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Abstract In the present study, SiC nanoparticles were
added to as-cast AZ91 magnesium alloy through friction
stir processing (FSP) and an AZ91/SiC surface nanocompo-
site layer was produced. A relation between the FSP param-
eters and grain size and hardness of nanocomposite using
artificial neural network (ANN) was established. Experi-
mental results showed that distribution of nanoparticles in
the stirred zone (SZ) was not uniform and SZ was divided
into two regions. In the ANN modeling, the inputs included
traverse speed, rotational speed, and region types. Outputs
were hardness and grain size. The model can be used to
predict hardness and grain size as functions of rotational and
traverse speeds and region types. To check the adequacy of
the ANN model, the linear regression analyses were carried

out to compute the correlation coefficients. The calculated
results were in good agreement with experimental data.
Additionally, a sensitivity analysis was conducted to
determine the parametric impact on the model outputs.

1 Introduction

Increasing demands for improved fuel-efficient vehicles to
reduce energy consumption poses a challenge for the auto-
motive industry to produce lighter automotive vehicles; the
application of light-weight metals such as magnesium alloys
has attracted great attention to replace the conventional
metals [1–5]. However, poor formability and ductility and
low hardness, strength, and wear resistance have limited use
of magnesium alloys [4, 6].

In addition to the grain refinement as an effective
method to increase the strength of metals [6], metal
matrix composites have gained attractions to modify
the structural and functional characteristics of the exist-
ing commercial materials through increasing hardness,
strength, and wear resistance [7]. Recently, friction stir
processing (FSP), invented by Mishra et al. [8], is used
for microstructural modification of metallic materials. In
this process, based on the principles of FSW, a rotating
tool is inserted in a monolithic workpiece for localized
microstructural modification to attain specific properties.
Severe plastic deformation by the tool pin results in a
recrystallized microstructure with fine, equiaxed grains
[3, 8]. Although FSP has been basically considered as
an advanced process for grain refinement, it is also very
attractive to surface composites manufacturers [4, 9–11].
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Artificial neural networks (ANNs) are inspired by natural
neural networks. The concept of ANN was developed be-
fore the advent of computer. ANNs consist of a number of
neurons which are the computational units of the ANN.
Learning, generalizing, and parallel processing are among
the advantages of the ANN. Learning means that the ANN is
capable of adjusting the network parameters when new
conditions rise. Generalizing means that the ANN is able
to adhere to a general rule using limited instances. ANNs are
used for modeling and predicting different processes. The
field of neural networks is immense and interdisciplinary.
Speed of calculation, capability of learning from examples
and simplicity are the advantages of ANNs. These features
enable ANNs to be used in materials science. Reducing the
time and effort for the numerical studies using the approach
for unknown mechanical properties within studied integer,
desired hardness, and grain size values can be achieved.
Okuyucu et al. [12] modeled mechanical properties of butt
welding by ANN. They drew the correlation between the
FSW parameters of the Al plates and mechanical properties.
Acherjee et al. [13] developed an ANN-based model to
predict the laser transmission weld quality in terms of lap-
shear strength and weld-seam width. Dai et al. [14] estab-
lished a knowledge base through numerous designs of
experiments on beam elements, based on a validated finite
element model of a reference vehicle body-in-white, and
then applied ANN to extract the correlation between the
beam element features and crash dynamic characteristics.
They reported that beam element features can be predicted
according to expected crash dynamic characteristics. Zhang
et al. [15] used back-propagation neural network (BPNN) to
predict the circumferential and longitudinal residual stress
profiles in components shaped by hard turning processes.
Sigh et al. [16] used BPNN predict the flank wear of
high-speed steel drill bits for drilling holes on copper
workpiece. Park and Kang [17] developed BPNN to
predict the fatigue life of spot welds subjected to vari-
ous geometric factors and loading conditions such as
combined tension and shear loading and tensile-shear
loading. Óscar Martín et al. [18] estimated the quality
of a resistance spot welding joint of 304 austenitic
stainless steel from its tensile shear load-bearing capac-
ity where the quality levels were set by ultrasonic
nondestructive testing. Pohlak et al. [19] used the re-
sponse surface method (RSM) for optimization of the
structure and manufacturing processes of large compos-
ite plastic parts. In RSM, the design surface is fitted to
the response values using regression analysis.

In the present study, AZ91/SiC nanocomposite layer was
produced. The aim was to adapt the ANN with the FSP
parameters to derive the correlations between the FSP
parameters and grain size and hardness of the nanocompo-
site layer. Sensitivity analysis was performed to examine the

contribution of input variables to the outputs. Linear regres-
sion analyses were carried out to compute the correlation
coefficient for the ANN model.

2 Experimental study

2.1 Experimental procedures

The material used was an AZ91 as-cast magnesium alloy
with an average grain size of 150 μm and a composition of
(in weight percent): Al, 9.1; Zn, 0.68; Mn, 0.21; Si, 0.085;
Cu, 0.0097; Ni, 0.001; Fe, 0.0029; and Mg, bal. Commer-
cially available SiC particles with average diameter of
30 nm and 99.98% purity were used as reinforcements.
The reinforcing particles were filled into a groove of 0.8×
1.2 mm machined on the AZ91 as-cast plate with the thick-
ness of 5 mm. Two hot working steel tools were used. The
pinless tool was employed to cover the top of the grooves
after filling with SiC particles to prevent scattering during
FSP. The second tool had a square pin with dimensions of
3.54×3.54 mm and a length of 2.5 mm. Both tools’ should-
ers were 15 mm in diameter. The tool rotational speed was
varied from 710 to 1,400 rpm and the traverse speed was
varied from 12.5 to 63 mm/min. The FSP tool was rotated in
clockwise directions with the tilt angle of 3°.

The transverse sections of the specimens were prepared
by standard metallographic techniques and etched with a
solution of 5 mL acetic acid, 6 g picric acid, 10 mL water,
100 mL ethanol, 5 mL HCl, and 7 mL nitric acid for 1–2 s.
Microstructural observations of the SZ were carried out by
optical microscopy. Microhardness of the specimens was
measured at 1 mm distance from the top surface in steps
of 0.2 mm using a Vickers Microhardness Testing machine
by applying a load of 200 g for 15 s.

2.2 Macrostructural and microstructural results

Figure 1a shows the macrograph of SZ for the specimen
produced by one-pass FSP. As seen in the figure, distribu-
tion of SiC nanoparticles in the AZ91 matrix is not uniform
and the SZ is divided into two regions. The bright region is
rich in SiC particles, while the dark region is poor in SiC
particles. Such non-uniform distribution of the SiC particles
makes non-uniform SZ microstructure. Figure 1b and c
show the microstructure of bright and dark regions.
According to the Zener–Holoman parameter, increasing
the volume fraction of SiC particles decreases the grain
size [9]. Dense distribution of nanoparticles in the
bright region restricts the grain growth due to the pin-
ning effect, while the grains grow more freely in the
dark region. Grain size in the bright region is about
2 μm, while it is about 8 μm in the dark region.
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2.3 Microhardness

Microhardness profile of the specimen produced by FSP
at the rotational and traverse speeds of 900 rpm and
63 mm/min is shown in Fig. 2. The average microhard-
ness value of the as-cast AZ91 was 63 HV. Due to the
high hardness of SiC particles and very fine grains, the
hardness of SZ increases. As it can be seen in Fig. 2,
the hardness profile is divided into two parts due to the
non-uniform distribution of the SiC particles discussed
earlier (bright and dark regions). Dense distribution of
the SiC particles accompanied by very fine grains
(~1.8 μm) severely increased the hardness of the bright
region up to 115 HV, while the hardness of the dark
region, with less distribution of the particles and the
grain size of ~7 μm, reached 90 HV.

The experimental results are summarized in Table 1. As
shown in the table, the process variations are the rotational

speed, traverse speed, and region types, and the outputs are
grain size and hardness.

3 Artificial neural network

Artificial neural network is an approach inspired by brain
structure and tries to simulate the brain-processing capabil-
ities. Neurons are the constituent parts of neural network.
Neural networks consist of different parts. These parts are
the inputs, outputs, weight vector, add function, and transfer
function. ANN comprise of three layers which are input,
hidden, and output layers. The input layer consists of all
input factors. Information from the input layer is processed
in the hidden layer. Outputs of the hidden layer(s) are also
computed in the output layer and result in output vector.
Detailed description of the functions of hidden and output
layers is presented in [20]. The transfer function of the
hidden and output layers was “logsig”.

To model this process, feed-forward neural network with
back-propagation algorithm was used. Feed forward is a
neural network in which the output of each neuron is only
connected to the neurons of the next layer. Feed forward
neural networks usually have one or more hidden layers and
have an output layer. Inputs and outputs have been normal-
ized in the range of 0–1. Hidden layer with a nonlinear
transfer function authorizes the network to learn linear or
nonlinear relations between outputs and inputs.

In this study, the back-propagation is used with a network
having an input layer with three neurons for each input
factor (rotational speed, traverse speed, and region types)
and an output layer with two neurons (grain size and hard-
ness). The performance of neural network depends on the
number of hidden layer and the number of neurons in the
hidden layer(s), and also activation function in output and
hidden layers. Thus, several combinations are tried out to

Fig. 1 a Macro-image of the
SZ for the specimen produced
by one-pass FSP; b and c
microstructures of the bright
and dark regions, respectively.
The rotational and traverse
speeds were 710 rpm and
40 mm/min, respectively
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Fig. 2 Microhardness profile of the specimen produced by one FSP
pass. The rotational and traverse speeds were 900 rpm and 63 mm/min,
respectively
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choose an optimal combination. Several combinations of
networks were tested and mean prediction error (%) was
calculated for each combination as follows:

MRE ¼ 1

p

Xp
1

actual value� predicted valuej j
actual value

� 100

� �

ð1Þ
To choose transfer function for hidden and output layers,

and the number of neurons in the hidden layer several
combinations, as shown briefly in Table 2, were examined.

As shown in Table 3, the network has the lowest
MRE when the transfer function of the hidden and out-
put layers was “logsig” and number of neurons in the

hidden layer was six (3-6-2). Schematic of this network
is shown in Fig. 3.

The learning-algorithm used was back propagation, one of
the most popular learning algorithms. The learning process
comprises two passes through different layers of the network.
The first one is the forward pass. In the forward pass, the input
vector is applied to the network and its effect propagates
through the network layer by layer. In this pass, the synaptic
weights are assumed to be constant. The second one is the
backward pass. In this pass, unlike the forward pass, parame-
ters of the network are not constant and are modified. First the
error, the difference between the output of the network and the
desired output, is propagated in the backward pass to update
the synaptic weights. The weights are continuously updated

Table 1 Experimental results
with input and output parameters No. Inputs Outputs

Region type Rotational
speed (rpm)

Traverse
speed (mm/min)

Grain size (μm) Hardness (HV)

1 Bright region 710 12.5 2.2 111.9

2 Bright region 900 12.5 2.4 111

3 Bright region 1,120 12.5 2.4 110.8

4 Bright region 1,400 12.5 2.7 110.1

5 Bright region 710 25 2 113.6

6 Bright region 900 25 2.1 112.7

7 Bright region 1,120 25 2.2 112

8 Bright region 1,400 25 2.4 111.5

9 Bright region 710 40 1.9 115

10 Bright region 900 40 2 113.9

11 Bright region 1,120 40 2 114

12 Bright region 1,400 40 2.1 112.7

13 Bright region 710 63 1.7 115.9

14 Bright region 900 63 1.8 115.2

15 Bright region 1,120 63 1.8 115

16 Bright region 1,400 63 2 114.1

17 Dark region 710 12.5 10.1 86.1

18 Dark region 900 12.5 11.4 84.3

19 Dark region 1,120 12.5 12.5 82.4

20 Dark region 1,400 12.5 13.9 80.7

21 Dark region 710 25 8.2 88.6

22 Dark region 900 25 9 87

23 Dark region 1,120 25 10.2 84.9

24 Dark region 1,400 25 11.3 83.3

25 Dark region 710 40 7 90.2

26 Dark region 900 40 8 88.5

27 Dark region 1,120 40 9.3 86.6

28 Dark region 1,400 40 10.5 85.2

29 Dark region 710 63 5.7 92.5

30 Dark region 900 63 6.9 90.5

31 Dark region 1,120 63 8.1 88.8

32 Dark region 1,400 63 9 86.9
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every time. The input vector is presented to the network and
the process continues till the output of the network comes
closer to the desired output [21].

In the present work, 32 patterns were obtained from the
experiments by changing the process parameters. Inputs for

the ANN (process parameters) were the rotational speed,
traverse speed, and region types and the outputs were hard-
ness and grain size.

MATLAB 7.0 was applied in all the stages of developed
model including training and testing of the network. The

Table 2 Summary of different
networks evaluated to yield the
criteria of network performance

No. Activation function Neurons in
hidden layer

Hardness
training MRE (%)

Grain size
training MRE (%)

Hidden layer Output layer

1 Logsig Purlin 5 2.11 0.73

2 Logsig Purlin 6 3.23 0.98

3 Logsig Logsig 5 1.6024 0.51

4 Logsig Logsig 6 0.64 0.18

5 Logsig Tansig 5 1.98 0.64

6 Logsig Tansig 6 0.82 0.36

7 Tansig Purlin 5 2.34 1.43

8 Tansig Purlin 6 0.91 0.59

9 Tansig Logsig 5 4.67 1.34

10 Tansig Logsig 6 1.12 0.82

11 Tansig Tansig 5 1.98 0.42

12 Tansig Tansig 6 1.23 0.34

Table 3 Comparison of actual and predicted grain size for AZ91/SiC nanocomposite produced by FSP at training stage

No. Region type Rotational
speed (rpm)

Traverse speed
(mm/min)

Grain size (μm) Error Error%

Actual Predicted

1 Bright region 900 12.5 2.4 2.383127 0.016873 0.703045

2 Bright region 1,120 12.5 2.4 2.386662 0.013338 0.555751

3 Bright region 1,400 12.5 2.7 2.706454 −0.00645 0.239035

4 Bright region 710 25 2 1.994711 0.005289 0.264436

5 Bright region 1,120 25 2.2 2.240124 −0.04012 1.823797

6 Bright region 1,400 25 2.4 2.381186 0.018814 0.783919

7 Bright region 900 40 2 1.986905 0.013095 0.654751

8 Bright region 1,120 40 2 2.014674 −0.01467 0.733705

9 Bright region 1,400 40 2.1 2.107285 −0.00729 0.346919

10 Bright region 710 63 1.7 1.716411 −0.01641 0.965336

11 Bright region 900 63 1.8 1.77156 0.02844 1.580003

12 Bright region 1,400 63 2 2.011424 −0.01142 0.57118

13 Dark region 710 12.5 10.1 10.10113 −0.00113 0.011221

14 Dark region 1,120 12.5 12.5 12.50162 −0.00162 0.012953

15 Dark region 1,400 12.5 13.9 13.89678 0.00322 0.023164

16 Dark region 710 25 8.2 8.130183 0.069817 0.851425

17 Dark region 900 25 9 9.086958 −0.08696 0.966197

18 Dark region 1,400 25 11.3 11.30056 −0.00056 0.004958

19 Dark region 710 40 7 6.966374 0.033626 0.480367

20 Dark region 900 40 8 8.136007 −0.13601 1.70009

21 Dark region 1,120 40 9.3 9.186939 0.113061 1.21571

22 Dark region 1,400 40 10.5 10.49726 0.002744 0.026129

23 Dark region 710 63 5.7 5.718718 −0.01872 0.328382

24 Dark region 1,120 63 8.1 8.033218 0.066782 0.824473

25 Dark region 1,400 63 9 9.043531 −0.04353 0.483682
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model was trained with “Levenberg–Marquardt optimization”
learning algorithm. The Levenberg–Marquardt algorithm is
based on approaching second-order training speeds without
having the computation of Hessian matrix [22].

After training, the network was tasted with seven pat-
terns. Errors occurring at the learning and testing stages are

the root-mean squared (RMS), absolute fraction of variance
(R2), and mean prediction error (Eq. 1).

RMS ¼ 1=pð Þ
X

tj � oj
�� ��2� �1=2

ð2Þ

R2 ¼ 1�
P

j tj � oj
� �2P
j oj
� �2

 !
ð3Þ

4 Evaluation of results and discussion

Twenty-five patterns of the experimental results were used
for training the AAN model and seven patterns were not
applied to the model and were used for testing. Tables 3 and
4 show the comparison of actual and predicted values for
grain size and hardness. It is clear that the neural network

Fig. 3 Schimatic of three layer neural network in the present work

Table 4 Comparison of actual and predicted hardness for AZ91/SiC nanocomposite produced by FSP at training stage

No. Region type Rotational
speed (rpm)

Traverse
speed (mm/min)

Hardness (HV) Error Error%

Actual Predicted

1 Bright region 900 12.5 111 110.662 0.337987 0.304492

2 Bright region 1,120 12.5 110.8 110.6557 0.144336 0.130267

3 Bright region 1,400 12.5 110.1 110.6562 −0.55622 0.505192

4 Bright region 710 25 113.6 113.7531 −0.15312 0.134785

5 Bright region 1,120 25 112 111.8999 0.100141 0.089412

6 Bright region 1,400 25 111.5 111.2893 0.21067 0.188942

7 Bright region 900 40 113.9 113.9467 −0.04672 0.041021

8 Bright region 1,120 40 114 113.7145 0.285473 0.250415

9 Bright region 1,400 40 112.7 113.057 −0.35705 0.316813

10 Bright region 710 63 115.9 115.5514 0.348571 0.300752

11 Bright region 900 63 115.2 115.3825 −0.1825 0.158418

12 Bright region 1,400 63 114.1 114.1437 −0.04371 0.03831

13 Dark region 710 12.5 86.1 86.20448 −0.10448 0.121348

14 Dark region 1,120 12.5 82.4 82.59061 −0.19061 0.231321

15 Dark region 1,400 12.5 80.7 80.54938 0.15062 0.186642

16 Dark region 710 25 88.6 88.67993 −0.07993 0.090213

17 Dark region 900 25 87 86.68799 0.31201 0.358632

18 Dark region 1,400 25 83.3 83.47525 −0.17525 0.210386

19 Dark region 710 40 90.2 90.2957 −0.0957 0.106103

20 Dark region 900 40 88.5 88.48411 0.015895 0.01796

21 Dark region 1,120 40 86.6 86.73067 −0.13067 0.150892

22 Dark region 1,400 40 85.2 84.9473 0.252704 0.296601

23 Dark region 710 63 92.5 92.40487 0.09513 0.102844

24 Dark region 1,120 63 88.8 88.72771 0.072294 0.081412

25 Dark region 1,400 63 86.9 87.01735 −0.11735 0.135042
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prediction of FSP parameters follow the experimental
results very closely.

Figure 4a and b show the grain size and hardness for the
experimental and predicted data at the training stage. As it is
clear from the figures, the predicted data by the ANN are in
good agreement with the experimental results. Figure 5a and
b show the error histograms of the experimental and pre-
dicted data for the grain size and hardness. As can be seen,
the maximum errors for training of the grain size and hard-
ness are ~1.8 and ~0.5%, respectively.

Tables 5 and 6 show the comparison of actual and predicted
values for grain size and hardness at the training stage. The
developed ANN can accurately predict the grain size and
hardness. Figure 6a and b show the grain size and hardness
for the experimental and predicted data at the testing stage. It is
clear that the predicted data by the ANN are in good agreement
with the experimental results. Therefore, it is possible to predict
the grain size and hardness of AZ91/SiC nanocomposite layer
produced by FSP without performing the experiment.

4.1 Regression

Linear regression analyses were carried out to compute the
R2 between the experimental and predicted values. Correla-
tion coefficients of 0.9999 and 0.9997 were obtained for the
grain size and hardness at the training stage (Fig. 7) and
0.9994 and 0.9987 at the testing stage (Fig. 8). It is clear that
the correlation coefficients for both grain size and hardness
are close to unity indicating the good accuracy of the devel-
oped model. Thus, this ANN model can be used to predict
the grain size and hardness of AZ91/SiC nanocomposite
layer with adequate accuracy.

4.2 Interpreting the model

To identify the critical parameters and their order of impor-
tance on the model outputs, the analysis based on the mag-
nitude of weights and sensitivity analysis were conducted.
These analyses show the network output change according

to the inputs and provide information about the parameter
which should be measured more accurately.

Since the end of the 1980s, different methods have
been proposed for interpreting what has been learned by
a feed forward neural network composed of input neu-
rons, hidden neurons, and output neurons. These inter-
pretative methods can be divided into two methods:
analysis based on the weights magnitude and sensitivity
analysis [23].

Analysis based on the weights magnitude are cooper-
ated with those procedures that are solely based on the
values stored in the static matrix of weights to extract
the relative impact of each input variable on the out-
puts. Based on the weights magnitude, different equa-
tions have been proposed that are characterized by the
calculation of the results of weights wij (connection
weight between the input neuron i and the hidden
neuron j) and vjk (connection weight between the hidden
neuron j and the output neuron k) for each hidden
neuron, acquiring the sum of the calculated results.

The basis of the sensitivity analysis methods is measure-
ment of the effect occurred in the output yk due to a change
made in the input xi. Achieving the Jacobian matrix through
the calculation of the partial derivatives of the output yk as a

function of the input xi,
@yk
@xi

� �
, can be considered the

analytical translation of sensitivity analysis. It can be so
useful to determine the importance of the input, as the
calculation of the partial derivatives depends the instant
slope of the underlying function between each pair of input
xi and output yk [23].

4.2.1 Formulation

Hidden and output layers with “log-sigmoid” transfer func-
tion were used to predict hardness and grain size. The log-
sigmoid transfer function was:

FðxÞ ¼ 1

1þ e�x
ð4Þ

Fig. 4 Experimental and predicted a grain size and b hardness at the training stage of ANN model
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where, x is the weighted sum of the input. To determine
the grain size and hardness of the nanocomposite layer

produced by FSP, Eqs. 6 and 7 were derived from
ANN.

Grain size ¼ 1

1þ e� �495:4445 f1 þ 495:7971 f2 þ 5:1233 f3 þ 0:2828 f4 þ 495:4909 f5 � 8:0142 f6 þ 0:86883ð Þ ð5Þ

Hardness ¼ 1

1þ e� 1026:8846 f1�1027:7274 f2�0:35732 f3þ0:0019929 f4�1027:6086 f5þ2:1075 f6þ1:565ð Þ ð6Þ

where, f1 to f6 are the weights, calculated as follows:

f1 ¼ 1

1þ e� �85:8039Tþ3:7552Rþ53:6996Aþ48:1241ð Þ ð7Þ

f2 ¼ 1

1þ e�ð�32:2399Tþ3:7486R�1:4443Aþ17:5183Þ ð8Þ

f3 ¼ 1

1þ e � �96:7354Tþ2:9658R�76:6959Aþ90:1754ð Þð Þ ð9Þ

f4 ¼ 1

1þ e� �12:0599Tþ41:1793Rþ4:3362A�36:1781ð Þ ð10Þ

f5 ¼ 1

1þ e� 32:3637T�3:7488Rþ36:0293A�52:174ð Þ ð11Þ

f6 ¼ 1

1þ e� 0:6663T�2:5005R�10:155Aþ9:1859ð Þ ð12Þ

where, T, R, and A are the traverse speed, rotational speed,
and region type, respectively. It should be noticed that in

Fig. 5 Error histogram of the experimental and predicted data for the a grain size and b hardness; at the training stage of the ANN model

Table 5 Comparison of actual
and predicted grain size for
AZ91/SiC nanocomposite pro-
duced by FSP at testing stage

No. Region type Rotational
speed (rpm)

Traverse speed
(mm/min)

Grain size (μm) Error Error%

Actual Predicted

1 Bright region 710 12.5 2.2 2.380853 −0.18085 8.220577

2 Bright region 900 25 2.1 2.135706 −0.03571 1.700273

3 Bright region 710 40 1.9 2.016804 −0.1168 6.147604

4 Bright region 1,120 63 1.8 1.849962 −0.04996 2.775668

5 Dark region 900 12.5 11.4 11.32775 0.072247 0.63375

6 Dark region 1,120 25 10.2 9.886165 0.313835 3.076812

7 Dark region 900 63 6.9 6.920494 −0.02049 0.297013
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Eqs. 7–12, traverse speed should be divided into 70 and
traverse speed should be divided into 1,500 and region type
(A) is equal to 1 in dark region and 0 in bright region. Grain
size should be multiplied to 15 and hardness should be
multiplied at 120.

The coefficients from the neurons of hidden layer were
multiplied by the output of the input layers. The last con-
stant values in Eqs. 7–12 indicate the bias term associated
with hidden layer. The weights of the neural network were
extracted and made into mathematical formulation. Six neu-
rons were used in the hidden layer, providing six equations
for hidden layer. The weights of hidden layer were multi-
plied by the input layer and added to the bias and then were
passed to the “log-sigmoid” transfer function (f1–f6). The
output of the logsig transfer function is multiplied by the
weight of the output layer to predict grain size and hardness
(Eqs. 5 and 6).

4.2.2 Weight method

Based on the weight magnitude, different equations have
been proposed which share common characteristics: calcu-
lation of the product of the weights wij (connection weight
between the input neuron i and the hidden neuron j) and vjk
(connection weight between the hidden neuron j and the

output neuron k) for each of the hidden neurons of the
network, which gives the sum of calculated products. The
following, proposed by Garson [24], is representative of this
type of analysis [23]:

Qik ¼
PL

j¼1
wijPN

r¼1
wrj

vjk

� �
PN

i¼1

PL
j¼1

wijPN

r¼1
wrj

vjk

� �� � ð13Þ

where
PN
r¼1

wrj denotes the sum of the connection weights

between the input neurons N and the hidden neuron j. Qik

represents the percentage of impact of the input variable xi
on the output yk, in relation to the rest of the input variables,
in such a way that the sum of this index must give a value of
100% for all of the input variables [23].

To come up with precise weights, two ANN models
were generated with both having single output. The
relative importance of each input parameter on the out-
puts is shown in Tables 7 and 8. To follow the proce-
dure to calculate the relative importance, see Appendix.
As indicated in the tables, the relative importance of the
input parameters on the grain size is different from that

Table 6 Comparison of actual
and predicted hardness for
AZ91/SiC nanocomposite pro-
duced by FSP at testing stage

NO. Region type Rotational
speed (rpm)

Traverse speed
(mm/min)

Hardness (HV) Error Error%

Actual Predicted

1 Bright region 710 12.5 111.9 110.6684 1.231555 1.100585

2 Bright region 900 25 112.7 112.7161 −0.01609 0.014275

3 Bright region 710 40 115 113.7893 1.210681 1.052766

4 Bright region 1,120 63 115 115.0441 −0.04413 0.038377

5 Dark region 900 12.5 84.3 84.41421 −0.11421 0.135483

6 Dark region 1,120 25 84.9 84.95368 −0.05368 0.063225

7 Dark region 900 63 90.5 90.51442 −0.01442 0.015935

Fig. 6 Experimental and predicted a grain size and b hardness at the testing stage of ANN model
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on the hardness. However, the impact of rotational
speed on the grain size and hardness is higher than that
of the other parameters.

4.2.3 Pad method

In some works, Pad method is employed to apply sensitivity
analysis to ANN [25, 26]. The Pad method calculates the Pad
of a specific ANN output with respect to each input at each
vector of the inputs. In the present method, the sensitivity of
input can be defined by the following equation [25, 27, 28].

Si ¼ 1

N

X
p

@opk
@xpi

ð14Þ

where, N is the total number of data variables, p the pattern
number, opk, the output value of the ANN for the pattern p, and
xpi the input value from the pattern p. In this case,

ok ¼ f2
X
j

wjkoj

 !
ð15Þ

and

oj ¼ f1
X
i

wijxi

 !
ð16Þ

where, wjk is the weight between the output neuron k and the
hidden neuron j, wij is the weight between the input neuron i
and the hidden neuron j, oj is the output of the hidden neuron j,
and f1 and f2 are the activation functions.

Applying the chain rule to Eq. 14, and combining Eqs. 15
and 16 results in:

SI ¼ 1

N

X
p

@ok
@oj

@oj
@xi

¼ 1

N

X
p

f
0
2

X
j

wjkoj

 !X
j

wjk f
0
1

X
i

wijxi

 !
wij

ð17Þ
Because f1 and f2 are the sigmoid functions, then f′0 f(1−f).

Thus, Eq. 18 will become:

Si ¼ 1

N

X
p

ok 1� okð Þ
X
j

wjkoj 1� oj
� �

wij ð18Þ

Fig. 7 a Predicted grain size by ANN versus the experimental grain size (grain size regression) at the training stage and b predicted hardness by
ANN versus the experimental hardness (hardness regression) at the training stage

Fig. 8 a Predicted grain size by ANN versus the experimental grain size (grain size regression) at the testing stage and b predicted hardness by
ANN versus the experimental hardness (hardness regression) at the testing stage
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The relative contribution of each input variable on
a specific output can be determined by calculating
the sum of the squares of partial derivatives (SSD)
[25].

SSDi ¼
XN
P¼1

@yk
@xi

� �2

P

ð19Þ

where @yk
@xi

� �
is the PAD for Pth observation. The

contribution of each input variable is given by:

Contribution of Pth variable ¼ SSDiP
i
SSDi

� 100% ð20Þ

The variable having the highest SSD affects the
output most. On this basis, the inputs can be ranked
in the order of their contribution on the outputs.
Tables 9 and 10 show sensitivity results for hardness
and grain size.

Sensitivity analysis shows that the order of impor-
tance of input parameters on the grain size and hardness
is the same. As cited by Hall–Petch relationship, hard-
ness depends on grain size [9]. Therefore, each param-
eter has an impact on the grain size effects on the
hardness as well.

Comparison of the results of weight method with
those of the backward stepwise indicates that results
are not compatible. It is clear from Figs. 1, 2 and
Table 1 that the impact of region type on the grain
size and hardness of the nanocomposite is much

higher. Therefore, it can be concluded that the weight
method is not an effective method to calculate the
relative importance of input parameters. Different ex-
perimental studies have demonstrated that analysis
based on the weight method is not effective to deter-
mine the relative importance of input variables on the
outputs [23, 24, 29].

5 Conclusions

This study was an attempt to show the possibility of
using of neural networks for calculation of the grain
size and hardness of AZ91/SiC nanocomposite produced
by FSP. Results showed that the networks can be used
as an alternative way in these systems. The validation
of the model was evaluated quantitatively, using the
MRE (%). The best architecture, obtained for the pres-
ent work, was 3-6-2, using back-propagation rate. The
correlation coefficients (R2) for training and test patterns
for hardness and grain size were close to unity, indicat-
ing excellent agreement between experimental data and
predicted values. Expressions for grain size and hard-
ness were developed from the neural network model.
The model can be used to predict hardness and grain
size as functions of rotational and traverse speeds and
region types. Sensitivity analysis conducted to determine
the parametric impact on the model outputs showed that
the region types was the most effective parameter on
the grain size and hardness of produced nanocomposite
layer.

Table 7 Relative importance of input parameters on grain size

Relative importance (%)

Traverse speed Rotational speed Region type

34.01885 41.68061 24.30054

Table 8 Relative importance of input parameters on hardness

Relative importance (%)

Travers speed Rotational speed Region type

23.5608 46.14119 30.29802

Table 9 Sensitivity analysis for grain size

No. Variables SSD Contribution (%) Rank

1 Region type 17.67933 53.22412 1

2 Rotational speed 5.912697 17.80034 3

3 Traverse speed 9.624735 28.97554 2

Table 10 Sensitivity analysis for hardness

No. Variables SSD Contribution (%) Rank

1 Region type 3.851351 65.80826 1

2 Rotational speed 0.602763 10.29944 3

3 Traverse speed 1.398269 23.8923 2
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Appendix

The computation process is as follows:

1. For each hidden neuron, the absolute value of the
output layer weight multiply by the absolute value
of the hidden layer weight. This process implies
for each input. Then, the following tables are
obtained:

Weight of various layer

Hidden
layer
neuron
no.

Traverse
speed

Rotational
speed

Region
type

Grain
size

1 −55.3178 −95.5384 3.3025 −2.3188

2 −4.1112 4.3033 3.9569 1.3847

3 1.4662 −9.1465 25.9532 1.6541

4 6.6795 25.6189 1.3834 0.17792

5 −113.018 3.3554 5.0194 23.9326

6 −2.4343 6.6717 4.376 1.9267

Weight of various layer

Hidden
layer
neuron
no.

Traverse
speed

Rotational
speed

Region
type

Hardness

1 39.9372 −61.4851 −3.8629 0.092301

2 7.0352 56.0055 15.0031 −0.17464

3 −3.4478 −3.9941 −3.4619 −0.76524

4 0.19705 19.4762 23.4907 −3.3633

5 −1.8155 23.5069 −14.1 −0.99639

6 −7.0957 −0.6522 −4.542 −0.64619

Grain size calculation.

Hidden
layer
neuron
no.

Traverse
speed

Rotational
speed

Region
type

Sum

1 P110128.2709 P120221.5344 P1307.6578 357.4632

2 P2105.6927 P2205.9587 P2305.4791 17.1306

3 P3102.4251 P31015.1292 P33042.9291 60.4836

4 P4101.1884 P4204.5581 P4300.2461 5.9926

5 P5102704.819 P52080.3034 P530120.1273 2,905.25

6 P6104.6901 P62012.8543 P6308.4312 25.97577

Hardness calculation

Hidden
layer
neuron
no.

Traverse
speed

Rotational
speed

Region
type

Sum

1 P1103.6862 P1205.6751 P1300.3565 9.7179

2 P2101.2286 P2209.7808 P2302.6201 13.6295

3 P3102.6383 P3203.0564 P3302.6491 8.3440

4 P4100.6627 P42065.5043 P43079.0062 145.1733

5 P5101.8089 P52023.42204 P53014.0491 39.28009

6 P6104.58517 P6200.4214 P6302.9349 7.9416

2. To obtain Qij for each hidden neuron, Pij was divided into
the sum; for all the input variables. For example for 1,
Q11 ¼ P11= P11 þ P12 þ P13ð Þ.
3. For each input neuron, assume Sj to be the sum of Qij. For
example, S1 ¼ Q11 þ Q21 þ Q31 þ Q41 þ Q51 þ Q61. Then,
the following tables are obtained.

Grain size calculation

Hidden layer neuron
no.

Traverse speed Rotational
speed

Region type

1 Q1100.3588 Q1200.6197 Q1300.021423

2 Q2100.33231 Q2200.347843 Q2300.319843

3 Q3100.040097 Q3200.250137 Q3300.709765

4 Q4100.198312 Q4200.760616 Q4300.041073

5 Q5100.931011 Q5200.02764 Q5300.041348

6 Q6100.180559 Q6200.49486 Q6300.324581

Sum S102.041131 S202.50083 S301.458032

Hardness calculation

Hidden layer neuron
no.

Traverse speed Rotational
speed

Region type

1 Q1100.379324 Q1200.583986 Q1300.03669

2 Q2100.090144 Q2200.717616 Q2300.192239

3 Q3100.316202 Q3200.366303 Q3300.317495

4 Q4100.004565 Q4200.451214 Q4300.54422

5 Q5100.046052 Q5200.596283 Q5300.357665

6 Q6100.57736 Q6200.053068 Q6300.369572

Sum S101.413648 S202.768471 S301.817881

4. By dividing each Sj into the sum, the relative importance
of each input parameter can be calculated. For example, for
the first input parameter (traverse speed), the relative impor-
tance is equal to S1 � 100ð Þ= S1 þ S2 þ S3ð Þ.

Relative importance of input parameters on grain size.

Relative importance (%)

Traverse speed Rotational speed Region type

34.01885 41.68061 24.30054

Relative importance of input parameters on hardness.

Relative importance (%)

Travers speed Rotational speed Region type

23.5608 46.14119 30.29802
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