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Abstract As a new advanced service-oriented networked
manufacturing model, cloud manufacturing (CMfg) has
been proposed recently. The optimal allocation of comput-
ing resources (OACR) is a core part for implementing
CMfg. High heterogeneity, high dynamism, and virtualiza-
tion make the OACR problem more complex than the tra-
ditional scheduling problems in grid system or cloud
computing system. In this paper, a new comprehensive
model for OACR is proposed in the CMfg system. In this
model, all main computation, communication, and reliabil-
ity constraints in the special circumstances are considered.
To solve the OACR problem, a new improved niche im-
mune algorithm was presented. Associated with the niche
strategy, new heuristics are designed flexibly based on the
characteristics of the problem and pheromone is added for
adaptive searching. Experiments demonstrate the effective-
ness of the designed heuristic information and show NIA’s
high performances for addressing the OACR problem com-
pared with other intelligent algorithms.
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1 Introduction

Nowadays, in the development of manufacturing, informatics
is important. It connects enterprises to work together, share
resources, and improve the product efficiency. To fulfill the
target of agility, high performance, and low cost among enter-
prises all over the world, many manufacturing informatics
modes, for example agile manufacturing [1], application ser-
vice provider [2], manufacturing grid [3], and so on, are
proposed and used widely. Most of them are emphasis just
on how to connect distributed resources by network with less
consideration of resource management and generalized dy-
namic sharing. At the same time, cloud computing as a new
network application mode is springing up. It constructs com-
puting service center and hires the computing power and
storage by using virtualization technology. It combines multi-
ple computing resources and information as a strong “cloud”
and divides computing power and storage quickly and freely
from cloud to user on demand through network. Cloud is just
like a huge repository (and management) of resources which
reflects the generalized dynamic sharing and cooperative
management of resources.

Inspired by this, cloud manufacturing (CMfg) was pre-
sented to expand the service mode in manufacturing infor-
matics and improve its dynamic [4]. It is a new networked
manufacturing mode which aims at achieving low-cost re-
source sharing and effective coordination. It transforms all
kinds of manufacturing, simulation, and computing resour-
ces and abilities into manufacturing services to form a huge
“manufacturing cloud” and distributes them to user the on
demand. In CMfg, there’s a platform which combines core
technologies of cloud computing, internet of things, and
high-performance computing (HPC) and so on to implement
the intelligent management, efficient collaboration, and
dynamic arbitrary service composition and division. All
these resources and abilities are intelligently sensed and
interconnected into “cloud” and automatically managed via
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the Internet to execute various manufacturing tasks [5]. That
is to say, in manufacturing process, the CMfg platform can
analyze and divide users’ requests and automatically search
suitable information, available manufacturing devices, and
computing resources, and intelligently integrate and provide
them to users. Users here can hire remote large equipments
and computing resources without buying; get more specific
information about design, simulation, production, delivery,
and recycle; and monitor the whole task execution process.
Thus, the whole life cycle manufacturing process in CMfg can
be simplified in Fig. 1. With high intelligence and informa-
tion, it is a high-level extension of service-oriented manufac-
turing and cloud computing.

Based on this idea, people would ask how to transform
large devices as services for hiring and how to implement
efficient resources allocation and integration. Actually, they
are all supported by computing resources, as shown in Fig. 1.
Computing resources, including CPU, processor, and I/O, at
the physical layer [4] are the core infrastructure of the CMfg
platform. They not only provide computing power as in cloud
computing but also control a variety of other manufacturing
resources and abilities directly for collaboration and sharing.
They locate in different places and form a big resource pool in
the CMfg platform through virtualization. Information sharing
needs them, manufacturing devices invoking needs them, and
computing/simulation work needs them, too.

In other words, under the centralized management, various
heterogeneous computing resources are integrated and redi-
vided as virtual machines by virtualization and assigned to user
on demand for computing and simulation. Meanwhile, when
manufacturing equipments access in the CMfg platform
through transducers, computing resources then become a kind
of control and management media. They encapsulate and map
these manufacturing equipments as virtual resources with vir-
tualization technology to support the effective interoperation,

collaboration, and monitoring of manufacturing tasks [6]. High
virtualization of all kinds of manufacturing hardware/software
resources and high heterogeneity and distribution of computing
resources are two key characteristics of CMfg compared with
cloud computing. Therefore, the optimal allocation of comput-
ing resources (OACR) which means efficient dividing and
scheduling computing resources in manufacturing process
for full utilization and high efficient operation is one of the
most primary problems in CMfg.

Besides, oriented to the whole manufacturing life cycle,
manufacturing tasks are very complex. They usually include
multidisciplinary collaborative tasks such as mechanical, elec-
tronic, or control simulation and manufacturing. The demands
of tasks for communication and computation power of manu-
facturing resources are high and different. Unlike the previous
scheduling problems [7, 8] in parallel computing systems, in
CMfg, computing resources are divided into virtual machines
and allocated to different tasks according users’ requirements. It
has the characteristics of large-scale, high heterogeneity, dy-
namic interconnection and group collaboration, which has im-
posed a new challenge on the construction of CMfg platform.

So this paper focuses on the OACR problem in CMfg and
proposed a novel systematic model for it. To address this
dynamic multiobjective problem, the allocation architecture
and the core principle of CMfg are introduced. The formal
description of OACR has considered the main constrain con-
ditions from all aspects. From the point of packet communica-
tion and partition of computing power, it shows the detailed
running process of the allocation of computing resources for
manufacturing tasks. Classical intelligent algorithms are intro-
duced and compared in solving the problem, and a new im-
proved hybrid intelligent algorithm is presented to solve
OACR. Simulation results on standard tests show that this
new hybrid algorithm is pretty efficient to solve this kind of
high-dimensional complex problems.

Fig. 1 The simplified
manufacturing process in cloud
manufacturing

672 Int J Adv Manuf Technol (2012) 63:671–690



The rest of this paper is organized as follows. Section 2
analyzes the related works on the newly CMfg research, the
traditional modeling of computing resources, and the design
of scheduling algorithms. Section 3 presents a simplified
manufacturing process and a productive example to illus-
trate the problem. Section 4 describes the structure and
characteristics of OACR in CMfg system. Section 5 elabo-
rates the new model of OACR and gives the complexity
proof for the problem. Section 6 investigates some classical
intelligent algorithms and proposes a new improved algo-
rithm for addressing the OACR problem. The paper ends
with experiments and discussions in Section 7, and the
conclusion is given in Section 8.

2 Related works

To perform larger scale collaborative manufacturing, CMfg
was firstly presented in [4] in which a definition was given
and the architecture of CMfg was introduced. Based on this,
many studies about CMfg are started. Zhang et al. [6] further
described the key technologies for the construction of CMfg, in
which dynamic cloud services center in CMfg was defined as
manufacturing cloud. Then, from the perspective of the struc-
ture of manufacturing cloud, the types of manufacturing resour-
ces, the dynamic sensing and accessing of hardware/software,
and the method of information exchange in CMfg were elab-
orated. And for further understanding and the research of
CMfg, Zhang et al. [9] then analyzed the differences and
connections among CMfg and other related advanced manu-
facturing modes and then presented the target of CMfg, i.e.,
agility, servicing, greening, and intelligent in the whole manu-
facturing. Based on these research, Li et al. [10] specified the
characteristics of CMfg and presented argument as a service,
design as a service, fabrication as a service, experiment as a
service, simulation as a service, management as a service, and
integration as a service. These concepts are inspired by cloud
computing but clearly distinguished CMfg from cloud comput-
ing. At the same time, the operational process of cloud manu-
facturing, the relation among resources, cloud service, and
cloud platform and the importance of optimal allocation of
whole manufacturing resources and tasks in CMfg were elab-
orated in [5, 11, 12]. All of these studies are macroresearches
with less microanalysis in each key part. However, in detail,
how to implement intelligent and agility in optimal allocation
of computing resources for supporting these advanced manu-
facturing process, as one of the most important thing of con-
structing CMfg platform, still has not been studied.

In manufacturing system, job shop scheduling and work-
flow scheduling are much popular [13, 14] while the allo-
cation of computing resources considered little. But from
the global perspective, OACR is one of the most basic and
important problem. OACR is a kind of prescheduling

problem. It is more complex than several kinds of traditional
job scheduling or task scheduling problems [15–17]. In the
existing task scheduling models, tasks can usually be
expressed in four types: directed acyclic graph (DAG)
[18], hierarchical task graph [19], task interaction graph
[20, 21], and Petri net [22]. The most commonly used is
DAG, in which the nodes represent individual tasks and the
directed arcs stand for communication overhead between
tasks [23, 24]. Early DAG models were simplified as: the
execution time of tasks are all the same, communication
between tasks are excluding, the intercommunication inter-
faces between processors are enough, and multiple commu-
nications can be performed simultaneously [18], and so on.
The traditional DAG task scheduling problems have been
proven to be nondeterministic polynomial time (NP)-com-
plete (Nondeterministic Polynomial-complete) [8]. It is far
more complex in many kinds of manufacturing systems
[25–27]. About the attributes of tasks, the concept of simi-
larity is often expressed as granularity [28, 29], which
indicate the ratio of communication overhead in a parallel
program. The amount of communication edges is usually
expressed as DAG density [30]. Besides, a variety of quality
of service (QoS) indexes were also introduced in DAG,
particularly in manufacturing task scheduling. Based on
these QoS indexes, existing researches primarily focus on
homogeneous cluster systems [31–33], scheduling more
thread level tasks to less processors. The most frequently used
topologies of the parallel systems are full interconnected net-
work, hypercube network, grid network, public bus network,
and so on [34]. The studies about heterogeneous systems are
seldom. Typically, end point and network communication
contention in heterogeneous systems are analyzed by Sinnen
and Sousa [35]. The communication preparation, overhead,
involvement of processors and communication mode of task
scheduling are elaborated by Sinnen and Sousa [36] and
Benoit et al. [37], and so on.

On the scheduling algorithms side, typical deterministic
algorithms are list scheduling [38–40], clustering scheduling
[28, 41, 42], linear programming [43], stochastic mapping
[44], and several others. Kwok and Ahmad compared and
summarized 15 types of scheduling algorithms in [18],
which is widely cited. After that, a few efficient approximate
algorithms [45, 46] were presented for solving these prob-
lems in acceptable times. With the increase of tasks and
processors scale, traditional deterministic algorithms and
original approximate algorithms can no longer meet the
demand. Thus intelligent algorithms, such as genetic algo-
rithms (GA) [47–50], ant colony optimization (ACO)
[51–53], immune algorithms (IA) [54, 55], and so on and
other new heuristic approaches [25, 56, 57] have been paid
attention and widely applied to this kind of scheduling
problems for finding the Pareto optimal solutions especially
in manufacturing application field [58, 59].
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However, the above-mentioned models are not practica-
ble to CMfg. First, unlike the previous thread level tasks,
manufacturing tasks (MTs) are usually carried by virtual
machines (VMs) [4]. VMs not only execute HPC tasks but
also supervise and control manufacturing hardware resour-
ces such as simulation equipment and machine tools. Users
have different demands on them. Multi-VMs can run in
same processor. The more VMs are carried at one processor,
the slower their run. More importantly, there are frequent
interactions between users and VMs during tasks’ execu-
tion. In the other word, VMs generally execute coarse grain
manufacturing tasks. Second, computing resources (CRs)
with high heterogeneity are composed of different kinds of
cluster, PC, PDA, and so on. They are scattered around the
world with dynamic access, so the system topology is dy-
namic and uncertain. Hence different areas have different
access bandwidths, links, and communication buffers [60].
Third, on CMfg platform, CRs have larger scale while MTs
have relatively smaller scale with higher and complex
demands. Based on such a complex system, therefore,
OACR is different from the original scheduling problems
and a detailed analysis of its new model and algorithms is
presented in this paper.

3 Motivation

A CMfg system consists of manufacturing resources, man-
ufacturing cloud (CMfg platform) and the whole life cycle
manufacturing applications. Like the traditional service-
oriented manufacturing modes, three user types—resource
providers, cloud operators, and resource users—are includ-
ed in the platform, as shown in Fig. 2 [6]. Manufacturing
cloud senses and manages the manufacturing resources
(hardware/software) from resource providers all over the
world. When users submit a manufacturing mission to man-
ufacturing cloud, the platform analyzes the mission and
intelligently divides it into subtasks in accordance with the
requirement number of VMs and devices and then forms
them as a DAG. That means each subtask in DAG can be
executed by only one VM or one device without separation.
After the task partition, the manufacturing cloud needs to
find available resources for each subtask and provide them
as services for users. In fact, as introduced in Section 1, all
of the interactive and run processes among them are not
only supported by knowledge but also by computing resour-
ces. In order to show the importance of OACR among the
triple process, we specified the abstract workflow of task
execution in CMfg as shown in Fig. 3 and consider the
multidisciplinary physical collaborative simulation for
example.

Normally, for an accurate design and modeling in indus-
trial manufacturing (such as airplane and automobile),

physical collaborative simulation is important. On one hand,
it needs collaborative simulation of Matlab and Adams and
so on. On the other hand, it also needs driving simulator,
multiaxis table, and visual equipment to work together along
with software. So it is a complex process in manufacturing.
Assume there is a physical simulation task submitted to
manufacturing cloud. After a series of intelligent divisions
of task, the following steps are done in the CMfg platform:

Step 1. Requirement analysis of task DAG: According to
the users’ requirement of DAG, analyze the com-
munication and computation costs and the QoS
constraints of tasks. Then check the accessed
resources (include computing resources and man-
ufacturing devices). If there is no available re-
source or the resources are not enough, then
reject the tasks. Or the system will send a confir-
mation message to users and then take the next
step.

Step 2. Optimal allocation and strategy sending: In terms
of the QoS and costs of tasks, the manufacturing
cloud determines which tasks need remote simula-
tion physical devices. If the task needs physical
device, then calculate the attribute values of device
and map it to the requirement attributes of control-
ling VM. Else the platform only needs to calculate
the requirement attributes of computing VM for
task. As soon as the platform establishes these VMs’
requirement, it executes a scheduling algorithm for
mapping these VMs to available computing resour-
ces, then gets the optimal allocation of computing
resources strategy and sends it to users.

Step 3. Execution: After the users’ confirmation, the man-
ufacturing cloud then invokes these VMs and sim-
ulation hardware to execute. The simulation
runtime process could be controlled and monitored
by users through controlling VMs on the Internet.
If unexpected error occurs during execution, the plat-
form will call the fault-tolerant migration strategy
automatically and try to execute tasks again.

Step 4. Result receiving and resources release: At the end
of the workflow, the manufacturing cloud receives
the simulation results and sends them to users.
Then the devices and VMs (computing resources)
are released accordingly.

All of the above-mentioned four steps need complex
collaboration with CRs’ participation as the infrastructure.
In general, OACR (step 2) in this workflow is the most
important step which decides the total efficiency of task
execution and can ultimately reduces the execution error
during the runtime.

For analyzing the OACR problem from both computation
and communication perspective and finding better solution
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strategies to improve task execution and collaboration effi-
ciency in CMfg, the following three issues are needed to be
studied:

& The structure and characteristics of CRs in CMfg;
& The formalized descriptions of CRs and the OACR

model with specific constraints and QoS; and
& The efficient intelligent algorithms for addressing the

OACR problem.

This paper will directly focus on these three issues.

4 The structure and characteristics of OACR

According to the simplified manufacturing process shown in
Section 3, to build a practical model of optimal allocation of
computing resources, the core allocation structure and its
characteristics should be emphasized firstly. The structure of
OACR gives the detailed allocation process of VM manage-
ment and the distribution characteristic of CRs. Based on
that, the communication and topology characteristics of CRs
in CMfg are elaborated for further study of the model of
OACR.

4.1 The structure of OACR

The OACR of CMfg is composed of three levels: manufac-
turing task level, virtual resource level, and computing
resource level, as shown in Fig. 4. On the manufacturing
task level, assume the tasks of a given MTs set are meta-
tasks. Metatask means that the task is inseparable for exe-
cuting in VMs/CRs, as discussed in Section 3. For instance,
in a multidisciplinary collaborative simulation, each module
runs on one VM with user’s control and interaction. Each
VM is inseparably running on only one CR. So MTs and
VMs have the one-to-one mapping relationship.

When MTs’ demands are abstracted as virtual resources’
demands, the virtual machine manager receives the demand
information and allocates available VMs for physical man-
ufacturing resources. The physical manufacturing resources
can be not only manufacturing/simulation equipments but

Manufactur-
ing resources

Resource users

The application of 
manufacturing life 

cycle

Resource providers

Cloud operators 

knowledge

Manufactur-
ing capacity

Manufacturing 
cloud

Fig. 2 The abstract operation
principle of cloud
manufacturing [5]
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Resources enough ?
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Reject the 
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Running and monitoring VMs 
and devices

Receiving the results and 
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Execution error ?
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Fig. 3 The specific workflow of task execution
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also computing resources. Each of manufacturing/simulation
equipment needs a CR to control and monitor. Thus, all VMs
are supported by CRs. They form the virtual resource level
and support the running of MTs. Because the customizedMTs
are applied by user, the constraints of VMs (e.g., the demand
of memory size, computing speed, communication link and
bandwidth, etc.) could be obtained at the same time.

As shown in Fig. 4, the mapping of manufacturing task
level and virtual resource level is the foundation of OACR,
and the mapping of virtual resource level and physical
resource level is central to the optimization. In this paper,
the manufacturing task level and virtual resource level are
merged, and the optimal allocation of MTs (or VMs) and
CRs under the concrete computation and communication
constraints is emphasized.

4.2 The characteristics of CRs in CMfg

In the actual operation of VM management, the topology and
communication properties of CRs are very important. These
factors determine which CRs are most suitable for MTs and
which allocation scheme is the most efficient one, and almost
all constraints of OACR come from the characteristics of CRs.

4.2.1 Topology

The CMfg network is different from other enterprise net-
work or public network and compromised by many distrib-
uted manufacturing resources around the world. For the sake
of facilitated management and extension, master–slave
(manager–service) mode is adopted in the platform. As the
shoring of foundation, computing resources can dynamical-
ly access the platform via the Internet. They are managed

and controlled by high stable VMs management system.
According to their locations, CRs can be divided into mul-
tiple subsets. This topology is similar to the classical tree
network. Each subset belongs to different provider who has
full authority and obligation to operate and maintain it. The
subsets could be mesh/star topology cluster or independent
PCs. Due to the different topologies of CRs’ subsets, the
transmission in group can be half duplex, full duplex, or
busses. With the development of the high-speed Ethernet
switch, transmission among groups is all full duplex.

4.2.2 Communication ports

Generally, the port communication of master–slave system
can be classified as single-port mode [61] and multiport
mode [62]. Single-port mode means that the network central
node can only send or receive limited byte message to/from
one slave node in a given period of time. On the contrary, in
multiport mode, the network central node can send or re-
ceive limited byte message to/from one or more slave nodes
in a given period of time. In CMfg, multiport communica-
tion mode is adopted in CRs and the platform.

However, in this multiport mode, owing to the complex
and frequent intercommunication among CRs for a large
number of MTs, the amount of transmit data from multiport
to the central node must be huge, which is called periodic
burst or data surge. Periodic burst can cause packet loss and
network congestion. In order to avoid this, the general port
transmit mechanism of cloud computing is adopted in
CMfg, that is large caches are allocated in the receive
direction of switches while small caches are allocated in
the send direction to control the flow burst. In this case,
the critical cache in the receive direction for preventing data
surge and the relationship with the communication time
between CRs should be particularly considered.

4.2.3 Communication bandwidth

Associating with multiresources around the world, the core
network protocol of CMfg is still TCP/IP mode (with two-
sided communication type [36]). In TCP/IP protocol, data are
usually divided into small packets and transmitted one by one.
If one of the packets is not arriving, the packet will be resent or
the congestion control strategy will be loaded in the network.
Then the data transfer rate will be slower. Though the TCP/IP
protocol is efficient in short-distance transmission, it may
cause delay or packet loss in the large-scaled remote commu-
nication in CMfg. Thus, in gigabit network, long-distance
communication between CRs will lead to delay at hundred
milliseconds scale and small probability packets loss. This
makes the actual transfer rate be only about one tenth of the
original bandwidth or even smaller. Therefore, with existing
communication technologies, the transfer rates of remote

Fig. 4 The process framework of OACR

676 Int J Adv Manuf Technol (2012) 63:671–690



communication among CRs can only reach tens to hundreds
of megabits per second.

5 The formulation of the OACR problem

The above-mentioned structure and main characteristics
clearly reflect the high heterogeneity and dynamics of opti-
mal allocation of computing resources. It comes from the
traditional models of task scheduling but is more complex
than the traditional ones. For describing the model of OACR
in formalization, the formal descriptions of tasks and com-
puting resources in traditional task scheduling are shown as
follows. And based on the traditional definitions, the new
model of OACR is presented then.

5.1 Traditional models of tasks and CRs

In general task scheduling problem, the tasks and the
multiprocessor system are defined as follows.

Definition 1 The tasks set in multiprocessor system can be
presented as a weighted DAG, G0(V, E, c, w). The set is
V ¼ viji ¼ 1 : v; v ¼ Vj jf g, where vi represents the task of
the set V, and v is the cardinality of nodes. The set E0V×V,
e0 |E| is the number of edges, and e(ij) ∈ E represents the
communication between vi and vj. w(i) represents the com-
putation cost of vi. c(ij) ∈ c represents the communication
cost of the directed edge e(ij). If there is no communication
between vi and vj, then e(ij)0c(ij)00.

Let the predecessor tasks set of vi be pred(vi), and the
successor tasks set be succ(vi). The node with no predecessor
task pred(vi)0∅ is named source node, and the node with no
successor task succ(vi)0∅ is called sink node. They all strictly
observe the tasks’ priority rules. It means a node can only be
started after all its parent (preceding) nodes are finished.

According to this task graph definition, the general com-
puting resources model of multiprocessor system is defined
as follows:

Definition 2 The multiprocessor system, M0(P, s, bw), con-
sists of a finite set of processors P ¼ pk jk ¼ 1 : p; p ¼ Pj jf g
which are connected by a communication network. The nota-
tion s ¼ sðkÞjk ¼ 1 : p; p ¼ Pj jf g represents the computing
power of processors, bw0P×P represents the bandwidth be-
tween processors, and bw(kl) ∈ bw is the bandwidth between
pk and pl. If the system is homogeneous, the processor’s
computing power and their bandwidths are all equal, that is
8k; l 2 1; p½ �; k 6¼ l ) sðkÞ ¼ sðlÞ , bw(k)0bw(l). Heteroge-
neous systems are then contrary.

In these models, processors are usually all directly
connected, and the tasks are nonpreemptive. If two tasks
are carried by the same processor, their communication

cost is 0, and it assumed that the transmission rate of
computing resources to be equal to the bandwidth (the
ideal value).

5.2 The new models of OACR in CMfg

According to the characteristic of CRs, the uncertain topology
can be simplified as shown in Fig. 5. The above-mentioned
CRs subsets are simplified as different groups. Different to-
pologies in groups can be reflected by the communication
links among CRs. That is to say, with different topologies,
CRs in the same group connected with each other through
different communication links by local connection, and CRs
in different groups are connected by switches via the Internet.
Stand-alone PCs can be classified as a special group. They are
connected with each other directly via the Internet.

In theory, the biggest difference between general computing
tasks andMTs are whether they are controlled by and interacted
with users during execution time. Control and supervision are
generally implemented by multithread in CRs. The MTs’ com-
putation costs vary according with users’ interactions. Because
of the frequent control and supervision in MTs, the execution
times might be much longer. How long it will be depends on
how many interactions and supervisions during MTs’ execu-
tion. For considering this, the new MTs model is defined as:

Definition 3 The MTs set in CMfg can be presented as
a weighted DAG, G ¼ V ;E; c;w; oper p; su pð Þ. The def-
inition of V ¼ viji ¼ 1 : v; v ¼ Vj jf g, E0V×V, w, and c
are the same as the traditional task model (definition 1).
The set oper p ¼ oper piji ¼ 1 : v; v ¼ Vj jf g and su p ¼
oper piji ¼ 1 : v; v ¼ Vj jf g represent relative interoperation-

to-computing ratio and relative supervision-to-computing
ratio separately. That is to say, the estimated cost of
interoperation oper ¼ c� oper p and the estimated cost
of supervision su ¼ c� su p.

Fig. 5 The simplified topology of computing resources
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Then the total cost of each node in G can be calcu-
lated as W ðiÞ ¼ wðiÞ � 1þ oper pðiÞ þ su pðiÞð Þ. If there
is no interaction or supervision in vi, then oper pðiÞ ¼ 0
or su pðiÞ ¼ 0. These two factors can clearly reflect the
user’s demands for interaction in MTs, and the new
model can then be more practical.

With the users’ interaction and large-scaled computation and
communication costs, the installments and involvements of
VMs can be ignored from both communication and computa-
tion perspective. On the basis of the topology and the character-
istics of CRs, the new CRs model can be defined as follows.

Definition 4 The CRs system model of CMfg is given by
M0(P, s, rou, bw, mem, buf, rel), where

& P ¼ pkljk ¼ 0 : m; l ¼ 1 : nkf g represents the CRs set,
in which m is the number of CRs groups and nk is the
resources number in group k. Let k00 represent the
stand-alone PCs, and n0 represent the number of these
stand-alone PCs. Therefore, the total quantity of CRs is

Pj j ¼ Pm
k¼0

nk .

& s ¼ s klð Þjk ¼ 0 : m; l ¼ 1 : nkf g represents the comput-
ing power (the computing speed) of the CRs set.

& mem ¼ mem klð Þjk ¼ 0 : m; l ¼ 1 : nkf g represents the
available memory volume of CRs, in which mem(kl)
varies dynamically with the task running. Its memory
volume is reduced accordingly, when a task (VM) is
assigned to the CR.

& bw ¼ bw klð Þjk ¼ 1 : m; l ¼ 1 : nkf g represents the
bandwidth between CRs and switch in each group. Con-
sidered the simplified topology (Fig. 2), the access
bandwidths of switches to the Internet are defined as
BW ¼ BWiji ¼ 1 : mf g. Due to the stand-alone PCs are
connected via the Internet directly, let bw0 ¼ bw0f
klð Þjk ¼ 1; l ¼ 1 : n0gbe their bandwidth to the Internet.
The bandwidths in groups are generally gigabit, so 8k 2
½1;m�; l 2 ½1; nk � ) BWk � bw klð Þ.

& rou ¼ roui klð Þji ¼ 1 : m; k 6¼ l; k; l 2 1; ni½ �f g represents
the communication route between pik and pil in local
connection. Because the subsets of CRs are dynamic and
complex, the route and bandwidths of the communication
between two CRs needs to be calculated by a specific way
when the subset is accessed. So the concrete topologies in
groups are not considered in this model. It is assumed that
the communication routes and bandwidths among CRs are
previously figured out by some kinds of routing algo-
rithms. The simplified communication route roui klð Þ ¼
link1; � � � ; linkrf g [36] varies with different topologies,

and the bandwidth of roui (kl) is defined as bw�
roui klð Þð Þ ¼ min bwf link1ð Þ; � � � ; bw linkrð Þg.

& buf ¼ buf klð Þjk ¼ 1 : m; l ¼ 1 : nkf g represents the
buffer size of the switch communication ports in each
group. According to [34], it assumed that the highest
tolerable abrupt data of each port to be:

D klð Þ ¼ buf klð Þ þ buf klð Þ BWk

bw klð Þ � BWk
¼ buf klð Þ bw klð Þ

bw klð Þ � BWk

ð1Þ
& rel ¼ rel klð Þ ¼f rel p klð Þ; rep t klð Þð Þjk ¼ 0 : m; l ¼ 1 :

nkg represents the reliability of the CRs set. The reli-
ability of CR means the probability that the computing
resource fails to connected in the consequence of the
communication link or occurrence of another MTs set
which leads to pause computation for some times. So
rel_p(kl) represents the probability, and rep_t(kl) repre-
sents the predicted failure duration time of CRs. Then
8k 2 0;m½ �; l 2 1; nk½ � ) rel p klð Þ 2 0; 1½ �.
In this model, rou and bw are used to represent the local

connections and the remote connections separately. There-
fore, the OACR model can be described as S0(G,M), where
G ¼ V ;E; c;w; oper p; su pð Þ represents the MTs and M ¼
P; s; rou; bw;mem; buf ; relð Þ represents the CRs.

5.3 The constraints and objective function of OACR

Based on the structure described in Section 4.1, four issues
of CRs are considered in this paper.

1. The minimum acceptable memory size MEMmin (i) for
task vi;

2. The minimum acceptable reliability RELmin (i) for task vi;
3. The minimum acceptable computing speed EXE_

SPEEDmin (i) for task vi; and
4. The longest acceptable communication time COM_

TIMEmax (ij) for task vi, usually it is much looser than
the above three constraints.

When an MTs set G ¼ V ;E; c;w; oper p; su pð Þ is ap-
plied to the CMfg platform, the system M0(P, s, rou, bw,
mem, buf, rel) will provide right CRs for it. Let k(i) and l(i)
be the group number and the position of the selected CR for
task vi, and let p_load(k(i)l(i)) be the load of the selected CR
for task vi, which is measured by MTs per CR. Then the
constraints of each selected CR can be described as:

& When multi-MTs v1 � � � vn; n < v ¼ Vj jf g select the same

CR ps, if memðsÞ �
Pn
i¼1

MEMminðiÞ then p_load(s)01, else
MTs are needed to queue for execution, that is p_load(s)0n;

& 8i 2 1; v½ � , the computation speed of the selected CR
for task vi satisfied: s kðiÞlðiÞð Þ=p load kðiÞlðiÞð Þ ≥EXE_
SPEEDmin (i), and then the execution time of task vi can
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be expres sed as EXE TIMEðiÞ ¼ W ðiÞ � p load�
kðiÞlðiÞð Þ=s kðiÞlðiÞð Þ;

& 8i 2 1; v½ �, the reliability of the selected CR for task vi
satisfied: rel p kðiÞlðiÞð Þ � RELminðiÞ,

The constraints of the communication ability of
t h e s e l e c t e d CRs c an be r e p r e s en t e d a s
COM TIME ijð Þ � COM TIMEmax ijð Þ. It can be divid-
ed into two cases. 8i; j 2 1; v½ �; i < j (vi is the prede-
cessor task of vj), let COM_TIME_s(ij) be the data
sending time between the two tasks, and COM_-
TIME_r(ij) be the data receiving time between two
tasks.

Case 1 When vi and vj are in the same CRs group,
kðiÞ ¼ kðjÞ ¼ k 6¼ 0 . Without considering
the reliability factors, the sending time of

vi is equal to the receiving time of vj, that
is:

COM TIME s ijð Þ ¼ COM TIME r ijð Þ
¼ COM TIME ijð Þ ¼ c ijð Þ=rouk lðiÞlðjÞð Þ

ð2Þ

With the addition of the rel factor, let t(x) be
the average communication time between vi and
vjwhich originally needs x seconds of processing.
If the CR pk(j)l(j) does not fail halfway, then the
communication time needs 1+t(x−1) seconds,
but if it fails at midway [with the probability
rel_p(k(j)l(j))], then it needs to wait rep_t(k(j))(l
(j)) seconds and also need another t(x) seconds to
complete the communication. Therefore it has:

tðxÞ ¼ 1� rel p kðjÞlðjÞð Þ 	 1þ t x� 1ð Þð Þ þ rel p kðjÞlðjÞð Þ 	 ðtðxÞ þ rep t kðjÞlðjÞð Þð Þ ð3Þ

tðxÞ ¼ 1þ t x� 1ð Þ þ rel p kðjÞlðjÞð Þ 	 rep t kðjÞlðjÞð Þ
1� rel pðkðjÞlðjÞÞ ð4Þ

Since t(0)00, it can be written as:

tðxÞ ¼ x 1þ rel p kðjÞlðjÞð Þ 	 rep t kðjÞlðjÞð Þ
1� rel p kðjÞlðjÞð Þ

� �
ð5Þ

According to Eq. 5, the communication time between vi
and vj can be expressed as:

COM TIME ijð Þ ¼ 1þ rel p kðjÞlðjÞð Þ 	 rep t kðjÞlðjÞð Þ
1� rel p kðjÞlðjÞð Þ

� �
	 c ijð Þ
rouk lðiÞlðjÞð Þ

ð6Þ
Case 2 When vi and vj are in different CRs groups,

& If c ijð Þ < D kðiÞlðiÞð Þ, without considering the reliability,
the sending time of task vi is equal to:

COM TIME s ijð Þ ¼ c ijð Þ=bw kðiÞlðiÞð Þ ð7Þ

and the receiving time of task vi is equal to:

COM TIME r ijð Þ ¼

c ijð Þ
min BWkðiÞ;BWkðjÞf g ;kðiÞ 6¼ kðjÞ 6¼ 0

c ijð Þ
min BW0 lðiÞð Þ;BWkðjÞf g ;kðiÞ ¼ 0

c ijð Þ
min BWkðiÞ;BW0 lðjÞð Þf g ;kðjÞ ¼ 0

c ijð Þ
min BW0 lðiÞð Þ;BW0 lðjÞð Þf g ;kðiÞ ¼ kðjÞ ¼ 0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼COM TIME ijð Þ ð8Þ

After adding the reliability factors, according to Eq. 5, the
sending time of task is unchanged, but the receiving time is
changed as:

COM TIME r ijð Þ ¼ 1þ rel p kðjÞlðjÞð Þ 	 rep t kðjÞlðjÞð Þ
1� rel p kðjÞlðjÞð Þ

� �
	

cðijÞ
minfBWkðiÞ;BWkðjÞg ;kðiÞ 6¼ kðjÞ 6¼ 0

cðijÞ
minfBW0ðlðiÞÞ;BWkðjÞg ;kðiÞ ¼ 0

cðijÞ
minfBWkðiÞ;BW0ðlðjÞÞg ;kðjÞ ¼ 0

cðijÞ
minfBW0ðlðiÞÞ;BW0ðlðjÞÞg ;kðiÞ ¼ kðjÞ ¼ 0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ COM TIME ijð Þ ð9Þ
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& If c ijð Þ > D kðiÞlðiÞð Þ, the sending rate of task vi must
be reduced. According to Eq. 1, the sending rate
ssendðiÞ ¼ c ijð Þ 	 BWkðiÞ= c ijð Þ � buf kðiÞlðiÞð Þð Þ . So the

sending time of vi is changed as COM TIME s ijð Þ ¼
c ijð Þ � buf kðiÞlðiÞð Þð Þ=BWkðiÞ . Yet the receiving time of

vj would remain as Eq. 9, and COM TIME r ijð Þ <
COM TIME s ijð Þ.
Based on these constraints, let the start time of task vi be

START_TIME(i), the execution time of vi be EXE_TIME(i),
and the finish time of vi be FINISH_TIME(i), then:

START TIMEðjÞ ¼ max
i2pred vjð Þ

COM TIME r ijð Þf g ð10Þ

FINISH TIMEðjÞ ¼ START TIMEðjÞ
þ EXE TIMEðjÞ
þ max

i2succðvjÞ
COM TIME s ijð Þf g ð11Þ

Therefore the temporal relation between two adjacent
tasks is as shown in Fig. 6. Note that the source node v1
do not need to receive data, so START TIMEð1Þ ¼ 0, and
the sink node’s sending time is also the MTs submission
time, that is:

COM TIMEðvÞ ¼ TASK SUBMISSION TIMEðV Þ

¼
cðvÞ�buf kðvÞlðvÞð Þ

BWkðvÞ
if cðvÞ > D kðvÞlðvÞð Þ

cðvÞ
BWkðvÞ

if cðvÞ < D kðvÞlðvÞð Þ

8<
: ð12Þ

where c(v) represents the submission data of MTs.
In conclusion, the execution time of the whole MTs set is:

TOTAL TIMEðV Þ ¼ FINISH TIMEðvÞ � START TIMEð1Þ

¼ FINISH TIMEðvÞ ð13Þ

As the constraint of memory size of CRs is embodied in
the constraint of computing speed and the reliability factors
is embodied in the constraints of communication in CRs, the

optimal object function and the constraints of OACR S0(G,
M) can be summed up as:

MINIMIZE TOTAL TIMEðV Þ SUBJECT TO

8i 2 1; v½ �; s kðiÞlðiÞð Þ
p load kðiÞlðiÞð Þ � EXE SPEEDminðiÞ

8i; j 2 1; v½ �;COM TIME ijð Þ � COM TIMEmax ijð Þ

8<
:

ð14Þ

5.4 Problem complexity

Traditional task scheduling problems are proved to be NP-
complete problems. To prove the complexity of OACR, two
definitions are introduced in this section according to [63].

Definition 5 [63] (a polynomial time transformation) A
polynomial time transformation of a decision problem P′
into a decision problem P (P′ ∝ P) is a function f: Dp′→Dp

satisfying the following two conditions:

(a) The function can be computed in polynomial time and
(b) For all instances I ∈ Dp′, there exists a solution to I if

and only if there exists a solution to f ðIÞ 2 DP.

Definition 6 [63] (An NP-complete problem) A decision
problem P is said to be NP-complete, if P ∈ NP and P′ ∝ P
for any P′ ∈ NP.

Theorem 1 The OACR problem is an NP-complete
problem.

Proof In the OACR problem, the task quantity of a MTs set
v0 |V| is less than the processors number of a CRs set p0 |P|.
One processor can carry multitasks.

1. When 1<Np<v, choosing Np suitable processors from p

resources has C
Np
p solutions. After choosing these Np

processors, the mapping of v metatasks and Np resour-
ces turn in to the traditional scheduling problem. In this
situation the OACR problem can be reduced to the
traditional scheduling problem. According to definition

Data Receiving 
Time

Task Execution 
Time

Data Sending 
Time

Start Time Finish Time

vi

Data Receiving 
Time

Task Execution 
Time

Data Sending 
Time

Start Time Finish Time

vj

Fig. 6 The temporal relation
between two MTs
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6, the traditional scheduling problem is NP-complete, so
the OACR problem is NP-complete.

2. When Np0v, choosing v suitable processors from p
resources has Cv

p solutions. Afterwards, the mapping

between v metatasks and v computing resources can
be converted to traveling salesman problem (TSP),
which is the full permutation problem. In this situation,
the OACR problem is reduced to TSP problem. From
definition 6, TSP problem is NP-complete, thus the
OACR problem is NP-complete, too.

The above discussions contain all cases of the OACR
problem, so theorem 1 is true Q.E.D.

From the point of the solutions, let n be the total amount
of CRs in the CMfg platform and let v be the task number of
an applied MTs set. For the case of no time constraints, each
task has n choices. So the size of the solution space is nv. If
someone wants to find the best solution one by one in the
entire solution space, then they need O(nv) steps to com-
plete. It is a huge calculation. For example, if there are 100
CRs and 5 MTs, the solution space is 5100. It is a very huge
number for calculation. At present, no deterministic algo-
rithms can solve it in polynomial time. So, intelligent algo-
rithms are introduced in this paper.

6 The intelligent algorithms for addressing OACR

The most frequently used intelligent algorithms for the
traditional task scheduling are GA [47, 48] and ACO

algorithm [51, 52]. Besides, IA has shown great potential in
combinatorial optimization problems [64, 65]. They are wide-
ly used in various kinds of scheduling problems, and their
basic processes are shown in Fig. 7. Based on these three
classical intelligent algorithms and with the consideration of
the complex of OACR, a new improved niche dynamic IA
(NDIA) is proposed in this paper for better solutions. These
four algorithms will then be used and generally analyzed for
addressing the OACR problem in detail.

6.1 Review of GA, ACO, and IA

GA is an adaptive global optimization stochastic search
algorithm which is inspired by the principle of evolution
and natural genetics. With a set of structured populations
which represented the candidate solutions of the problems, it
combines the survival of the fittest among populations
(selection), the structured yet randomized information
exchange (crossover), and the random bit mutation.

Firstly, roulette wheel selection is used commonly in the
standard GA. It is performed by randomly picking a certain
amount of populations according to their fitness values to
form a new group of populations. The one with higher
fitness value occupied higher probability of selected. Sec-
ondly, each two of the selected populations exchange parts
of their gene bits in the crossover operation. So two new
genetic chromosomes are generated, and the better gene bits
go into the next generation. Thirdly, the mutation operation
randomly changes some gene bits of populations with a
certain probability for increasing the diversity. After the

Fig. 7 The process of GA,
ACO, and IA

Int J Adv Manuf Technol (2012) 63:671–690 681



above three steps, if the new best population is better than
the old one, then it would evaluated by the new one, or the
best population record will remain unchanged. This process
will repeat and then terminate when the maximized gener-
ations are reached or the optimal solution is found.

ACO is a kind of swarm intelligence algorithm which
takes inspiration from the social behaviors of ant colony. It
combines ants’ routing and pheromone update. The original
intention of ACO is to solve the complicated path optimi-
zation problems, such as TSP, and edge scheduling.

In the process of routing and finding foods, ants deposit
pheromone on the path they have walked in order to mark
some favorable path and broadcast the information. The
longer the path, the lower the density of pheromone is.
Other ants can perceive this pheromone and recognize its
density. They have a large probability to select the path
which has the greater pheromone density. Then a kind of
information positive feedback is formed. The pheromone
density on the optimal path will become higher, while the
pheromone density on other paths will reduce as the time
goes by. Finally the whole colony will find the optimal path.

With this inspiration, the a priori knowledge is introduced
and formed the standard ACO. That is to say, ants are finding
path not only in the light of the pheromone, but also according
to the a priori rules (knowledge) of the problems. As the same
with GA, the whole process continues many evolution times
until the ants find the optimal path (solution) or the number of
evaluation steps reaches a predefined value.

IA is a kind of evolutionary programming which based
on the immune system in biotic science. With the introduc-
tion of the concepts and the characteristics of antigen rec-
ognition, immunological memory, and immune regulation,
diversified immune algorithms are presented. The immune
algorithm proposed by Wang et al. [65] is a typical and
efficient one. In this paper, it will be applied in OACR and
IA here just indicates the algorithm in [65].

More specifically, IA is a convergence of immune theory
and genetic algorithm. It contains genetic evolution, im-
mune vaccination, and immune selection, but first of all,
antigen extract and vaccine selection according to the fea-
ture information of problem is the most important part of
this algorithm. It is a core rule to lead the population evo-
lution in the right direction. Then, the population initializa-
tion and the genetic evolution are all the same as the
standard genetic algorithm. After selection, crossover, and

mutation, new populations are vaccinated by antibodies.
That is injecting a priori knowledge into the new popula-
tions in some degree for improving their fitness values (the a
priori knowledge in IA is the same as in ACO.) Then, new
populations are selected by immune selection operation
according to the choosing rules of simulated annealing.
Three steps will repeat until the ending conditions are
meeting.

All of the above-mentioned intelligent algorithms are
evolved with a number of cycles by their own mechanism.
As shown in Table 1, only GA does not need the a priori
knowledge with less control parameters. Without other im-
provement strategies, its global convergence is weak, but its
robustness is quite good. ACO and IA both need the direc-
tion of a priori knowledge with good global convergence.
Yet the control parameters of ACO are more than the IA’s.
Their real effect in solving the OACR problem will be
shown in Section 7.

6.2 The improved niche IA for the OACR problem

Inspired by the above three algorithms, the improved niche IA
takes the techniques of pheromone guide from ACO and the
ecological niche strategy. Its framework is shown in Fig. 8.

Compared with IA (as shown in Fig. 7), the niche strat-
egy, and the dynamic vaccination and pheromone updating
strategy are added in NDIA. Niche strategy is used for
improving exploration during searching, dynamic vaccina-
tion and pheromone updating strategy is taken for further
improving the exploitation and searching direction with the
dynamical consideration of both computation and commu-
nication in OACR. The genetic evolution just adopts the
standard roulette wheel strategy, single-point crossover and
mutation. The improvement of initialization, the object
function, and new improved strategies in NDIA for solving
OACR are elaborated as follows.

1. Initialization
For solving OACR problem, real number coding is

used in the experiments. Real number coding can avoid
the encoding/decoding process, improve the accuracy,
and reduce the complexity of the algorithm. As shown
in Fig. 9, the sequence number of gene bits is denoted as
the serial number of MTs, the numbers in the gene bits
represent the index of CRs, and their subscripts

Table 1 The characteristics of
GA, ACO, and IA Algorithm Year Mechanism A priori

knowledge
Global
convergence

Control
parameters

GA 1975 Biological evolution Needless Weak Less

ACO 1992 Ants behavior Need Strong More

IA 2000 immune system Need Strong Medium
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represent the group indexes of CRs. In other word, each
gene bit occupies two integer bits. This kind of coding
method takes less space and is more intuitive and
simple.

2. Object function in evolution
Because the standard GA with the roulette wheel

strategy is commonly used to find the individual
with the maximize fitness value, the fitness evalua-
tion function of OACR in all intelligent algorithms
is set as:

max f ¼ Const

TOTAL TIMEðV Þ ð15Þ

Const is a constant which makes the object fit-
ness value in the algorithms neither too large nor
too small.

3. Niche strategy
For improving the diversity and balance the explora-

tion and exploitation of the algorithms, the technology
of ecological niche is introduced in it. In NIA, the
hamming distances Dij between two individuals should
be calculated before the implementation of genetic evo-
lution, as shown in Eq. 16.

Dij ¼ Xi � Xj

�� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

xk;i � xk;j
� �2

vuut ð16Þ

where Xi and Xj represent individual i and individual j,
and xk,i and xk,j represent the gene bits of each individ-
uals separately. If Dij (between individual i and j) is less
than a preset parameter L, then the individual with lower
fitness value will multiple a penalty function to make it
more lower. This action could wipe off the similar
individuals and protect the diversity of the population
to improve the search ability.

Because of the definition of the maximum object
function, here the penalty function is set as f010−5 and
let the parameter L to be v which is the size of the
individual in algorithms (MTs’ number).

4. Dynamic vaccination and pheromone updating
As is known to all, antigen extraction and vaccine

selection is the core factor of IA and it usually comes
only from the a priori knowledge (i.e., heuristic infor-
mation) of the problems. If the a priori knowledge is
extracted inappropriately, the algorithm will evolve in
the wrong direction and no feasible solution can be
found. However, the a priori knowledge in the complex
problem is usually complex and varying with different
situations. For example, both the computation and com-
munication (node and edge factors) should be consid-
ered in OACR especially when the computation rate of
MTs is equal to its communication rate. The incidence
relations among tasks are very complex, and the com-
putation and communication power of CRs are varying
dynamically. The extracting and the rate selection of the
two factors are therefore hard. This directly influences
the efficiency of IA in solving the global optimal
solutions.

To avoid this problem, and considering the dynamic
change of the memory size, communication bandwidth,
and reliability constraints of CRs, we present the new dy-
namic vaccination strategy. That is, extraction and calculat-
ing the heuristic information (ηij) of allocating the CR pj to
the MT vi need real time in each evolutionary cycle. It is
time-consuming but can obtain higher accuracy result in the

Initialization

Begin

Genetic evolution

Dynamic vaccination

Immune selection

Evaluation

Global updating

Iteration <=MAXITER ?

Return the best strategy

No

Yes

Pheromone updating

Niched strategy

Fig. 8 The framework of NDIA for addressing OACR

The index of CRs

Fig. 9 The real number coding for OACR
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scheme, and for simplification, the heuristic information
function is set as:

ηij ¼
s kðiÞlðiÞð Þ

p load kðiÞlðiÞð Þ
� 	a

	 bw k ið ÞlðiÞð Þð Þb

1þ rel pðkðjÞlðjÞ	rep tðkðjÞlðjÞ
1�rel pðkðjÞlðjÞ

� 	g ð17Þ

where α, β, and γ represent the importance of the execution
speed, communication bandwidth, and reliability of CR in
the heuristic information and they satisfied α, β, l ∈ [0, 1].
In Section 7, the value of these parameters are tested and
discussed for better solution.

Besides, for further improving the searching direction,
the pheromone of ACO is brought in NDIA in this paper.
That is to say, the improved NDIA extracts antigen and
vaccine not only by the a priori knowledge, but also by
the pheromone which is released by the previous best indi-
vidual of the whole populations. As a supplement, the
pheromone increased the experiential guidance and made a
positive feedback in IA. To put it more specifically, let τij be
the density of pheromone of mapping MT vi to CR pj and ηij
be the a priori knowledge (i.e.m the heuristic factor) of the
problem. The vaccine can then be expressed as:

vaccine ¼ t ij
� �8

ηij
� 	f

ð18Þ

where tij is updating as the same as in ACO, and 8 , f ∈
(0, 1) represent the strength factors of t ij and ηij separately. If
8 is too larger than f, then vaccine will be directed by the
experience of populations and result in low searching ability
and low convergence. But on the contrary, too larger f will
also changed vaccine to static and lead to premature. So,
according to ACO, the rates of pheromone and heuristic
information in Eq. 17 in this paper are set the same as
ACO (i.e., 8 01, f05).

Then at the vaccination step, the one or more gene
bits of the selected populations will be changed as the
one with the highest vaccine at a certain rate. This
strategy can improve the convergence, increase the ro-
bustness, and simplify the previous vaccine extraction
and calculating in algorithms.

6.3 The time complexity of the proposed algorithms

The time complexity of the intelligent algorithms is dynam-
ically varied with different problems. Let n be the scale of
the population, m be the scale of CRs in CMfg platform, and
v be the scale of the MTs set applied by user. The algo-
rithms’ complexities in each cycle (or generation) are shown
in Table 2.

GA does not need the heuristic information to direct its
evolution. In selection, the complexity of the roulette wheel
strategy in the best situation is O(n), and its worst complex-
ity is O(n2). Due to the worst case, complexity of the
algorithm is the upper bound of run time. The complexities
in Table 2 just mean the worst case complexities.

In ACO, because the ants’ routing needs to calculate the
priori knowledge in each cycle, finding a suitable CR for
each task then needs m step to get all of the heuristic
information of CRs. With n populations and v tasks, its
complexity is O(nmv).

The same as the ACO, IA needs to find a certain number
of population and vaccinates them. In vaccination, the load
and memory of each CR should be calculated according to
the mapping of MTs, so the complexity of this operator is O
(n(m+v)). Then the immune selection will decide if the new
populations can be kept in the next generation according to
the choosing rules of simulated annealing. For n new pop-
ulations (at most) and v tasks, the complexity is O(nv).

Based on IA, the complexities of additional strategies
in NDIA are also shown in Table 2. Owing to the
calculation of hamming distance among populations,
the niche strategy’s complexity is O(n2). The dynamic
vaccination in each evolutionary cycle is O(m), and the
pheromone updating strategy is O(mv). So in theory, the
additional operators in NDIA did not increase the com-
plexity of the algorithm.

The complexities of above-mentioned four algorithms
when n→∞ and m→∞ and v→∞ are also proposed as
Table 2 shows. If the population size of the algorithms is
large, the complexity of ACO (O(n)) is the lowest. When the
scale of CRs m→∞, then the lowest complexity is O(1) in
GA. However, when the scale of MTs v→∞, then the com-
plexities of the four algorithms are all the same (i.e., O(v)).

Table 2 The time complexities of the three algorithms

Algorithms The time complexities of operators n→∞ m→∞ v→∞

GA Selection O(n2) Crossover, O(n) Mutation, O(nv) O(n2) O(1) O(v)

ACO Ants’ routing, O(nmv) Pheromone updating, O(mv) O(n) O(m) O(v)

IA Genetic evolution (pending) Vaccination, O(n(m+v)) Immune selection, O(nv) O(n2) O(m) O(v)

NDIA IA evolution (pending) Dynamic vaccination and
pheromone updating, O(mv)

Niched strategy, O(n2) O(n2) O(m) O(v)
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7 Experiments and discussion

For testing the OACR models, the DAG in Fig. 4 and other
two kinds of DAGs (the e-Economic DAG and the e-Protein
DAG) introduced from [52] are selected, as shown in
Fig. 10. Based on the above-mentioned four algorithms
and the new OACR models, the CCR [35] is introduced as
the testing factor in this paper. It is defined as the
communication-to-computation ratio.

CCR ¼
P
e2E

cðeÞ
P
n2V

wðnÞ ð19Þ

In the experiments, all of the communication costs and
the computation costs are randomly generated. Due to the
looser communication time constraints, the experiments fo-
cus mainly on the effect of the computing speed, memory,
and reliability constraints of CRs, as Eq. 17. Other informa-
tion of CRs (e.g., the bandwidths of communication routes
in group among CRs and the bandwidths among groups) is
generated before allocation, and they are all constant value
during the solution process. The extraction of the a priori
knowledge and the effect of constraints would be tested in
three cases: CCR01/10, CCR01, and CCR010 in different
MTs’ DAGs.

More specifically, it assumed that there are 20 available
CRs in four groups separately, and group. One represents
the stand-alone CRs group. The quantities of CRs per group
are {7, 6, 4, 3}. According to Eq. 15, the best fitness values
in tests are the inverse of the minimum make spans of MTs.
So the optimal objection is finding the maximum fitness
value. Because the make spans of MTs (in seconds) are
usually big, the parameter Const in Eq. 15 is set as 1,000
to make the object function results not too small. Then the
units of best fitness value in the experiments are the recip-
rocal of millisecond. In the algorithm, the maximum time of
iteration is set to be 1,000, and the population size is set to
be 50. A total of 100 runs of each experimental setting are
conducted, and the average fitness of the best solutions
throughout the run is recorded.

7.1 The design of the heuristic information in the intelligent
algorithms

Owing to GA does not need the heuristic information, in this
section, experiments are just be carried out on ACO, IA, and
NDIA. According to Eq. 17, choosing a set of suitable
parameters α, β, and γ is critical in these three algorithms
which need the direction of the heuristic information, and in
the parameter sets α, β, and γ, low value indicated the low
effect in heuristic. Different heuristics may lead different
results. With multiple constraints, how to extract suitable
heuristic information for better solutions in different situation
is very important.

In this experiment, the initial pheromone value of ACO is
1 and its evaporation factor is 0.5. The rates of pheromone
and heuristic information in ACO are 1 and 5 separately, and
in IA, the crossover and mutation rates are 0.8 and 0.15
separately. Then the initial annealing temperature and its
decay factor are 100 and 0.95 separately. Based on the
preferences in IA, the rates of pheromone and heuristic
information in Eq. 18 are the same as ACO (i.e., 8 01, f05).

Table 3 and Fig. 11 visualize the effect of different
heuristic information on the average minimum make span
of MTs figured by the three algorithms. In these experi-
ments, DAG1 is adopted and tests are carried in three
situations of CCR.

First, in low communication situation (CCR01/10), the
set (1, 0.5, 1) can get the best results while the set (0.5, 1, 1)
can get the worst, that means low bandwidth information
with high speed and reliability information can guide the
algorithms to a better solution, and with low computing
speed information, the algorithms are leaded to worse
solutions. This is quite reasonable that computing speed is
the most important information and bandwidth is the least
important one. Because in this situation, computation
accounted for larger proportion and then the effect of band-
width is minor.

Second, in medium communication situation (CCR01), it
can be seen that the heuristic with low reliability can get the
best results. By now, both computation and communication
in MTs are important. Bandwidth and computing speed as
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their direct influencing factors are equally important. So
reducing the rate of the indirect acting factor (the reliability
information) emphasizes that the other two can promote
searching efficiency in algorithms. However, with the same
proportion of these three kinds of information, worse results
would be gotten as the result of the interference of unim-
portant factor.

Third, in high communication situation (CCR010), band-
width information seems to be the most important information
with the high proportion of communication in MTs. At this
time, low computing speed information can lead a better evo-
lution, and when bandwidth heuristic is lower the solution is
lower, too. Hence the reliability heuristic is also an important
factor in this situation. According to the constraints description
in Section 5.3, the reliability factor only effects the communi-
cation time when allocating CRs for MTs. So it has large
influence in high communication situation and has small influ-
ence in low communication situation, just as shown in Fig. 11.

Therefore, we can draw a conclusion that the computa-
tion speed influences much in low communication situation
while the bandwidth and reliability have large effect in high
communication situation, but in all of the three situations,
equal proportions of three factors could not obtain good
solutions. With CCR01 and its best parameter set
ða; b; gÞ ¼ ð1;1;0:5Þ, the comparison of the four algorithms
(i.e., GA, ACO, IA, NDIA) is carried in the next section.

7.2 The comparison of GA, ACO, IA, and NDIA
for addressing OACR

In this experiment, algorithms are tested in three DAGs, and
the preferences of GA are the same as IA and NIA, that is
pc ¼ 0:8; pm ¼ 0:15. Figure 12 and Table 4 show the per-
formance results of the four intelligent algorithms for
addressing the OACR problems. The run time, standard

deviation, average best fitness, the best solution results,
and the worst solution results in 100 runs are listed.

1. Search capability
As shown by results, in precision, NDIA get the best

solutions compared with the other three algorithms while
IA takes the second place, and the standard GA is the
worst. In the aspect of the worst fitness, ACO is the best,
and NDIA is the next. In ACO, ants find route from the
initiation so their initiate population would not be so bad.
The pheromone provides the posterior information to ants
to achieve cooperation searching, but it is also easy to
make the algorithms trapped into local optimum. So the
best solution of ACO is not really good. In NDIA, the
niche strategy after the initiation and before the selection
increases the diversity of the population. Its good climb-
ing ability makes the algorithm’s worst solution in 100
runs better than others. With the incorporation of genetic
evolution and niche strategy, the pheromone and dynamic
vaccination in NDIA cannot only increase the robustness
of the heuristics searching but also avoid the local opti-
mum. So it can always find the best solution compared
with other three algorithms.

From the climbing ability point of view, GA is the best,
NDIA is the next. However, due to the basic stochastic
crossover and mutation, GA is easy to trap into local
optimum and finally could not find the best solutions.
On the contrary, NDIA can keep a better evolutionary
trend because of its dynamic vaccination strategy. ACO is
the worst just because the simple pheromone and heuristic
direction cause the ants to be gathered quickly into a local
optimal solution. And based on dynamic IA’s evolution,
the niche strategy eliminates the similar individuals and
keeps the population searching new area. Thus the climb-
ing ability of NDIA is quite good.

Table 3 Experiment results
with different heuristic
parameters

(α, β, g) Average minimum make span of MTs (when CCR01) (m s−1)

(0.5, 1, 1) (1, 0.5, 1) (1, 1, 0.5) (1, 1, 1)

ACO 8.4378 8.6126 8.7284 8.5469

IA 8.7347 8.7962 8.8082 8.7593

NDIA 8.8455 8.8863 9.0034 8.8773

(α, β, g) Average minimum make span of MTs (when CCR01/10) (m s−1)

(0.5, 1, 1) (1, 0.5, 1) (1, 1, 0.5) (1, 1, 1)

ACO 1.8891 2.0065 1.9658 1.9422

IA 2.0678 2.1012 2.0913 2.0787

NDIA 2.1006 2.1277 2.1201 2.1139

(α, β, g) Average minimum make span of MTs (when CCR010) (m s−1)

(0.5, 1, 1) (1, 0.5, 1) (1, 1, 0.5) (1, 1, 1)

ACO 1.456 1.4163 1.4371 1.4299

IA 1.5961 1.5294 1.5481 1.572

NDIA 1.6914 1.6286 1.6392 1.6469
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With the increase of the MTs’ scales (from DAG1,
DAG2 to DAG3), ACO’s searching ability decreases
along with the increase of the problem scale while the
IA’s searching ability increases. Stochastic vaccination
added the heuristic guidance to genetic evolution and
makes IA avoid the degradation of the population. At
the same time, the convergence speed of NDIA becomes
slower. That is due to the niche strategy, too, but com-
pared with other three algorithms, it always can search the
best solutions at certain times.

2. Stability
From Table 4 it can be seen that GA’s convergence

speed is slow and its stability is the worst of all. Based
on the genetic strategy, IA is the next. The initiation in
genetic is totally stochastic without heuristic. The

evolutions in certain generations are not very stable.
ACO’s convergence rate is quite good. Because of
the pheromone and heuristic, ants can always gather
quickly to some extent. With the constant initial
pheromone and heuristic, the initial paths founded
by ants are fairly stable. Thus the fast convergence
and stable initiation makes ACO the most stable
algorithm in solving OACR. In NDIA, with the
injection of pheromone, dynamic vaccination in IA
could be more stable like ACO, and the ability of
skipping the local optimum from the niche strategy
makes it less stable than ACO.

Fig. 12 Evolutionary trend of the four intelligent algorithms for
addressing OACR

Fig. 11 The effect of different heuristic information in OACR
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3. Time-consuming
From the testing results it is clear that ACO is the most

time-consuming algorithm. According to the analysis in
Section 5.3, ACO needs to compute the heuristic values
for all of CRs in every iteration. The complexity of ants’
routing is O(mnv). With limited MTs, CRs, and popula-
tions, ACO is the most complex one compared with the
other three, and with the addition of pheromone updating
and niche strategy, NDIA is more time-consuming than
IA and GA. However, the complexity of NDIA does not
increase significantly in theory, just as shown in Table 2.

From the global perspective, NDIA showed high perfor-
mance in all scales of MTs in OACR. Niched strategy im-
proved the algorithm’s exploration, and the introduction of
experiential pheromone and dynamic heuristics improved the
algorithm’s exploitation. NDIA got a better balance between
exploration and exploitation by these two strategies for address-
ing OACR in CMfg. From the perspective of solution quality
and stability, NDIA has big potential in solving this kind of
allocation problem without the increase of time complexity.

8 Conclusions and future works

Optimal allocation of computing resources is one of the
most important and basic problem in CMfg. Current
works related to the allocation (scheduling) model and
algorithms are either unsuitable or inefficient. Based on
the authors' previous works on service-oriented manu-
facturing such as manufacturing grid [66–74], this paper
presented a new model with considering the character-
istics of CMfg thoroughly and then designed a highly
efficient intelligent algorithm for OACR in CMfg. In

detail, the primary works and contribution of this paper
can be concluded as follows:

1. In the new OACR model, user’s interaction (control and
supervision) in manufacturing tasks was fully consid-
ered for the first time. The difference between coarse-
grained MTs and traditional processor/thread tasks is
clearer, and it is more practical to simulation and man-
ufacturing processes in application.

2. From the computing aspect, dynamic computing speed
was presented associated with processor memory. This
technique can clearly reflect the characteristics of resource
partitioning in virtualization. Then, from the communica-
tion aspect, new cache technique for avoiding data surge,
local and remote communication, and the communication
reliability (rate and recovery time) are introduced in the
OACR model. These factors are firstly fused together and
make the model more close to the real integrated system
in CMfg. With the full consideration of dynamic compu-
tation and communication, the process of OACR in CMfg
can be more flexible and practical.

3. For solving the new complex model, an improved new
intelligent algorithm (NDIA) is presented with the intro-
duction of other three most commonly used intelligent
algorithms (i.e., GA, ACO, IA). By the introduction of
efficient strategies, NDIA showed high performances in
terms of searching ability, stability, and time complexity
in solving the OACR problem compared with the other
three algorithms. At the same time, extensive experiments
demonstrated the design of heuristic information in
OACR and the suitable heuristics in different situations.

Future work includes intensive study on CMfg environ-
ment and research on the details of the relations among CRs’

Table 4 Performance of the four intelligent algorithms for addressing OACR

Graph number Algorithms The worst fitness The best fitness Average fitness Standard deviation Time

DAG1 (100 runs) GA 7.5653 9.3467 8.4485 0.4262 163.13

ACO 8.1071 9.1214 8.716 0.218 3,250.44

IA 7.987 9.5617 8.8352 0.403 226.86

NDIA 8.0657 9.5617 8.9529 0.3074 811.55

DAG2 (100 runs) GA 4.6547 5.7213 5.1237 0.2958 255.3

ACO 5.0828 5.5556 5.2184 0.1313 6,731.88

IA 4.7512 5.8265 5.2483 0.2574 326.61

NDIA 4.7775 5.9687 5.3008 0.2086 1,324.07

DAG3 (100 runs) GA 1.7043 2.6405 2.3064 0.1688 419.71

ACO 2.2205 2.6516 2.3367 0.1407 9,512.52

IA 2.046 2.7276 2.41 0.1538 538.28

NDIA 2.1535 2.7791 2.4533 0.1371 2,019.99
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computation and communication factors, such as the influ-
ence of memory volume on computing speed and the char-
acteristics and differences of local communication and
remote communication. Due to the NP-completeness char-
acteristic, how to find a feasible solution which can satisfy
all users demand with the minimum resources utilization in
a shorter time is the most important thing in resources
management in CMfg. So it would also be very interesting
and important to find more efficient algorithms for OACR.
Researches into algorithms not only needed in the operation
improvement but also needed in the perspectives of paralle-
lization and simplification for achieving agile allocation in
CMfg.
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