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Abstract A coordinate measuring machine (CMM) is meant
to digitise the spatial locations of points and feed the resulting
measurements to a CAD system for storing and processing. For
reliable utilisation of a CMM, a calibration procedure is often
undertaken to eliminate the inaccuracies which result from
manufacturing, assembly and installation errors. In this paper,
an Immersion digitizer coordinate measuringmachine has been
calibrated using an accurately manufactured master cuboid
fixture. This CMM has been designed as an articulated manip-
ulator to enhance its dexterity and versatility. As such, the
calibration problem is tackled with the aid of a kinematicmodel
similar to those employed for the analysis of serial robots. In
addition, a stochastic-based optimisation technique is used to
identify the parameters of the kinematic model in order for the
accurate performance to be achieved. The experimental results
demonstrate the effectiveness of this method, whereby the
measuring accuracy has been improved considerably.
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1 Introduction

In the context of this paper, positioning accuracy of a kine-
matic structure is the difference between its actual and calcu-
lated positions. This difference is attributed to both geometric
and non-geometric factors. The geometric factors are mani-
fested by the deviation of the structure kinematic parameters
from the values stored in the mathematical model. On the
other hand, the non-geometric factors are represented by such

notions as link flexibility and sensor offsets. Positioning ac-
curacy can be improved by proper calibration techniques,
which consider both geometric and non-geometric sources
of error, as evident by the works of many authors, e.g. Judd
and Knasinsky [7], Driels and Pathre [3], Khalil and Besnard
[8] and Bai and Wang [1].

Some methods which have been proposed in the literature
to calibrate manipulators are adequately simple and efficient
to be considered for application in the field of coordinate
measuring machine (CMM). For example, Veitschegger and
Wu [18] designed and used a special tool, based on an accu-
rately machined plate equipped with a set of precisely located
holes, to calibrate a PUMA 560 robot. Similarly, Lim and
Burdekin [10] used a precisely machined artefact for CMM
calibration. This artefact was aligned precisely at 17 positions
for an adequate number of data points to be collected. Also,
Foulloy and Kelly [4] report a method which employs a
specially machined cube equipped with 25 precision holes
and an accurate insertion tool for robot calibration. The paper
by Sultan andWager [17] presents an approach which allowed
the robotic structure to rotate about one joint axis at a time in
order for this specific axis to be individually located in space.
The sequential application of this technique produced the
required kinematic information for the whole structure. While
suitable for robots, whose individual joints can be locked at
any desired position, this method may not be applicable for
CMM applications if such functionality is not provided.

In the current paper, a simplified approach is presented
and applied for the calibration of the Immersion digitizer
manipulator-like CMM [5]. This machine is accurate enough
to be utilised in medical applications as evident by the work of
Reisner et al. [12]. However, over a period of time, its accu-
racy may be adversely affected by relocation, overuse and
environmental and working conditions. The basic premise in
this paper is to calibrate the device by combining an inexpen-
sive but accurately machined fixture with a kinematic model
constructed as described by the well-known Denavit–
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Hartenberg formulation [2]. Despite its obvious simplicity, this
formulation has been shown, by authors such as Sultan
and Wager [16] and Mooring et al. [11], to be mathe-
matically unstable if used for calibration models which
feature gradient-based optimisation techniques. In fact,
the model’s Jacobian matrix will become singular if two
consecutive joint axes, on the kinematic structure, are parallel.
On the other hand, the stochastic optimisation technique
adopted in this paper does not require the use of a Jacobian
matrix and as such is not expected to exhibit singular behav-
iour. This optimisation technique is referred to as simulta-
neous perturbation stochastic approximation (SPSA). This
approach is efficient and suited for intricate optimisation
application as abundantly explained in literature, e.g. the
excellent papers by Spall [14] and the interesting application
presented by Kothandaraman and Rotea [9].

2 Kinematic description of the IDCMM

The photo in Fig. 1 shows the manufactured structure of the
Immersion digitizer coordinate measuring machine (IDCMM)
featured in this paper. The machine, which has been patented
by Schena and Rosenberg [13], is essentially a five-axis
revolute-joint (i.e. 5R) serial manipulator with a high degree
of dexterity. A displacement transducer is fitted to each joint
axis to report the current value of joint angle to a software
package provided by the manufacturer. The intended structure
of the IDCMM consists of joints whose axes are either parallel
or perpendicular in order to simplify the kinematic model of the
machine. However, manufacturing and assembly errors may
result in deviations from the intended kinematic structure. As
such, Fig. 2 is provided to demonstrate a generic kinematical
representation of a 5R serial manipulator similar to the CMM
under study.

In Fig. 2, the centreline of each revolute joint is defined by
a spatial axis, Zi (i01,2,…5). The centreline of the stylus is
meant to coincide with the axis Z6. However, the stylus tip,
point P, is assumed not to fall on Z6 in order for generality to
be ensured. The relative positions of the joint axes with respect
to each others may be formulated by using the well-known
DH matrices which have been described by Denavit and
Hartenberg [2]. A DHmatrix is usually established to perform
homogeneous transformation between two adjacent Cartesian
frames as shown in Fig. 3.

In kinematical analysis, the Z-axes of frames are usually
made to coincide with the joint axes, and the Xi-axis is the
common normal directed from Zi to Zi+1. Generally, a frame,
Xi+1 Yi+1 Zi+1, can be transformed into an adjacent frame,
XiYiZi, by the following DH parameters:

θi which is the angle from Xi to Xi+1, as measured in a
right-hand sense about Zi

αi which is the angle from Zi to Zi+1 as measured in a
right-hand sense about Xi+1

di which is distance from Xi to Xi+1, as measured along Zi
ai which is the distance from Zi to Zi+1, as measured

along Xi+1

For each revolute joint, all the DH parameters are con-
stant, except θi, which varies with the rotational motion
occurring about the joint axis. The DH matrix, Ti

iþ1, which
performs the transformation from the frame number i+1 to
the frame number i, is given as follows:

Ti
iþ1¼

cos θið Þ � cos aið Þ sin θið Þ sin aið Þ sin θið Þ ai cos θið Þ
sin θið Þ cos aið Þ cos θið Þ � sin aið Þ cos θið Þ ai sin θið Þ

0 sin aið Þ cos aið Þ di
0 0 0 1

2664
3775

ð1Þ

To this end, the overall matrix, T, which expresses the
stylus frame, X6Y6Z6, with respect to the base frame, X1Y1Z1,
can be calculated as follows:

T ¼
Y5
i¼1

Ti
iþ1 ð2Þ

Fig. 1 Photograph of the CMM under study
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Let a unit vector, bz6, be aligned with the stylus axis, Z6.
This unit vector may be expressed, with respect to the base
frame, as the top three entries of the third column of the
matrix T as follows:

bz6 ¼ T02 T12 T22½ �T ð3Þ
Moreover, the spatial position of the stylus tip can be

expressed with respect to the base frame by a vector, p0[px,
py, pz], which can be calculated as follows:

px
py
pz
1

2664
3775 ¼ T

hx
hy
hz
1

2664
3775 ð4Þ

where hx, hy and hz are the x-, y- and z-coordinates of the stylus
tip with respect to the frame X6Y6Z6.

3 The SPSA approach

SPSA stands for simultaneous perturbation stochastic approx-
imation as pointed out by Spall [14]. The approach is meant to
minimise a loss function, f(Φ), which corresponds to a given
design vector, Φ. This loss function can be expressed as
follows:

f Φð Þ ¼ L Φð Þ þ " Φð Þ ð5Þ
where L(Φ) is the actual value of the function and ε(Φ) is the
measurement noise.

Let an iterative procedure be undertaken to find the
values of the design variables which will minimise the loss

function. Assume that, at the start of iteration number k, the
vector of design variables has been previously estimated

as bΦk
(where, in this context, the symbolb: signifies estimates).

To this end, the gradient, gq bΦk
� �

, of the loss function with

respect to a specific design variable,Φq, may be approximated
by the following expression:

gq bΦk
� �

¼
f bΦk þ Ck$

k
� �

� f bΦk � Ck$
k

� �
2Ck$

k
q

ð6Þ

where the entries of the vector Δ are randomly assigned the
values of either +1 or −1 as generated, at every iteration, by a
binary Bernoulli distribution.Mathematically, this is expressed
as follows:

$k
q ¼

þ1 with prob 0:5
�1 with prob 0:5

�
ð7Þ

As such, the value of Φq can be estimated, at the end of
iteration k, by the following expression:

bΦkþ1

q ¼ bΦk

q � rkgq bΦk
� �

ð8Þ

where bΦk

q is the estimated value ofΦq at the start of iteration

number k. The scalar parameters, rk and Ck, in Eqs. 6 and
8 are the sequence gains which are calculated at iteration
number k as follows:

rk ¼ R

Bþ kð Þ0:602 ð9Þ

Fig. 2 A kinematical
representation of the
CMM under study
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and

Ck ¼ C

k 0:101
ð10Þ

Spall [15] suggests that the stability constant, B in Eq. 9,
may be calculated as 0.1K, where K is the maximum allowed
number of iterations which is set at the start of the procedure.
Spall also presented in the same paper guidelines to inform the
process of selecting numerical values for the constants, R and
C, in Eqs. 9 and 10. The parameter C determines the process
scale and, if set equal to the standard deviation of measure-
ment noise, produces a smooth progression toward the opti-
mal outcome. On the other hand, Rmay be set such that for the
specific design variable, Φs, whose differential variation is

expected to be the smallest, r0gs bΦ0
� �

� b, where b is a small

number specified by the user based on their familiarity with the
problem at hand. In fact, high precision is not required for the
values of R and C, and the process may boil down to a number
of trial runs until reasonable values have been found to ensure
smooth regression and an optimised outcome.

4 The calibration problem and procedure

When the IDCMM is employed to measure the position of
the stylus tip in space, the measured values of the joint-axis
sensor readings (i.e. θi, i01,2,…,5) are reported to a computer
package [6] designed to calculate the vector p which corre-
sponds to the given joint angles as suggested by Eq. 4. Besides

the joint angles, the elements of these vector depend on the 18
constant kinematic parameters of the structure, namely hx, hy,
hz, ai, αi and di (where i01,2,…,5). The discrepancy which
results from the actual physical values of these parameters,
being slightly different from their intended values, is demon-
strated by the measurement errors. A calibration procedure is,
therefore, undertaken to find the actual values of these param-
eters and use them to calculate the vector p.

In addition to the aforementioned kinematic parameters,
the work presented here considers possible error in the reading
of each joint angle. For simplicity, this error is assumed to take
the following linear form:

g i ¼ fiθi þ ei ð11Þ

where γi replaces θi in the mathematical model and
i01,2,…,5. This implies that γi is regarded as the actual joint
angle and θi is taken at the value reported by the joint sensor
for this angle. In Eq. 11, ei and fi are unknown parameters
which have to be found by the calibration procedure. The
inclusion of ei and fi into the mathematical model increases
the number of parameters, which are required to be found,
from 18 to 28.

Fig. 3 The DH parameters

Fig. 4 The calibration cuboid with the stylus inserted
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The calibration procedure proposed in this paper employs a
fixture which consists of a high precision cuboid with twowire-
cut through holes of diameter 5.08 mm, located 40.05 mm
apart. Figure 4 shows the measuring cuboid, as located next
to a ruler, with the stylus inserted in one of its two holes.

The procedure involves moving the cuboid to a number of
random locations in the measurement space whereby at each
location, j, the stylus is inserted into the two holes in order for
a zero-valued error function, Ej(Θ), to be calculated as
follows:

Ej Θð Þ ¼ w1 D� p0j � p1j

��� ���� �2
þ w2 1� bz06j � bz16j� �2

þ w3 bz06j � bz16j� �
x

� �2
þw4 bz06j �bz16j� �

y

� �2

þ w5 bz06j �bz16j� �
z

� �2 ð12Þ

where || is the Euclidian norm and the superscripts, 0
and 1, refer to the two holes, on the measuring cuboid,
which are separated by the distance D. In Eq. 12, wi(l0
1,2,…,5) refer to weighting values assigned to the var-
ious terms of the error function. To account for possible
manufacturing errors, the distance D was included in the
analysis as an unknown parameter, which resulted in
calibrating the measuring artefact itself. As such, the vector
of unknown parameters, Θ in Eq. 12, now holds 29 (rather
than 28) entries.

In the error function shown by Eq. 12, the term

D� p0j � p1j

��� ���� �2
signifies the fact that the measured posi-

tions of the two cuboid holes, at any location number j,
should be separated by a constant distance, D. Any
deviation from that is a system error which the term
endeavours to quantify. The remaining terms in Eq. 12

assert that the two axes bz06j and bz16j should be parallel at

any location number j and endeavour to quantify devia-
tions from parallelism (i.e. the dot product should be
equal to 1 and the cross product should yield a zero
vector).

Mathematically, the optimisation procedure involves the
minimisation of a cost function, F(Θ), given as follows:

F Θð Þ ¼
XM
1

Ej Θð Þ ð13Þ

where M is the total number of measuring events. As such,
the problem is posed as follows:

Minimize :F Θð Þ Subjectto : Ωmin � Ω � Ωmax ð14Þ
where Ω is a sub-vector of Θ. The entries of Ω are those
design variables whose values have to be constrained as
prescribed by the corresponding vectors Ωmin and Ωmax.

Applying the approach of SPSA to the calibration prob-

lem at hand, the updated values of the design variable,Θkþ1
q ,

which occupies position number q (where q00,1,…,28) in
the design vector is calculated at the end of iteration step
number k by:

Θkþ1
q ¼ Θk

q � rk
F Θk þ Ck$

k
� 	� F Θk � Ck$

k
� 	

2Ck$
k
q

ð15Þ

Table 1 Initial values of the
model parameters a1024.13 mm α1089.8956° d10210.82 mm e100 f101

a20260.579 mm α20358.8682° d20−22.301 mm e200 f201

a3013.716 mm α3090.0824° d300.0762 mm e300 f301

a40−10.16 mm α40269.8956° d40235.102 mm e400 f401

a50−10.16 mm α50270.088° d508.1026 mm e500 f501

hx00 mm hy00 mm hz0133.985 mm D040.05 mm

Table 2 Calculated values
of the model parameters a1024.357 mm α1090.05° d10211.240 mm e10−0.123° f100.999

a20260.242 mm α20359.885° d20−22.256 mm e200.214° f201.009

a3013.600 mm α3090.299° d30−0.0762 mm e300.107° f301.001

a40−10.309 mm α40270.172° d40234.86 mm e400.917° f401.001

a5010.139 mm α50270.459° d508.094 mm e500.080° f500.993

hx00.0008 mm hy00.0012 mm hz0133.985 mm D040.05 mm
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To find an estimate for the parameter C, the cuboid was
fixed at a given position and the distance, separating the two
holes, was measured 16 times. Every time the CMM was
returned to a home position before the arm was extended to
take the measurement. The value of Cwas then set equal to the
standard deviation of the repeatability error. On the other hand,
after a number of trial runs, R has been set equal to 0.000002.

IfΘq is an entry ofΩ, the constraints imposed on its value

(i.e.Θq

��
max

andΘq

��
min

) are incorporated in the procedure, as

suggested by Kothandaraman and Rotea [9], as follows:

Θkþ1
q ¼

Θq

��
max

if Θkþ1
q > Θq

��
max

Θq

��
min

if Θ
kþ1

q
< Θq

��
min

(
ð16Þ

In the present analysis, only the distance D was con-
strained to remain within the range of 39.80 to 40.20 mm.

The manufacturer had previously indicated that the actual
value of this distance was 40.05 mm, and this was the value
confirmed by the optimisation procedure. The fact that the
solution obtained is fully interior suggests that the optimal-
ity condition has not been violated as a result of applying the
approach shown in Eq. 16.

5 Experimental results

The initial values assigned to the model parameters have been
acquired from the data provided by the manufacturer. These
values are given in Table 1.

The calibration region was constrained to a horizontal base
plate in the work volume of the CMM. The cuboid was fixed,
at random planar orientations, to a total of 45 positions

Fig. 5 Reduction of the
cost function during
iterations

Fig. 6 Measurement error
before and after calibration
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(i.e.M045 as per Eq. 13) whereby, at each location, the stylus
was inserted into the two holes to calculate the error function,
Ej(Θ). The reported sensor readings, θi, have been noted and
used in themathematical procedure. Even though 700 iterations
were allowed for the stochastic optimisation procedure, con-
vergence was realised long before this number was reached.
The resulting values for the systems parameters are given in
Table 2, and the values calculated for the cost function during
the course of the procedure are given in Fig. 5.

The calibrated system parameters obtained in this analy-
sis have been substituted in the CMM mathematical model,
and the machine was then used to measure the distance
between the two cuboid holes at 15 new fixture locations
situated in the measuring space. The error values produced
by these 15 measurements are depicted in Fig. 6 together
with the corresponding error values obtained by the uncal-
ibrated kinematic model. The figure asserts the considerable
accuracy improvement produced by the adopted procedure.
The mean measurement error has been reduced from 0.1182
to 0.0297 mm, and the standard deviation of error has been
reduced from 0.04 to 0.026 mm.

6 Conclusions

In this paper, a simple method for the calibration of a serial
manipulator-like CMM has been proposed and demonstrated
experimentally. The method does not require the use of expen-
sive measuring equipment to collect position data. The mathe-
matical model employed for the analysis utilises the well-
knownDH parameters combinedwith a stochastic optimisation
approach. In themodel, sensor offsets have also been accounted
for by a linear expression which relates the actual joint angle to
its reported value. The calibration procedure presented in this
paper considerably improves the accuracy, of an already accu-
rate device, which proves the validity of the proposed approach
and its suitability for the discussed application.

Acknowledgements The authors would like to acknowledge the
information received from the Immersion Corporation staff, Mr Bill
Hoverter and Mr. Nemer Velasquez.

References

1. Bai Y, Wang D (2006) Fuzzy logic for robots calibration—using
fuzzy interpolation technique in modeless robot calibration. In: Bai
Y, Zhuang H, Wang D (eds) Advanced fuzzy logic technologies in
industrial applications. Springer, London

2. Denavit J, Hartenberg RS (1955) A kinematic notation for low pair
mechanisms based on matrices. ASME J Appl Mech 22:215–221

3. Driels MR, Pathre US (1991) Vision based automatic theodolite
for robot calibration. IEEE Trans Robot Autom 7(3)

4. Foulloy LP, Kelly RB (1984) Improving the precision of a robot.
In: Proc. IEEE Conf. Robotics., pp 62–67

5. Immersion Corporation (2000) MicroScribe 3D Desktop Digitizing
Systems: user’s guide & set-up instructions. Immersion Corporation,
San Jose

6. Immersion Corporation (2004) MicroScribe API 2.2 user reference.
Immersion Corporation, San Jose

7. Judd RP, Knasinsky AB (1987) A technique to calibrate industrial
robots with experimental verification. In: Proc. IEEE Conf. Robotics.,
pp 351–357

8. Khalil W, Besnard S (2002) Geometric calibration of robots with
flexible joints and links. J Intell Robot Syst 34:357–359

9. Kothandaraman G, Rotea MA (2005) Simultaneous-perturbation
stochastic-approximation algorithm for parachute parameter estima-
tion. J Aircr 42(5):1229–1235

10. Lim C, Burdekin MM (2002) Rapid volumetric calibration of
coordinate measuring machines using a hole bar artefact. Inst
Mech Eng B J Eng Manuf 216:1083–1093

11. Mooring BW, Roth ZS, Driels MR (1991) Fundamentals of ma-
nipulator calibration. Wiley, New York

12. Reisner LA, King BW, Klein MD, Auner GW, Pandya AK (2007)
A prototype biosensor-integrated image-guided surgery system. Int
J Med Robot Comput Assist Surg 3(1):82–88

13. Schena BM, Rosenberg LB (1997) Mechanical digitising arm used
to input three dimensional data into a computer. US patent no.
Des.337,932

14. Spall JC (1992) Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE Trans
Autom Control 37(3):332–340

15. Spall JC (1998) Implementation of the simultaneous perturbation
algorithm for stochastic optimization. IEEE Trans Aerosp Electron
Syst 34(3):817–823

16. Sultan IA, Wager JG (1999) User-controlled kinematic modelling.
Int J Adv Robot 12(6):663–677

17. Sultan IA, Wager JG (2001) A technique for the independent-axis
calibration of robot manipulators with experimental verification.
Int J Comput Integr Manuf 14(4)

18. Veitschegger WK, Wu CH (1987) A method for calibrating and
compensating robot kinematic errors. In: Proc. IEEE Conf. Robotics
Automation., pp 39–44

Int J Adv Manuf Technol


	Calibration of an articulated CMM using stochastic approximations
	Abstract
	Introduction
	Kinematic description of the IDCMM
	The SPSA approach
	The calibration problem and procedure
	Experimental results
	Conclusions
	References


