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Abstract Present investigation applied the designs of
experiments and grey relational analysis (GRA) approach
to optimise parameters for electrical discharge machining
process of 6061Al/Al2O3p/20P aluminium metal matrix
composites. Planning of experiments was based on an L18
(2^1×3^5) orthogonal array to determine an optimal setting.
The process parameters included one noise factor, aspect
ratio having two levels and five control factors, viz. pulse
current, pulse ON time, duty cycle, gap voltage and tool
electrode lift time with three levels each. The material re-
moval rate, tool wear rate and surface roughness were se-
lected as the evaluation criteria, in this study. Optimal
combination of process parameters is determined by the
grey relational grade (GRG) obtained through GRA for
multiple performance characteristics. Analysis of variance
for the GRG is also implemented. It is shown that through
GRA, the optimization of the multiple performance charac-
teristics can be greatly simplified.
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1 Introduction

Modern industry promotes the use of alternative advanced
materials (composites, super alloys and ceramics) for estab-
lishing design and manufacturing. These industrial applica-
tions demandmaterials with a specific set of properties, which

has led to the development of composite materials consisting
of two or more physically and/or chemically distinct phases
[1]. The continuous phase is referred to as thematrix, whereas
the discontinuous phase is called the reinforcement. These
advanced materials have superior properties than those
depicted by any of its individual components. Matrixes con-
sisting of a metallic base of a ductile metal (e.g. Al, Ti orMg)
and reinforced with ceramic particles (e.g. Al2O3, SiC or
graphite) are known as metal matrix composites (MMCs).

The major innovations have been mainly oriented to-
wards the development of MMCs in the materials world in
the past two decades [2]. Lindroos and Talvitie overviewed
that recent research and development activity as well as
applications has been concentrated on aluminium and its
alloy-based MMCs, called as aluminium matrix composites
(AMCs) or aluminium metal matrix composites (AMMCs)
[3]. AMMCs are high-potential materials for many manu-
facturing sectors including automobiles, aerospace, electri-
cal, military, sports and engineering components, owing to
their better technological properties [4]. AMMCs have been
the most exploited material for its low density and the ease
of fabrication [5]. They offer a range of property enhance-
ments over conventional engineering materials (monolithic)
due to their higher strength-to-weight ratio, high bending
stiffness, improved high-temperature properties, better wear
resistance, corrosion resistance, good damping characteris-
tics and lower thermal expansion [6, 7].

In AMMCs, the reinforcement mixed into the aluminium
matrix significantly increases the elastic modulus, wear
resistance, strength and fatigue resistance. Further, the addi-
tion of reinforcement also reduces the coefficient of thermal
expansion of the matrix material. These types of property
changes are not generally possible through conventional
alloying methods. This fact drives the research towards their
advanced industrial applications.
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AMMCs are generally produced by mechanical mixing
of particulate reinforcement into the molten aluminium alloy
base. They can also be tailored according to some special
applications by varying the volume fraction of reinforcing
constituents [8]. Some of the other processing techniques to
produce AMMCs are preform infiltration, powder metallur-
gy and spray forming [9].

The density of AMMCs is approximately one third that of
steel [10]; offers superior wear resistance [11]; and often
competes with other advanced materials, owing to their attrac-
tive physical and mechanical properties. Moreover, a fine
balance of factors such as cost, damage tolerance (toughness,
ductility and flaw sensitivity), isotropy (properties such as
strength, stiffness, etc. are the same in all directions), thermal
characteristics, reproducibility, environmental resistance,
forming, machining and joining further adds to its increasing
popularity [12]. The exceptional properties of MMCs have
been documented and reviewed extensively in the past by the
researchers [2, 12–15]. Stefanescu reviewed various manufac-
turing techniques to produce low-cost AMMCs with low
volume fraction of particulate, so as to achieve a good wetting
between the particle and the matrix [16].

However, full potential of the AMMCs is hindered by the
problem of poor machinability and extensive tool wear from
conventional machining methods such as turning, milling,
drilling, etc. owing to their non-homogeneity, anisotropy,
hardness, low ductility, toughness and intrinsic brittleness
and also because of the presence of hard abrasive reinforce-
ments [17]. Weinert et al. reported that low material remov-
al, excessive tool wear, poor surface finish and high
manufacturing costs are generally associated with machin-
ing of such advanced materials [18]. Engineering compo-
nents of AMMCs produced by casting processes are often
having near net shape, but they do require machining to
achieve the desired dimensional accuracy and surface finish,
especially if close tolerances in complex geometries are
required.

Thus, non-conventional machining methods like electric
discharge machining (EDM), a thermal process, is being
successfully employed for easy machining of AMMCs
[19–24]. EDM or spark erosion removes the material
through a series of repetitive electrical sparks, when a tool
electrode discharges current to the work material separated
by a very small distance through a dielectric medium. The
thermal energy is utilised to generate high-temperature plas-
ma that erodes the work material through melting and vapor-
isation and subsequently flushes off the metal particulates
(debris) from the surface of the work material through cool
dielectric fluid [25]. EDM involves no cutting forces, since
the two electrodes are in a no-contact position, which pre-
vents mechanical stresses.

In order to achieve the economic objective of the ma-
chining process, optimal process parameters are to be

determined by various empirical methods based on statisti-
cal analysis and optimization approaches. In this study,
experimental investigation of machining characteristics such
as material removal rate (MRR), tool wear rate (TWR) and
surface roughness (SR) of the stir-casted 6061Al/Al2O3p/
20P work specimens were carried out with a copper tool
electrode, by varying various factors affecting the EDM
process. This paper proposes an efficient method for multi-
ple criteria evaluation, to find the significant parameters
affecting the machining characteristics with the use of de-
sign of experiments and grey relational analysis (GRA).

2 Past work

The comprehensive literature review, presented in this sec-
tion, focused on theoretical and experimental studies by
limiting the researches carried out on the EDM of advanced
materials, addressing the various aspects of machining. Lit-
erature also identifies that EDM technique has proved its
merit in the machining of MMCs for achieving improved
MRR, less TWR and better surface finish.

During EDM of AlSi7Mg+20% Al2O3 MMCs, it has
been found that the process parameters affect MRR and
surface roughness [21]. Teti overviewed that the machining
of composite materials is difficult to carry out due to their
anisotropic and non-homogeneous structure [26]. The high
abrasiveness of their reinforcing constituent also affects the
machining.

De Silva and Rankine performed an experimental study
on Al/SiC work material with EDM, and it was observed
that during sparking, the matrix surrounding the reinforce-
ment particles was melted, thus easing out the reinforcement
particles from the matrix, resulting in improved machining
[27]. Hocheng et al. presented the affects of machining
parameters such as electrical current, ON time and the crater
size produced by a single spark for the Al–SiC composite
[28]. After observing the crater diameter, it was found that
the increase in discharge energy and discharge current lead
to an increase in the diameter of workpiece craters. Some
EDM studies on Al/SiC MMCs concluded that this process
could also be used to perform precision machining [29].
Hung et al. investigated the feasibility of applying EDM
process for cast aluminium AMMCs reinforced with SiCp,
to predict the effect of process parameters on metal removal
rate, re-cast layer and surface finish through statistical mod-
els [30]. It was found that the SiC particles shield and
protect the aluminium matrix from being vaporised, thus
resulting in the reduction of MRR.

Statistical analysis of EDM of 10% and 22% Al–Al2O3

MMCs with pure copper electrodes has also been performed
[20]. Rotary EDM with a disk-like electrode was used to
perform cutting of Al2O3/6061Al composites, to study the
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effect of each electrical or non-electrical EDM parameter
(electrical parameters, e.g. polarity, peak current, pulse
duration and power supply voltage and non-electrical
parameters, e.g. circumferential speed of electrode and
reciprocating speed) on the machining characteristics—
MRR, electrode wear rate (EWR), relative EWR and SR.
The Taguchi analysis concluded that the electrical group
more significantly affects the machining characteristics as
compared to the non-electrical group [31]. A reduction in
MRR was observed with an increase in Al2O3p reinforce-
ment, after the machining of Al 6061/Al2O3 MMCs with
rotating round copper tool electrode [32]. A modified EDM
setup with a plate electrode has also been employed to cut
SiC–TiB2 and SiCw/Al [33, 34]. Some experiments on
blind-hole drilling of the Al2O3/6061Al composite have also
been performed, using rotary EDM with cylindrical electro-
des, and results were analysed by Taguchi methodology
[35]. It has been reported that the rotary motion imparted
to the tool electrode led to an improvement in MRR, due to
effective flushing conditions, while machining Al/SiC
MMCs using rotary EDM. However, the increasing content
of SiC led to a decrease in MRR and EWR and an increase
in SR [36].

Bialo et al. performed the micro-hole EDM of prepared
Al+20%Si+3%Cu+1%Mg alloy matrix and Al2O3 ceramic
reinforcement with 2-mm-thick copper electrode [37].
Aluminium-based Al2O3p-reinforced composites have also
been wire EDMed [38]. Experimental investigations on the
EDM of carbon–carbon composite plates using copper elec-
trodes with negative polarity concluded that the EWR
decreases substantially, within the region of experimenta-
tion, if the parameters were set at their lowest levels, while
an increase in the MRR was noticed, if the parameters were
set at their highest levels [39].

Some hybrid processes have also been employed on
composites to study their effects. Lin et al. performed
EDM with ball burnish machining (BBM) with ZrO2 balls,
providing burnishing immediately after the EDM process of
an Al–Zn–Mg alloy, to study the effects on performance
characteristics [40]. It was found that the combined EDM
with BBM effectively improves the surface roughness and
eliminates the micro-pores and cracks caused by EDM.
Abrasive powder-mixed EDM (APM-EDM) or abrasive
EDM (AEDM) has also been utilised to explore the influ-
ences of process parameters on the performance measures
such as MRR, TWR, dimensional overcut (DOC) and SR,
during machining of 6061Al+20% Al2O3p with copper tool
electrode [41–43]. The study indicated after analysing the
results using Lenth’s method that the TWR and SR decrease,
whereas MRR increases considerably after the addition of
powder in the dielectric fluid. DOC, however, was noticed
to increase slightly during AEDM [41]. From the preceding
literature review, it can be seen that the EDM process and its

variations (hybrid processes) have brought about significant
advances in the field of machining AMMCs. An attempt has
been made to find the optimal machining conditions for form-
ing a micro-hole through EDM to a minimum diameter and a
maximum aspect ratio. The work highlights the application of
the Taguchi method used to determine the relations between
machining parameters and process characteristics and GRA to
determine the optimal machining parameters. By the former, it
was concluded that that electrode wear and the entrance and
exit clearances had a significant effect on the diameter of the
micro-hole when the diameter of the electrode was identical,
whereas the latter predicted that the input voltage and the
capacitance were found to be the most significant [44].

The Grey–Taguchi’s approach has also been utilised for
optimization of multi-performance characteristics in electric
discharge drilling of hybrid MMCs [45]. Further, the optimi-
zation of APM-EDM of AMCs with multiple responses using
GRA has been successfully achieved by this approach [46].

In majority of the aforesaid past research work, many
classical optimization techniques have been utilised such as
statistical approach, RSM, Taguchi, etc. Classical optimiza-
tion methods for solving multi-objective problem suffer
from drawback, since they are unable to satisfy the requests
as they demand for the large data sets, which become
inconvenient to acquire, at times [47]. Furthermore, the
original Taguchi method is capable to optimise a single
performance characteristic [48]. In the EDM process, it is
difficult to find a single optimal combination of process
parameters for the performance characteristics, as the pro-
cess parameters influence them differently [48–50].

Hence, there is a need for a multi-objective optimization
method to arrive at the solutions to this problem. Handling
the optimization of multi-performance characteristics is an
interesting research field and is resolved by the GRA tech-
nique. GRA, an approach totally different from the tradi-
tional statistical analysis, provides an efficient solution to
the uncertain, multi-input and discrete data problem.

Review of the past work has also indicated that few
published work on EDM have utilised GRA as one of the
optimization technique for multiple performance character-
istic optimization [48–53]. It shows that GRA can effective-
ly be recommended as a method for optimising the
complicated inter-relationships among multiple perfor-
mance characteristics. Research is still needed to bridge
the gap between the theoretical research and the practical
applications of EDM, through the optimisation of process
parameters with multiple quality characteristics using GRA
technique. Therefore, this paper adopts the GRA technique,
a part of grey system theory [54], which fulfils the crucial
mathematical criteria for dealing with a poor, incomplete
and uncertain system [55, 56]. Through the grey relational
analysis, a grey relational grade (GRG) is obtained to eval-
uate the multiple performance characteristics. As a result,
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optimization of the complicated multiple performance char-
acteristics can be converted into the optimization of a single
grey relational grade. It arrives at salient relationships in a
complex system using relatively small amount of data.

3 Experimentation

3.1 Materials

The work specimens were manufactured using stir-casting
method, one of the liquid metal processing techniques,
whereby the reinforcement particulates are incorporated into
the molten metal by continuous stirring of the melt [4]. This
process is especially attractive, since it can often be imple-
mented with only minor alterations to existing casting
equipment. For the present case, the starting material or
matrix material was aluminium alloy AA 6061 (DURAL-
CAN). This alloy has liquidus and solidus temperatures of
650.8°C and 582.8°C, respectively [13]. Pure alumina
(Al2O3p), prominently used in abrasive, ceramics and re-
fractory industries, has been used as reinforcement embed-
ded in the metal matrix, having 20 μm average particle size.

An open induction furnace and a graphite crucible were
used to cast AMMCs of 6061Al/Al2O3p/20P. After complete
stirring, the mixed slurry was poured into the die and allowed
to remain until complete solidification occurred, to produce
near net shape casting work specimens in the form of plates of
300×100×10 mm. The solidified casting was then ejected
from the die, to be ground to achieve a plane surface.

Selvaduray et al. investigated the microstructure and
physical properties of 20% Al2O3 reinforced AA 6061
alloys [57]. It was observed that the strength and abrasion
resistance improved with the addition of reinforcement par-
ticles, whereas the ductility and fracture toughness de-
creased. Further, the shear strength (in longitudinal
direction) showed a distinct improvement, whereas the ulti-
mate tensile strength showed a marginal improvement. The
published literature further highlights the properties of 20%
Al2O3 reinforced AA 6061 alloys, as shown in Table 1[57].
Electrolytic copper electrodes (99.9%) were used as tool
electrode material, in the present study.

3.2 Experimental machining parameters and performance
characteristics

Based on the literature review, one noise factor having two
levels and five control factors having three levels each were
chosen to be varied during the experimentation. The factors
were assigned specific levels determined on the basis of
preliminary experiments. The shape of the tool electrode
(with varied aspect ratio) has been considered as noise
factor (which cannot be changed during experimentation)

in the present study. The two shapes, one square with aspect
ratio of 1.0 (size 40×40 mm) and other rectangular with
aspect ratio of 0.6 (size 24×40 mm) have been considered.
Further, the control factors considered are pulse current, Ip
(in amperes); pulse ON time, TON (in microseconds); duty
cycle, ζ (in percent); gap voltage, Vg (in volts); and tool
electrode lift time, TL (seconds), with three levels each. The
process parameters, namely Ip (in amperes); TON (in micro-
seconds); ζ (in percent); Vg (in volts); and TL (in seconds)
were controlled by the E-ZNC machine itself after setup viz.
through machine settings. The factors and levels for the
present experiments are shown in Table 2.

The experimental investigations were carried out on an
electric discharge machine (E-ZNC, Make: Electronica,
Pune, India) powered with a PS-50 generator, max. working
current of 50 A. The spark erosion oil (SEO 250, flash point
94°C, viscosity CST at 40°C02.6, Make: IPOL) was used as
dielectric fluid with a flushing pressure of 1.15 kgf/cm2. The
polarity of the tool electrode considered as positive and that
of the work material as negative. The multiple performance
characteristics considered were MRR, TWR and SR. The
response variable of MRR and TWR for each run was
calculated on the basis of weight difference before and after
machining using a Sartorius LA-1200S precision scale
(max. capacity of 1,200 g and precision accuracy of
0.001 g). The surface roughness (Ra) of the EDMed surface

Table 1 Properties of 20% Al2O3 reinforced AA 6061 alloys [57]

Properties Values

Brinell hardness (500 kg) 114

Yield strength 328 MPa

Ultimate tensile strength 366 MPa

Elastic modulus 74.5 GPa

Percentage elongation 5.3%

Impact strength (Charpy's test) 28.8–35.1 J

Ultimate shear strength (longitudinal
and transverse)

232 and 226 MPa, respectively

Shear modulus (longitudinal and
transverse)

29.2 and 30.0 GPa, respectively

Table 2 Factors and their levels

Factor Experimental Symbol Level 1 Level 2 Level 3
Parameters (Units)

A Aspect ratio AR 0.6 1.0 –

B Pulse current Ip (A) 10 15 20

C Pulse ON time TON (μs) 50 100 200

D Duty cycle ζ (%) 0.4 0.5 0.7

E Gap voltage Vg (V) 40 45 50

F Tool electrode lift time TL (s) 2.0 3.0 5.0
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was measured by a Taylor–Hobson surface roughness tester,
with an accuracy of 0.1 μm.

3.3 Design of experiments

An appropriate Taguchi`s orthogonal array (OA) design for
experimentation is selected by computing the total degrees of
freedom. In the present study, there are 11 degrees of freedom
owing to one two-level machining parameter and five three-
level machining parameters in the EDM process. Therefore,
an L18 (2^1×3^5) mixed orthogonal array with 6 columns
and 18 rows was used to accommodate one two-level noise
factor and five three-level control factors. Since six process
parameters are used in the experiments (occupying six col-
umns), two columns of the OA are left empty, which does not
affect its orthogonality. This partial factorial experimental
design provides an efficient and systematic approach of deter-
mining an optimal parameter condition. Each factor is
assigned to a column and 18 machining parameter combina-
tions are required. Therefore, by using the L18 OA, only 18
experiments are needed to study the entire process parameters.
The experimental layout for the machining parameters using
the L18 OA is shown in Table 3.

The entire performance measures data for the 18 experi-
mental runs are shown in Table 4. Thus, in optimization by
the GRA, the observed values of MRR, TWR and SR were
set to maximum, minimum and minimum, respectively. The
GRA technique is presented and discussed in Section 4.

4 Grey system theory

Grey system theory (GST) proposed by Deng in 1982 is based
on the random uncertainty of small samples [55, 56]. Since its
inception, GST gradually developed into an evaluation tech-
nique to solve certain problems of system that are complex
and multivariate. Such systems are often referred to as ‘grey’
having uncertain or incomplete information. In system control
theory, a system for which the relevant information is com-
pletely known is a ‘white’ system, while a system for which
the relevant information is completely unknown is termed a
‘black’ system. Any system between these limits is a ‘grey’
system having poor and limited information [58, 59]. Con-
ventional statistical approaches for analysis of such systems
may not be acceptable without large data sets and data satis-
fying certain mathematical criteria. The grey theory, on the
contrary, makes use of relatively small data sets and does not
demand strict compliance to certain statistical laws, simple or
linear relationships among the observables [60]. The main
grey methods within grey system theory are (grey) systems
and control, grey modeling and GRA [56, 61]. GRA is an
alternative for traditional statistical methods, relying on few
samples and uncertainty conditions, and can be applied in
optimization of multiple quality characteristics. In recent
researches, GRA has been employed by many scientists in
different areas including medicines and has demonstrated
satisfactory results [54, 62–69]. Literature also identifies that
some of the problems related to the analysis of multiple
quality characteristics are that most statistical approaches are
not suitable for characteristics with significant correlation, and
taking all quality characteristics with the same weight may
cause yield loss since the importance of each quality charac-
teristic may be different [70]. To overcome such problems,
GRA approach is taken.

This paper utilises the GRA approach to optimise the
process parameters taking into account the correlation be-
tween multiple performance characteristics. In the following
section, the GRA for determining the optimal machining
parameters is reported step by step. Further, the optimal
machining parameters with considerations of the multiple
performance characteristics are obtained and validated.

4.1 Grey relational analysis

GRA is a normalisation-based evaluation technique requir-
ing a sample of only limited (and from a statistics point of
view generally insufficient data) size, of discrete sequential
(time series) data to enable reliable modeling and estimation
of system behaviour [60]. In GRA, it is assumed that the
input attributes satisfy three conditions for comparability of
the set of series, referred to as scaling (for the order of
magnitude), polarisation (for the attribute type) and non-
dimension (for the measurement scale) [55]. Normalisation

Table 3 Experimental layout using an orthogonal array L18 (21× 35)
design

No. of run/factor N C1 C2 C3 C4 C5

1 0 0 0 1 1 0

2 0 1 2 2 1 0

3 0 2 2 1 2 0

4 1 0 0 0 0 0

5 1 1 1 2 0 0

6 1 2 1 0 2 0

7 0 0 1 2 2 1

8 0 1 0 0 2 1

9 0 2 0 2 0 1

10 1 0 1 1 1 1

11 1 1 2 0 1 1

12 1 2 2 1 0 1

13 0 0 2 0 0 2

14 0 1 1 1 0 2

15 0 2 1 0 1 2

16 1 0 2 2 2 2

17 1 1 0 1 2 2

18 1 2 0 2 1 2
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of the input data prior to GRA processing is required, if the
above stated three conditions are not satisfied.

Linear normalisation involves data pre-processing in
compliance with the three conditions to be achieved. This
step is also called ‘grey relational generating’ [70]. Data
pre-processing translates the trend relationship between an
‘original sequence’ to a ‘reference sequence’, at a given
point in a system. After normalisation, the reference se-
quence is identified. In the present study, normalisation of
the experimental results obtained for material removal
rate, tool wear rate and surface roughness was performed,
in the range between 0 (black) and 1 (white). Figure 1
depicts the flowchart showing the experiment and grey
relational analysis. In general, for a maximum value type
attribute, viz. MRR, the highest value is taken, for a
minimum value type attribute, viz. TWR and SR, the
lowest value is considered.

The respective formulae to obtain normalised experimen-
tal results are as follows:

‘Higher-the-better’ (HB) value:

xij ¼
yij �min

i
yij

max
i

yij �min
i

yij
ð1Þ

‘Lower-the-better’ (LB) value:

xij ¼
max

i
yij � yij

max
i

yij �min
i

yij
ð2Þ

where yij is the jth performance characteristic in the ith
experiment. Furthermore, in Eq. 1 and Eq. 2, max

i
yij and

min
i

yij are the maximum and minimum value of jth perfor-

mance characteristic for alternative i, respectively. Equa-
tion 1 is used for the HB value, whereas Eq. 2 is used for
LB values. The entire results of normalisation (data pre-
processing) of experimental results obtained for perfor-
mance measures by Eq. 1 for MRR and Eq. 2 for TWR
and SR are shown in Table 5.

4.2 Grey relational coefficient

Normalisation creates a new matrix of difference vectors.
From this matrix, a grey relational coefficient (GRC) is
calculated, expressed as:

GRC

xij ¼
min
i

min
j

x0j � xij
���

���þ z max
i

max
j

x0j � xij
���

���

x0j � xij
���

���þ z max
i

max
j

x0j � xij
���

���
ð3Þ

x0j is the ideal normalised result for the jth performance

characteristic. In Table 4, the row labelled with ‘ideal’ (x0j 0

1) is the reference (ideal) sequence. The entire results for the
GRC are shown in Table 4. GRC (ξij) is computed by
selecting a proper distinguishing coefficient ζ (in general,
ζ01) by using Eq. 3.

Table 4 Experimental results
obtained for material removal
rate, tool wear rate and surface
roughness

No. of run MRR (g/min) TWR (g/min) SR, Ra (μm)

1 2 3 1 2 3 1 2 3

1 0.1135 0.1142 0.1158 0.0059 0.0088 0.0048 6.5 6.0 5.2

2 0.2818 0.2659 0.2638 0.0198 0.0187 0.0200 6.9 6.1 6.8

3 0.3004 0.3234 0.3362 0.0260 0.0232 0.0228 6.3 6.8 7.3

4 0.1482 0.1531 0.1436 0.0068 0.0066 0.0073 5.8 6.4 6.1

5 0.2915 0.2752 0.2823 0.0085 0.0095 0.0087 6.8 6.2 6.5

6 0.2983 0.2911 0.3016 0.0149 0.0153 0.0154 5.9 6.4 7.5

7 0.1322 0.1384 0.1374 0.0073 0.0079 0.0069 6.7 7.2 5.6

8 0.1502 0.1578 0.1570 0.0086 0.0090 0.0085 7.3 5.7 6.2

9 0.2875 0.3054 0.3446 0.0238 0.0243 0.0239 7.5 7.4 6.8

10 0.1637 0.1711 0.1932 0.0094 0.0089 0.0093 6.6 6.9 6.0

11 0.2644 0.2818 0.2968 0.0094 0.0098 0.0099 7.3 7.1 6.9

12 0.3299 0.3484 0.3327 0.0118 0.0123 0.0119 7.1 7.4 7.4

13 0.1701 0.1869 0.1680 0.0168 0.0166 0.0161 6.3 6.6 6.3

14 0.2653 0.2422 0.2635 0.0145 0.0141 0.0140 6.0 6.4 6.5

15 0.2671 0.2839 0.2770 0.0183 0.0179 0.0184 6.4 6.8 6.9

16 0.1964 0.2231 0.2105 0.0132 0.0139 0.0134 6.6 6.5 6.1

17 0.1849 0.1773 0.1928 0.0031 0.0038 0.0033 6.5 6.4 6.9

18 0.3116 0.2841 0.3013 0.0123 0.0130 0.0128 6.6 6.7 7.1

1196 Int J Adv Manuf Technol (2012) 63:1191–1202



4.3 Grey relational grade

Finally, the GRG is obtained by averaging the grey relation-
al coefficient corresponding to each performance measures.

GRG:

ri ¼ 1

m

Xm

j¼1

xij ð4Þ

Thus by applying Eq. 4, all grey relational grades can be
computed. The grey relational grades of the set of compared
series provide a ranking of the alternatives, where a higher
value determines a better alternative. By analysis of the grey
relational grade, we can understand which factors will cru-
cially affect reference factors. This relationship is held for
any distinguishing coefficient. The higher grey relational

grade represents that the corresponding result is closer to
the ideal normalised value [48]. The grey relational grade
obtained for each experimental run and the ranking order
of the experiment is shown in Table 5. It is seen that
experiment #1 has the best multiple performance charac-
teristics among the 18 runs performed, having highest
relational grade. Hence, it is the optimal. It is followed
by experiments #4 and #13, being ranked as second and
third, respectively.

5 Results and interpretation

In this paper, Matlab 6.5 and MiniTab 14 versions have been
successfully utilised to perform GRA and analysis of vari-
ance (ANOVA). The effect of each process parameters on
the basis of GRG at each level has been shown in Table 6.
The orthogonal experimental design separates out the effect
of each machining parameter on the grey relational grade at
different levels. For example, the mean of grey relational
grade for the factor A, viz. aspect ratio, at levels 1 and 2 can
be calculated by taking the average of the grey relational
grade for the experiment nos. 1–9 and 10–18, respectively
(shown in Table 2). Similarly, the mean of the grey relation-
al grade for each level of other machining parameters can
also be computed. In addition, the total mean of the grey
relational grade for the 18 experiments is also calculated and
listed in Table 6. The total mean value of the grey relational
grade is 0.65218.

The grey relational grade represents the level of corela-
tion between the reference sequence and the comparability
sequence [72]. The greater value of the grey relational grade
means that the comparability sequence has a stronger corre-
lation to the reference sequence. Therefore, the optimal level
of the machining parameters is the level with the greatest
grey relational grade value. The level value marked asterisks
(*) indicates that they results in a better EDM performance.
Based on the grey relational grade given in Table 6, the
optimal machining performance for MRR, TWR and SR
was obtained for aspect ratio (level 1), pulse current (level
1), pulse ON time (level 1), duty cycle (level 1), gap
voltage (level 3) and tool electrode lift time (level 1)
combination. Accordingly, A1B1C1D1E3F1 is the optimal
level of EDM parameters in the case of multiple perfor-
mance characteristics because higher GRG values yield
better quality.

The difference between the maximum and the minimum
value of the grey relational grade is also calculated and
tabulated in Table 6 and ranked accordingly. As listed in
Table 6, the difference between the maximum and the min-
imum value of the average grey relational grade of the EDM
machining parameters is as follows: 0.0761 for aspect ratio,
0.0851 for pulse current, 0.0434 for pulse ON time, 0.0191

Identification of the process parameters and 
performance characteristics

Assigning number of levels for the process parameters; 
Selection of appropriate orthogonal array design, and 

conducting the experiments based on the orthogonal array 

Grey Relational Generating:
Normalizing the experimental results according to the type of 
performance measures viz. material removal rate (HB), tool 

wear rate (LB), and surface roughness (LB) 

Grey relational analysis (GRA): 
Calculating the Grey relational coefficient (GRC) to display  
the relationship between the optimal (ideal=1) and actual 
normalized results for each experimental run.  

Grey relational grade (GRG): 
Calculating the Grey relational grade (GRG) and Grey 
Relational Ordering 

Analyze the experimental results using the Grey relational 
grade and statistical analysis of variance (ANOVA) 

Select the optimal levels of process parameters
and perform confirmation test

Fig. 1 Flow chart for the experimental analysis
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for duty cycle, 0.0224 for gap voltage and 0.0493 for tool
electrode lift time. The most significant factor affecting
performance characteristics is determined by comparing

these values. The most effective controllable factor was
the maximum of these values. As per Table 6, the maximum
value among the controllable factors is for pulse current, viz.
0.0851. This higher value indicates that the pulse current has
the strongest effect on the multi-performance characteristics
among the other machining parameters. Furthermore, the
significance of role that every process parameter plays over
the multi-performance characteristics can be predicted by
examining these values.

The order of importance of the machining parameters to the
multi-performance characteristics in the EDM process, in

Table 5 Normalisation (data pre-processing) of the experimental results for each performance measures

No. of run MRR TWR SR

Ideal 1 1 1 1 1 1 1 1 1

1 1.00000 1.00000 1.00000 0.50626 0.54345 0.49256 0.68610 0.83607 1.00000

2 0.53644 0.58149 0.58183 0.76874 0.76715 0.82620 0.58175 0.79275 0.56403

3 0.51030 0.50188 0.48302 1.00000 0.94373 0.94399 0.75369 0.58175 0.49640

4 0.84878 0.84420 0.88105 0.51771 0.51037 0.52760 1.00000 0.68610 0.69697

5 0.52248 0.56695 0.55292 0.54080 0.55489 0.54950 0.60474 0.75369 0.61424

6 0.51312 0.54370 0.52568 0.64995 0.67213 0.68565 0.93865 0.68610 0.47368

7 0.91240 0.89701 0.90506 0.52429 0.52941 0.52167 0.62963 0.50495 0.83806

8 0.84144 0.82860 0.83328 0.54223 0.54667 0.54626 0.50495 1.00000 0.67427

9 0.52815 0.52435 0.47368 0.90355 1.00000 1.00000 0.47368 0.47368 0.56403

10 0.79507 0.78743 0.72681 0.55388 0.54505 0.55944 0.65665 0.56044 0.72125

11 0.56344 0.55706 0.53220 0.55388 0.55994 0.56976 0.50495 0.52218 0.54907

12 0.47368 0.47368 0.48702 0.59207 0.60591 0.60707 0.54064 0.47368 0.48478

13 0.77482 0.74354 0.79777 0.69138 0.70554 0.70387 0.75369 0.62963 0.65300

14 0.56198 0.62217 0.58232 0.64186 0.64398 0.65190 0.88439 0.68610 0.61424

15 0.55908 0.55398 0.56091 0.72801 0.74245 0.77121 0.71831 0.58175 0.54907

16 0.70143 0.65935 0.68498 0.61688 0.63951 0.63843 0.65665 0.65665 0.69697

17 0.73174 0.76961 0.72784 0.47368 0.47368 0.47368 0.68610 0.68610 0.54907

18 0.49575 0.55369 0.52608 0.60070 0.62017 0.62551 0.65665 0.60474 0.52141

Table 6 Grey relational grade for each experimental run

Run No. Grey relational grade Order

1 0.78494 1

2 0.66671 7

3 0.69053 6

4 0.72364 2

5 0.58447 15

6 0.63207 13

7 0.69583 5

8 0.70197 4

9 0.66013 9

10 0.65623 10

11 0.54583 17

12 0.52650 18

13 0.71703 3

14 0.65433 11

15 0.64053 12

16 0.66121 8

17 0.61906 14

18 0.57830 16
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Fig. 2 Effects plot for grey relational grade
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sequence can be ranked as: factor B (pulse current), A (aspect
ratio), F (tool electrode lift time), C (pulse ON time), E (gap
voltage) and D (duty cycle). This indicates that the EDM
performance was strongly affected by the pulse current.

Figure 2 shows the main effect plot (response graph)
based on grey relational grade where the dash line indicates
the value of the total mean of the grey relational grade (viz.
0.65218). Basically, the larger the grey relational grade, the
better is the multi-performance characteristics, since it is
c loser to the ideal value , viz . 1 . Accordingly,
A1B1C1D1E3F1 is the optimal level of EDM parameters
in the case of multiple performance characteristics. The
greater values in Fig. 2 depict the high MRR, low TWR
and surface roughness. However, the relative importance
among the process parameters for the multiple performance
characteristics still needs to be known, to determine the
optimal combinations of the parametric levels. Thus,
ANOVA is performed.

5.1 Analysis of variance

The main purpose of the ANOVA is the application of a
statistical method to identify the effect of individual factors.
Results from ANOVA can determine very clearly the impact
of each factor on the process results [73].

In the present study, ANOVA investigates which EDM
process parameters significantly affect the performance
measures. This is revealed by separating the total variability
of the grey relational grades, which is measured by the sum
of squared deviations from the total mean of the grey rela-
tional grade, into contributions by each process parameter
and error. In addition F test [74] and p value (probability)
have also been determined. Table 7 shows the results of
ANOVA for multi-performance characteristics. Since there
are four p values less than 0.05, these factors have a statis-
tically significant effect on grey relational grade at 95.0%
confidence level.

The results of ANOVA (Table 7) indicate that noise
factor–aspect ratio and pulse current are the most significant
process parameters affecting the multiple performance

measures. The other factors having significant effects are
tool electrode lift time and pulse ON time, respectively.
Furthermore, the other parameters are not significant at
95% confidence level.

Figure 3 depicts the graphical ANOVA plot showing the
effects of each factor scaled so that they can be compared to
the variability of the residuals. For each factor, the devia-
tions of the adjusted level means from the estimated grand
mean are displayed. Any factor that shows considerably
larger variability than the residuals is likely to be an impor-
tant factor. It also indicates that aspect ratio and pulse
current are the most significant process parameters affecting
the multiple performance measures.

5.2 Confirmation tests

Once the optimal level of the process parameters is identi-
fied, the final step is to predict and validate the improvement
of the performance measures using the optimal level. The
purpose of the confirmation experiment is to verify the
conclusions drawn during the analysis phase. The estimated
γm using the optimal levels of the process parameters can be
computed by using the following formula:

g
^ ¼ gm þ

Xn

i¼1

ðg i
^ � gmÞ ð5Þ

Table 7 Response table for grey
relational grade

Total mean value of the grey re-
lational grade00.65218
aResul ts in a bet ter EDM
performance

Factor Machining parameter Average grey relational grade Max.–Min. Rank

Level 1 Level 2 Level 3

A Aspect ratio 0.6902a 0.6141 – 0.0761 2

B Pulse current 0.7065a 0.6287 0.6213 0.0851 1

C Pulse ON time 0.6780a 0.6439 0.6346 0.0434 4

D Duty cycle 0.6602a 0.6553 0.6411 0.0191 6

E Gap voltage 0.6444 0.6454 0.6668a 0.0224 5

F Tool electrode lift time 0.6804a 0.6311 0.6451 0.0493 3

Graphical ANOVA for GRG 

-0.1 -0.06 -0.02 0.02 0.06 0.1
Residuals

AR P = 0.00011 0
Ip P = 0.00042 1 0

TON P = 0.01602 1 0
ζ P = 0.26442 1 0

Vg P = 0.1433
0
1

2
TL P = 0.00981 2 0

Fig. 3 Graphical ANOVA plot
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where γm is the total mean of the grey relational grade, g
^
i is

the mean of the grey relational grade at the optimal level and n
is the number of the process parameters that significantly
affects the performance characteristics.

From Eq. 5, the estimated grey relational grades using the
optimal EDM parameters are computed. Table 8 shows the
results of the confirmation tests using the optimal levels of
EDM parameters. As noted from Table 8, the MRR is
increased from 0.2216 to 0.293 g/min, when the tool wear
and surface roughness are minimised from 0.0128 to
0.0076 g/min and from 6.678 to 4.512 μm, respectively.
Also an improvement of 0.2450 is noted in grey relational
grade, after validation.

6 Conclusions

In the present study, the GRA approach, based on the
orthogonal experimental design table, has been proposed
as a way of studying the optimization of EDM factors.
The GRA approach easily converts the optimization of the
multiple performance characteristics into the GRG, thus
simplifying the complicated analysis of multiple perfor-
mance characteristics. The effectiveness of this approach
has been later verified by confirmation experiments and
analysis of variance. The optimal EDM parameters were

determined for the multi-performance characteristics for
maximum MRR and minimum TWR and SR.

From the response table (Table 9) of the average grey
relational grade, the largest value of grey relational grade for
the EDM parameters was found. It was found that the pulse
current has the strongest effect among the other process
parameters used to study the multi-performance character-
istics. The order of importance of the process parameters to
the multi-performance characteristics is pulse current, aspect
ratio, tool electrode lift time, pulse ON time, gap voltage
and duty cycle. Experimental results have shown clearly that
the material removal rate, tool wear rate and surface rough-
ness in the EDM process can be improved effectively
through the proposed approach. This study indicated that
GRA approach could be applied successfully to other oper-
ations in which performance measures are determined by
many process parameters at multiple quality requests [75].

To conclude, as per the findings, GRA, an advanced
statistical method of multi-factorial analysis, embodies rich
philosophical thought of the unity of opposites, such as
continuity and discontinuity, quality and quantity, statics
and dynamics, etc. Empirical research on high-tech indus-
tries and systems are often constrained, since traditional
statistical methods require large sets of data. On the other
hand, grey system theory is designed to work with system
where the available information is insufficient to character-
ise the system.

Table 8 Results of analysis of
variance for multi-performance
characteristics

aSignificant at 95% C.I. level

Factor Machining parameter Degree of
freedom

Sum of
square

Mean
square

F value Probability
value

A Aspect ratio 1 0.0260445 0.0260445 74.11a 0.0001

B Pulse current 2 0.0266962 0.0133481 37.98a 0.0004

C Pulse ON time 2 0.0062594 0.0031297 8.91a 0.0160

D Duty cycle 2 0.0011764 0.0005882 1.67 0.2644

E Gap voltage 2 0.0019204 0.0009602 2.73 0.1433

F Tool electrode lift time 2 0.0077495 0.0038748 11.03a 0.0098

Residual error 2 0.0021085 0.0003514

Total 17 0.0719550

Table 9 Results of performance
measures for initial and optimal
process parameters

Improvement of the grey rela-
tional grade00.2450

Initial machining parameters Optimal machining parameters

Predicted Experimental

Combination level A2B1C1D1E1F1 A1B1C1D1E3F1 A1B1C1D1E3F1

MRR (g/min) 0.2216 – 0.293

TWR (g/min) 0.0128 – 0.0079

SR, Ra (μm) 6.678 – 4.712

Grey relational grade 0.6529 0.7687 0.8979
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