkins et al. [62], about 20% to 50% of production costs
are related to layout design and material handling. Therefore,
any cost reduction in these fields can potentially result in
significant overall cost savings.

To have a good layout design, it is crucial to integrate
material handling decisions in layout design [2]. Therefore,
planning and analyzing in the layout is barely possible without
considering the material handling system. The material han-
dling system is defined by Tanchoco and Sinriech [61] based on
material handling equipment, configuration and direction of
material handling networks, and the number and locations of
pick-up and delivery (P/D) stations. In this paper, we consider
automated guided vehicles (AGVs) as material handling equip-
ment among the other types.

Regarding the subject of the problem, there are many issues
that could be included in the designing and controlling of the
AGV system such as guide–path design, vehicle routing and
scheduling, deadlock resolution, the number of vehicles, idle-
vehicle positions, loading/unloading positions, battery manage-
ment, etc. [27, 41, 67]. These issues belong to different levels of
the decision-making processes, like strategic level (guide–path
design), technical level (scheduling), and operational level
(vehicle routing). Whereas each subject stands alone, there
are some relations between different issues. This paper focuses
on shortest path design problem (SPDP) which is counted as a
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strategic decision in material handling system design. Since this
is a static design, some managing attributes like the order of
queue, AGV distribution strategy, and avoidance of collisions
are not provided in this already complex decision-making
problem, which lies in the basic stage of layout design. We
concentrate on designing the shortest guide–path serving all
cells of the manufacturing floor on the block layout.

1.1 Contribution

In this section, we describe what we are exactly looking for
as a guide path on the block topology. A block layout is a set
of cells, which are represented by rectangles but not neces-
sarily convex polygons, packed beside each other. A path is
defined feasible if it satisfies the two following conditions:

1. The path must be adjacent to each cell at least in one
edge.

2. The path must be non-intersecting, i.e., the path should
not cross itself. In this regard, Figs. 1 and 2 show
infeasible and feasible paths, respectively.

If one of these conditions is violated, then the path will be
infeasible. There might be no feasible path in a block layout
(e.g., when a cell enclaves another cell). Given the block
layout, the objective function of our algorithm in this paper
is to minimize the length of the feasible path quickly.

1.2 Application

Our algorithm is an economical decision-making method
that could be applied in designing the layout of flexible
manufacturing floors as well as transportation designs.
Moreover, SPDP generally could be useful in network-
ing and creating integrated circuits. In addition, since
for a non-deterministic polynomial time (NP)-hard com-
binatorial optimization problem, the mathematic model
is common, such as SPDP, traveling salesman problem
(TSP), job–shop problem, vehicle routing problem (VRP),

etc., so our methodology for dealing with SPDP could be
applicable for solving mathematical models of these
problems, too.

1.3 Motivation

For the first time, this problem has been studied by
Maxwell and Muckstadt [44]. They find and install the
best routes for AGVs, and then in order to efficiently
transfer materials in a block layout, the maximum num-
ber of required vehicles is determined. This problem has
been followed by a large number of researchers and
scholars, and varied heuristic and meta-heuristic meth-
ods have been developed in this research theme [7, 17,
36, 54, 61]. Here, we are trying to track and fix the
time-consuming hole of our previous problem-solving
method while optimality and efficiency are considered.
Previously, the integer linear programming (ILP) model
introduced by Hamzeei and Farahani [28] was solved by
using a cutting-plane algorithm. This algorithm as an exact
method is not able to solve instances of this NP-hard problem
with large sizes in a reasonable amount of time. So, we
develop an ant colony system (ACS) algorithm, which, as a
construction-based meta-heuristic method, is efficient enough
in solving different sizes of this problem.

In fact, (a) in the literature, we show that the efficiency of
such algorithm has not previously been investigated to solve
such problems (probably because it is newer than other
meta-heuristics), and (b) the nature of this algorithm, which
is from the routing skill of ants, makes it easier to adjust
with these problems.

1.4 Research questions

In this research, the following questions are answered:

& Is there any other efficient way to solve the supposed
SPDP on the block layout?

& Does the ACS algorithm support optimality and save
time in solving the problem?Fig. 1 A block layout with an intersected (infeasible) path

Fig. 2 A block layout with feasible path [20]
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& Why and how is ACS more appropriate among other
heuristic and meta-heuristic methods for the concept of
SPDP?

1.5 Organization

The paper is organized as follows. Section 2 explains related
works to our problem. The ACS algorithm is explained in
Section 3.Computational results are presented in Section 4.
Finally, Section 5 contains the conclusion and future re-
search roads. The model of Hamzeei and Farahani [28] is
explained in the Appendix.

2 Related works

Researchers have studied various configurations for the
material handling network so far. These configurations in-
clude conventional configuration, unidirectional single loop
(USL), tandem configuration, segmented flow topology
(SFT), and bidirectional path.

Gaskins and Tanchoco [25] have formulated a model for
the conventional configuration. Thereafter, mathematical
programming has been widely used for conventional con-
figuration [19, 26, 30, 31, 36, 37, 55, 57, 60, 63].

USL finds a loop serving all P/D stations in a block
layout which has been studied by several researchers [4–8,
17, 18, 20–22, 39, 56, 61]. Tandem configuration designs
multiple loops with transfer stations; this model has been
usually used in cellular manufacturing systems [10, 11, 23,
24, 32, 35, 40, 42, 51]. SFT partitions the layout into non-
overlapping segments, and each segment is served by a
single vehicle [3, 9, 58].

Another type of material handling network is bidirectional
path with two opposite directions to flow [12, 29, 33, 45, 47].
In the current paper, we consider the bidirectional shortest
path as the material handling network configuration.

Afentakis [1] expresses the advantages of the loop pattern
for network configuration; these are simplicity and efficiency,
low initial and expansion cost, and flexibility in process and
production. In addition, there are some advantages of bidirec-
tional path configuration which are counted as encouraging
factors for its use rather than single loop configuration. For
example, the total traveled distance by vehicles is reduced in
bidirectional paths [16]. Subsequently, this improves the re-
sponse time of the vehicles [64], and from the economical
point of view, a bidirectional path needs less space rather than
a single loop. Kim and Tanchoco [33, 34] show in a particular
network that the bidirectional layout outperforms the unidi-
rectional one in terms of the number of completed jobs per
unit time. Asef-Vaziri et al. [5] state that sometimes it is
impossible to imply a single loop in a special block layout;
however, the bidirectional path could be implemented more

easily at the same layout. High productivity is another benefit
of bidirectional paths [41].

Egbelu and Tanchoco [16] assert that different alterna-
tives could be assumed in the adjustment of a bidirectional
path system: (a) parallel tracks on each aisle, (b) single
switchable track, and (c) mixed design. Despite the fact that
flow of traffic can take place in either direction of each aisle
in a bidirectional guide–path system, vehicles are not per-
missible to travel in opposite direction at the same time.
Thus, there should be buffers for temporary parking areas.
They discuss about different types of buffers and the loca-
tions and number of required buffers, and then introduce a
model which describes the flow and control of AGVs in a
bidirectional network.

Among the different research papers, there are two related
works, which inspired us to develop this paper. Rajagopalan et
al. [48] use Lagrangian relaxation to address material flow
path and the location of P/D stations simultaneously. They
consider two models on the bidirectional flow path; the first
model supposes unloaded vehicles, and the second one sup-
poses loaded and unloaded vehicles for a collision-free path.
Hamzeei and Farahani [28] discuss two ILP models in a
cutting-plane approach to find the shortest path in a block
layout.

A summary of related works on bidirectional path is
shown in Table 1. The symbols used in the columns of this
table are explained below.

1. Objective function could be:

& OF1: The shortest path
& OF2: Minimizing the total travel distances of the

loaded vehicles
& OF3: Minimizing the total travel distances of the

loaded and unloaded vehicles
& OF4: Minimizing cost of the network (fixed cost)

2. Input data could be:

& I1: The layout
& I2: The from–to chart

3. Output result could be:

& O1: The path
& O2: The locations of the P/D stations

As it is clear in the illustration of Table 1, branch-and-
cut, Lagrangian relaxation, Petri net, and more recently
some meta-heuristic methods such as genetic algorithm
(GA) and simulated annealing (SA) have got a lot of
interests from researchers in this field. These papers
show that heuristic and meta-heuristic algorithms could
outperform well in facing different bidirectional shortest
path problems.
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It could be said that ACS as a well-known meta-heuristic
has been neglected among them, while it seems ACS has a
suitable methodology in finding paths. In the following
section, we invoke the methodology of ACS and pick it
among other meta-heuristic methods to show it is extremely
adaptable and efficient in finding the shortest path quickly.

This paper is going to consider ACS to solve the problem
because (a) the efficiency of this technique has not been
considered in solving such problems and (b) the nature of
ACS which is from the routing of ants makes it easier to
implement in such problems.

3 Ant colony system algorithm

This section shows how we develop an ACS algorithm to
solve SPDP. First, we briefly explain the ACS technique.
Then, we define the sets, indices, and parameters used in our
algorithm.

3.1 ACS technique

Dorigo et al. [15] developed ant colony optimization (ACO)
based on the nature of ants in seeking foods. Ants are able to
find the shortest path between a food source and their nest
and vice versa by smelling a chemical substance called

pheromone. While walking, ants leave pheromone on the
ground, and each of them chooses to follow a direction
probabilistically based on the amount of pheromone on that
path. This is the main reason of using ants' ability to find the
shortest path in optimization.

The first ACO algorithm was implemented for the
TSP. Afterwards, VRP, quadratic assignment problem as
combinatorial optimization problems were solved by
ACO algorithms. Interested readers are referred to a more
complete list of these applications showed at http://www.
aco-methaheuristic.org. It was shown that ACO algo-
rithms are one of the best existing algorithms used for
routing problems [46].

For implementing an ACO algorithm, a group of virtual
ants search the space of the problem to reach the best
possible answer. By depositing pheromone on the edges of
the graph, each ant communicates with other ants that
walked through the space, and in this way, the efforts of
ants are synergized. After a while, as the process continues,
the amount of pheromone on the shortest path will be more
than the other paths. Eventually, the edge which has been
mostly visited is chosen as a feasible solution. Dorigo and
Stützle [14] have published a prime book which includes
a number of different ACO algorithms. In this paper, we
use an algorithm called ACS proposed by Dorigo and
Gambardella [13].

Table 1 Summary of related works on the bidirectional path

References Objective
function

Inputs Solving technique Outputs Others

Egbelu and Tanchoco [16] OF1 I1 Simulation O1 Up to 12 cells solved

Kim and Tanchoco [33] OF1 I1 Time windows based on Dijkstra
algorithm

O1 Conflict-free path up to 6 cells solved

Chhajed et al. [12] OF1, OF4 I1, I2 Lagrangian relaxation, two-phase
heuristic includes building and
improvement phases

O1 Up to 12 cells solved

Kim and Tanchoco [34] OF1 I1 Column generation O1 Conflict-free path up to 9 cells and 5
vehicles simulated

Krishnamurthy et al. [38] OF2 I1 Column generation-based heuristic O1 Conflict-free path up to 18 cells solved

Rajotia et al. [49] OF3, OF4 I2 Heuristic methodology O2 Up to 6 cells and 14 vehicles solved

Ventura and Lee [64] OF1 I1 Exact polynomial-time algorithm O1, O2 Up to 300 stations and 30 AGVs considered

Wu and Zhou [65] OF3 I1 Colored resource-oriented Petri net
modeling method

O2 Collision and deadlock-free path simulated

Rajagopalan et al. [48] OF2, OF3 I1, I2 Lagrangian relaxation O1, O2 Up to 15 cells solved

Sarker and Gurav [53] OF2 I1 Heuristic routing algorithm O1 Conflict-free path simulated

Hamzeei and Farahani [28] OF1 I1 Branch-and-cut approach O1 Up to 45 cells solved

Wu and Zhou [66] OF1 I1 Petri net method O1 Deadlock and blocking avoidance simulated

Srivastava et al. [59] OF3 I1 Intelligent agent-based AGV controller O2 Collision and deadlock-free path simulated

Ren et al. [50] OF2 I1 Shortest time routing algorithm based
on best-first search for Petri net

O1 Avoiding deadlock, blocking, and collision
considering time window by using state
graph

Liu [43] OF2 I1 Heuristic based on GA O1 Deadlock-free control simulated
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3.2 The algorithm

In this section, indices, parameters, and variables used in the
algorithm are presented, and then, the ACS algorithm is
defined.

3.2.1 Sets and indices

& C0{1, 2, …, n}: The set of cells in block layout graph,
(r, t ∈ C)

& V0{1, 2, …, v}: The set of nodes in block layout graph,
(i, j ∈ V)

& E0{1, 2, …, e}: The set of edges in block layout graph,
which is defined as E0{(i, j)∈ V | i, j ∈ V are adjacent
nodes}

& Mj0{i ∈ V | (i, j)∈ E or ( j, i)∈ E: The set of all nodes
adjacent to node j

& Pc: The complement set of P, (Pc0V \P)

3.2.2 Variables and parameters

& yki : The binary variable which is equal to 1 if and only if

node i is adjacent to the path for ant k; otherwise yki ¼ 0
& xkt : The binary variable which is equal to 1 if and only if

cell t is adjacent to the path for ant k; otherwise xkt ¼ 0
& cij: The length of edge (i, j)
& S: The index of starting node of the path
& f: The index of finishing node of the path

According to the above variables, we now define the
following sets:

& Pk ¼ i 2 V yki ¼ 1
��� �

: The set of all nodes forming a
certain path for ant k

& Nk ¼ i 2 N [ f0g xkt ¼ 0
��� �

: The set of all cells not
adjacent to the path for ant k

3.2.3 Procedure of generating a feasible path

In this part of the algorithm, we introduce a procedure for
generating a feasible path in the block layout. It is important
to note that each edge (i, j) is the intersection of two cells in
the block layout including {0} representing the area con-
taining the block layout. In this procedure, a1 and a2 denote
two cells which intersect at (r, r′). In our ACS algorithm,
each ant uses this procedure to find a feasible path. The
procedure is as follows:

Step 1. Let N0C. Generate r between 1 and n. Select the
r th member of N, and then let P0{r} and s0r.

Step 2. Select r′ using transition rule from Ms ∩ Nk. Let
P0P ∪{r′} and f0r′.

Step 3. Consider the cells a1 and a2 adjacent to edge (r, r′),
then let N←N \{a1,a2}. If | N | 00, stop; otherwise
if | Ms∪Mf | ≠0 then go to step 4. If |Ms∪Mf | 00,
go to step 1.

Step 4. Select r′ using the transition rule from set
{Ms∪Mf}∩ Pc. Let P←P ∪{r′}. If (r′, s)∈ E,
let r0s and s0r′. If (r′, f)∈ E, let r0 f and f0r′.
Now go to step 3.

3.2.4 Implementation of ACS for solving SPDP

In this section, in order to solve the SPDP, we present an
ACS algorithm. First, m dummy ants are randomly posi-
tioned on m vertices of a given block layout. Then, ACS is
applied.

ACS uses state transition rule, local updating pheromone
rules, and global updating pheromone rules. We determine
the following approaches to implement these rules.

At each stage of constructing a feasible path, the stage
transition rule is applied by the dummy ant indexed with k to
choose the new vertex i. The stage transition rule is de-
scribed in Eq. 1.

Ski

1 ; if q � q0 and i ¼ argmaxj2Jk t j
� �a

ηj
h ib� �

t i½ �a ηi½ �bP
j2Mt\Nk t i½ �a ηi½ �b ; if q � q0

0 ; otherwise

8>>><
>>>:

ð1Þ
where Ski is the probability of selecting node i as the next
node to form a feasible path for ant k. In addition, τi is the
amount of pheromone deposited on edges adjacent to node i.
Moreover, ηi is equal to 1P

ði;jÞ2ECij
, the inverse value of the

sum of all edges adjacent to node i. α and β are two
parameters which determine the relative effect of phero-
mone signs (τi) and heuristic information (ηi), respectively.
Mt ∩ Nk is the set of acceptable nodes for node i of ant k.

When ant k decides to select a node to form a feasible
path, a random number q will be generated from the interval
(0, 1). If q is less than a specified value q0, the node with the
maximal value of [tj]

α [ηj]
β is selected from set Mt ∩ Nk;

otherwise, according to the probability which is given in the
second part of the transition rule in Eq. 1, the next node is
selected from set Mt ∩ Nk

After forming a feasible path for each ant, the local
updating rule on the nodes of the path is applied in order
to update the pheromone and prevent pheromone concen-
tration on a specific path. The pheromone on vertex i is
modified by local updating rule with the following equation:

t i ¼ ð1� fÞt i þ ft0 ð2Þ
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where ϕ ∈ (0, 1) is the pheromone trail evaporation rate, and
τ0 is the initial value of the pheromone deposited on each
node, which is equal for all nodes.

After forming a feasible path by all ants, the global
updating rule will update the amount of pheromone on each
node. The rule is given by the following relations:

t i ¼ ð1� ρÞt i þ ρΔt i ð3Þ

Δt i ¼
1
Lb

; i 2 Pk

0 ; otherwise

�
ð4Þ

where ρ ∈ (0, 1) is the pheromone decay parameter, and Lb is
the length of the best path so far found. Indeed, this rule
with an appropriate value of ρ rewards the nodes on the
shortest path.

In order to implement the ACS algorithm, the following
pseudo-code is applied:

4 Computational results

In order to show the efficiency of our algorithm against the
cutting-plane algorithm by Hamzeei and Farahani [28], we
compare these two. The cutting-plane algorithm has been
solved using LINGO 8.00 [52], and the ACS algorithm is
coded using Microsoft Visual Basic 6.0. Both algorithms
were run on a PC with Pentium 4, 1,700 MHz CPU and
256 MB of RAM. For this paper, 15-, 20-, 25-, 30-, 35-, 40-,
and 45-cell test instances are used. Since there are no known
test instances for our problem in the literature, for each size,
five instances were randomly generated ending up with total
number of 35 instances.

4.1 The parameters of the algorithm

The parameters of the algorithm including iteration number,
ant number, q0, α, β, ρ, ϕ and τ0, and τ0 should be set to the

certain values. We consider iteration number, ant number
and τ0 as coefficients of the cell number, so:

iteration number ¼ a0 � cell number ð5Þ

ant number ¼ cell number

b0

	 

ð6Þ

t0 ¼ cell number

c0
ð7Þ

For a0, b0, and c0, we assumed three levels (10, 15, 20),
(3, 4, 5), and (0.6, 0.7, 0.8), respectively. Furthermore, for
each of the other parameters, three levels are considered:
(0.3, 0.4, 0.5) for q0, (1,2,3) for α,(1,2,3) for β, (0.2, 0.3,
0.4) for ρ, and (0.1, 0.11, 0.12) for ϕ.
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To determine the parameters, three different large-enough
problems whose sizes are 35, 40, and 45 are given. The
parameters are not decided simultaneously; first, we determine
the value of a0, then the best value of b0 is decided, and so on.
Actually, we solve the three chosen problems for determining
the value of a0 while the other undecided parameters are fixed
to their middle values (e.g., ϕ is fixed to 0.11). For each
problem, the algorithm is run with three values (10, 15, 20)
for a0. Among all nine results, one with the least average
deviation from the optimal value is chosen. Once the value
of a0 is fixed, we start finding the value of b0 in the same
process we proceed for a0, and this is continued for determin-
ing all our parameters. Finally, for a0, b0, c0, q0, α, β, ρ, and ϕ,
the determined values are 15, 0.7, 5, 0.4, 2, 1, 0.04, and 0.12,
respectively.

4.2 Analysis of the results

Having set the value of all the parameters, the test instances
are solved by both cutting-plane and ACS algorithms whose
results are shown in Table 2. In Table 2, the results of cutting-
plane algorithm are presented under the column titled “Cut-
ting-plane algorithm,” which includes two sub-columns such
as average time of finding optimal solution and the number of
optimum solutions found in five test instances. For ACS
algorithm, the “Average computational time” shows the aver-
age time that the algorithm needs to terminate. This column
shows the efficiency of the proposed algorithm timewise.

The comparison of the average computational time of
ACS and cutting plane is shown in Fig. 3 implying that
ACS is remarkably faster than cutting plane on average.

In order to show the quality of solutions of the ACS
algorithm, we compute the deviation from optimum for each
test instance:

a The objective function value of the cutting-plane
algorithm

b The objective function value of the ACS

Deviation from optimum ¼ b� a

c
� 100 ð8Þ

Then, we compute the average of these values for each
size, and the results are shown under “Average deviation
from optimum” in Table 2. The maximum average is 3.09%
for instance size of 45.

Another the index for showing the quality of solutions of
the ACS algorithm is the “Maximum deviation from opti-
mum” for each size. In this column, the maximum value is
associated with size 25 which is 7.14%. Therefore, the
maximum deviation for all of the test instances is 7.14%.

Finally, we show the number of test instances for which
the ACS could find the optimal value. Among 35 test
instances used for testing the ACS algorithm, 21 test instan-
ces, 60% of the test instances, could be solved to optimality
by the ACS algorithm.

5 Conclusion

This paper considers the SPDP problem in which an ACS
algorithm is developed to solve the problem. We pursue the
ILP presented by Hamzeei and Farahani [28] and compare
the optimality of our algorithm with the previously devel-
oped cutting-plane algorithm. In this regard, 35 test prob-
lems are solved. The computational results show that in
terms of time and quality of the solutions both, the ACS
could solve small-sized problems efficiently well and acts
for large problems reasonably well. The computational
times of the ACS algorithm are significantly less than the
cutting-plane algorithm for each size. The average devia-
tions from optimum, maximum deviation from optimum,
and number of problems solved to optimality show the
quality of the developed ACS.

Table 2 The computational results of cutting plane and ACS algorithms

No. of
cells

No. of test
instances

Cutting-plane algorithm ACS algorithm

Average time of finding
optimal solution (s)

No. of
optimum
solutions

Average
computational
time (s)

Average deviation
from optimum (%)

Maximum deviation
from optimum (%)

No. of
optimum
solutions

15 5 3.4 5 1.2 0.00 0.00 5

20 5 27.4 5 3.2 0.00 0.00 5

25 5 143.4 5 5.6 2.81 7.14 2

30 5 425 5 11.8 0.78 2.00 3

35 5 905 5 41.4 2.34 4.62 2

40 5 2,278 5 27.2 0.91 3.03 3

45 5 5,935 5 53.8 3.09 6.04 1
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There are several points for future researches as follows:

& To improve ACS, some modification in setting parame-
ters could be done. Based on the characteristic of ACS, a
small value of pheromone evaporation would lead to a
premature convergence to a sub-optimal value especially
in large search spaces. The use of a high value of it
especially in the early generations of the search
decreases the possibility of premature convergence. This
might indicate why our ACS algorithm performance
degraded with a larger number of cells in Table 2.
Therefore, using a suitable design of experiment frame-
work like the Taguchi method and supposing a proper
range of values for parameter setting could improve the
performance of the ACS algorithm.

& Since the developed ACS is a quite quick algorithm to
find the suitable shortest path, this could be applicable in
dynamic management of the AGV system, which for
sure would bring more assumptions of managing level
like distributing, routing and scheduling vehicles, and
avoiding collisions [43, 66]. These assumptions make
the problem more complex and need a large investiga-
tion in comparing with a variety of heuristic and meta-
heuristic methods.

& Designing the block layout and finding an optimal bidi-
rectional path simultaneously is a strategy that can end
up more saving comparing to this hierarchical strategy.
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Appendix: Basic algorithm

In our “Computational results” section, we compared the
result of our ACS algorithm with that of Hamzeei and
Farahani [28]. Here, we briefly outline their algorithm.

First, the sets and indices of their algorithm are shown.
Afterwards, the variables and parameters are introduced.

Finally, their ILP model and branch-and-cut algorithm will
be described.

Sets and indices

& C ¼ 1; 2; . . . ; nf g : The set of cells in a block layout
graph (p ∈ C)

& S ⊂ C: The subset of C
& S � C=S: The complement set of set S
& V ¼ 1; 2; . . . ; vf g : The set of nodes in block layout

graph (i, j, k, l ∈ V)
& Vp ¼ 1; 2; . . . ; vp

� �
: The set of nodes of cell p in block

layout graph, 8p 2 C;
S

p2C Vp ¼ V
� �

& E ¼ 1; 2; . . . ; ef g : The set of nodes in block layout
graph, which is defined as E ¼ i; jð Þ 2 V i; j 2 Vjf
are adjacent nodesg

& Ep ¼ 1; 2; . . . ; ep
� �

: The set of edges of cell p in block
layout graph, 8p 2 C;

S
p2C Ep ¼ E

� �
& EðSÞ ¼ i; jð Þ 2 E a 2 S : i; jð Þ 2 ajf g: The set of all

edges belonging to subset S in block layout graph

Now, we define an equation as follows:

Aab ¼ Ea \ Eb ; 8a; b 2 C ð9Þ
This equation defines a set which includes the common

edges between two subsets of S. According to Eq. 1, the
following subsets are defined:

& SA ¼ S � C 8a 2 S :
P

b2S Aab � 1jj��� �
: The set of all

subsets of adjacent cells in block layout graph
& SAm : A member of SA
& B SAð Þ ¼ i; jð Þ 2 E SAð Þ 9b 2 SA : i; jð Þ 2 Eb

��� �
: The set

of edges on boundary of SA

Variables and parameters

& Ckl: The length of edge (k, l), Ckl ¼ k; lð Þ 2 E k; l 2 Vjf
are adjacent nodesg.

& xij: The binary variable which is equal to 1 if and only if
(i, j) is adjacent to the path; otherwise, xij00

& yk: The binary variable which is equal to 1 if and only if
node k is adjacent to the path; otherwise, yk00

& vk: The binary variable which is equal to 1 if and only if
node k is at the start or finish node of the path; other-
wise, vk00

Mathematical model

The mathematical model supposed for solving SPDP could
be found below:

Min
X
i<j

cijxij ð10Þ

Fig. 3 Average computational time for both algorithms
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subject toP
i<k

xik þ
P
j>k

xkj ¼ 2yk � vk ; 8k 2 V ð11Þ

P
i; jð Þ2Ep

xij � 1 ; 8p 2 C ð12Þ

P
i; jð Þ2B SAmð Þ

xik � B SAmð Þ �1jj ; SAm 2 SA ð13Þ

X
k¼1

vk ¼ 2 ð14Þ

xi; j; yk ; vk 2 0; 1f g; 8k 2 V ; i; j 2 E ð15Þ
Equation 10 is the objective function, which minimizes

the total length of the path. Equation 11 is the degree
constraint. This equation is very similar to the one used by
Asef-Vaziri et al. [5] for degree constraint. This means that if
a node is in the middle of the path, two adjacent edges of it
must be in the path. If a node is the start or finish node of the
path, then only one of its adjacent edges are in the path. If a
node is not in the path, then none of its adjacent edges could
be in the path.

Equation 12 is covering constraint. This relation is similar
to the covering constraint in Asef-Vaziri et al. [5]. However, if
SPDP assumes a path is feasible if it is adjacent in at least one
node, we can use another constraint as follows:

Equation 13 is tour eliminator constraint. This equation has
a similar role as connectivity constraint in Asef-Vaziri et al. [5].

Equation 14 states that the path should only have exactly
two nodes as the start and finish nodes.

Equation 15 is integrality constraint.

Algorithm

The difficulty of solving this model is in Eq. 13 because its
number will increase exponentially as the number of cells
increases. Therefore, for solving this model, a branch-and-
cut approach is used, and Eq. 13 is selected for cutting. The
algorithm is as follows:

Step 1. Set c01 as the iteration counter. Initialize a linear
problem in which constraints (11), (12), (14), and
(15) are introduced.

Step 2. Solve the model with LINGO 10.00. If the solution
is feasible, stop.

Step 3. Find members of set SA for violated constraints
(13). Apply constraints (13) for these members.
Set c0c+1. Go to step 2.
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