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Abstract Nowadays, location of distribution centers inte-
grated with inventory or transportation decision play an
important role in optimizing supply chain management.
Location–inventory models analyze the location and inven-
tory policies in distribution network, simultaneously. Devel-
oping location–inventory models under fuzzy environment
can enrich the model, and this is our approach in this article.
We consider the demand as a fuzzy variable and formulate
the problem using credibility theory in order to locate dis-
tribution centers (DCs) as well as determining inventory
levels in DCs. The derived model belongs to nonlinear
mixed integer programming problems, and we presented a
genetic algorithm to solve it. Numerical results show that
the performance of the proposed algorithm is reasonable.

Keywords Location . Inventory management . Distribution
system . Fuzzy logic . Credibility theory . Genetic algorithm

1 Introduction

The new situation in market and changes in technology have
made many production companies tend to create a network of
close and well-organized communications called supply chain,
to more easily supply products to consumers. An important

issue in the supply chain is distribution network. Since, de-
creasing transportation costs and expediting services, are two
important factors in competition among companies, effective
design of this network is of particular importance. Location
policies are among the long-term or mid-term ones, whereas
policies for inventory are considered short-term or mid-term
policies in product distribution networks; however, the impact
of location policies on inventory costs are vividly observable;
since inventory costs change consequently, as a result of
changing the allocated demand to service providers. Thus,
location–inventory models have been offered which simulta-
neously minimize both the location and inventory costs. More
than and before anything, decision makers are faced with
uncertain parameters which are of non-deterministic nature
and change in the real environment, and also are considered
non-deterministic in the problem because of lack of informa-
tion about these parameters from real world. For instance, if a
decision maker wants to schedule their annual plan for next
year, obtaining precise value of certain parameters would
definitely not be easy (e.g., the demand of customer).

In this paper, we study the location–inventory problem
considering fuzzy demand and construct a new model for
this problem with solution method to reach a more practical
location–inventory model.

In the rest of the paper, Section 2 includes the literature
review of related article, and in Section 3, we develop the
model of the problem. Solution method and computational
results are presented in Section 4, and finally, we conclude
the paper in Section 5.

2 Literature review

In recent years, the problem of facility location has received
more attention and is formulated as several models such as
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continuous location models, network location models, and
mixed integer programming models. Continuous location
models have two special properties. One being that the
solution space is continuous, according to which one can
locate facilities on any point in the plane. The other property
is that, distances can be measured by an appropriate metric.
For more details, refer to [1, 2]. In network location models,
distances are considered as the shortest path in a graph.
Nodes represent demand points and potential sites to be
allocated to facilities are mapped to a subset of nodes and
points on edges. A good review of network location models
can be found in [3, 4]. Having a set of potential locations for
facilities, many location problems can be formulated by
mixed integer programming models [5, 6]. Location–inven-
tory models may be categorized according to inventory
control policy capacity of distribution centers (DCs), pro-
duction capacity of the supplier, type of retailers’ demand
(deterministic vs. non-deterministic), type of products (sin-
gle or multiple), number of allocated distribution centers
(specified or not), and so on. In the past decades, many
people have introduced fuzzy theory to the location prob-
lem. Bhattacharya et al. considered the problem where DCs
were located under several fuzzy criteria and presented a
fuzzy objective programming method to solve the problem
[7, 8]. Canos et al. added a set of fuzzy constraints to the p-
median problem which introduced a decision-making strat-
egy in which very low costs are obtained by leaving part of
the demand uncovered [9]. Also, Chen and Wei, Darzentas,
and Rao and Saraswati studied various facility location
problems utilizing fuzzy logic methods [10–12]. However,
all the parameters in these problems are deterministic, and
fuzzy theory is only used to effectively solve the classic
programming. Tezeng and Chen have offered a location
model with a multi-objective fuzzy approach [13]. This
model aids the location of fire stations in an international
airport. Because of the combinatorial complexity of this
model, a genetic algorithm has been offered and compared
with the counting method.

Kuo et al. offered a decision-making support system com-
bining fuzzy set theory and hierarchical analytic procedure in
location of a new shop [14]. Chen has offered a new method
for multi-criterion decision making to solve the location of
distribution centers in a fuzzy environment [15, 16].

Chu proposed a fuzzy TOPSIS for the selection of plant
location [17]. Ertugrul and Karakasoglu used fuzzy AHP
and fuzzy TOPSIS for the selection of facility location [18].
They considered results of the proposed methods.

With the best of our knowledge, there is no research in
literature about the fuzzy location–inventory problem.
Therefore, in this article, we develop a new model for fuzzy
location–inventory problem using credibility theory.

While possibility theory allows for analysis of a fuzzy
variable and mapping it to real space, it lacks the property of

duality which in theory and practice is of particular im-
portance. Liu [19] offered credibility theory to investigate
fuzzy variables and solve the problem of non-self duality
of the credibility measure and further developed it. Liu
introduces the foundations of chance theory and credibility
theory, while he also investigates many practical problems
as well [20].

Zhou and Liu question the location–allocation problem
with fuzzy demand and introduce three theoretical models—
expected minimization, α-cost minimization, and credibility
measure maximization [21]. We discuss in this paper an
intelligent hybrid algorithm which solves such models. We
also exploit simulation and genetic algorithm to effectively
solve the problem.

2.1 Basic definition

Let Θ be a non-empty set and P its power set. An element of
P is called an event. We define a particular metric to measure
the credibility of an event denoted Cr{A}, where A is an
event. Thus, Cr is a real-valued function over the power set
of Θ.

Cr is a credibility measure if and only if it satisfies the
following conditions [20]:

Cr Df g ¼ 1 ð1Þ

Cr Af g � Cr Bf g if A � B ð2Þ

Cr Af g þ Cr Acf g ¼ 1 ð3Þ

Cr [iAif g ¼ SupiCr Aif g 8 Aif g with SupiCrfAig < 0:5

ð4Þ

Self-duality is a fundamental property which distin-
guishes credibility theory from its predecessors and is de-
fined as follows:

Cr Af g þ Cr Acf g ¼ 1 ð5Þ
Remark 1 Let μ be a nonnegative function over Θ (e.g.,

the set of real), such that,

Sup
X2D

μðX Þ ¼ 1 ð6Þ

Then, the following will establish a credibility measure
over Θ,

Cr x 2 Bf g ¼ 1

2
Sup
X2B

μðX Þ þ 1� Sup
X2Bc

μðX Þ
� �

ð7Þ
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Theorem 1 Let D be a nonempty set, P its power set, and
Cr a credibility measure, then [20]

8A 2 P 0 � Cr Af g � 1 ^ Cr ff g ¼ 0 ð8Þ

2.1.1 Critical values

In order to rank fuzzy variables, we may use either of the
following [20]:

& a-Optimistic value of x: Let x be a fuzzy variable and a
range over [0,1], then the a-optimistic value of x is
defined as follows:

xSup að Þ ¼ Sup rjCr x � rf g � af g ð9Þ

& a-Pessimistic value of x: Let x be a fuzzy variable and a
range over [0,1], then the a-pessimistic value of x is
defined as follows:

xinf að Þ ¼ Inf r Cr x � rf g � ajf g ð10Þ

Theorem 2 [20]: Let (a, b, c, d) be a trapezoidal variable.
Then a-pessimistic critical value is defined as follows:

xinf að Þ ¼ 2a b� að Þ þ a if a � 0:5
2 1� að Þ c� dð Þ þ d if a > 0:5

�
ð11Þ

Theorem 3 [20]: Let x be a fuzzy number with continuous
membership function. Then, Cr x � rf g � a if and only if
r � xinf að Þ, that is:
Cr x � rf g � a , r � xinf að Þ ð12Þ

Remark 2 [20]: Let a1≤a2 be two parameters, and z1, z2 the
corresponding values for the fuzzy location–inventory model.
Then, we have z1≤z2.

3 Problem formulation

We consider a distribution system where a main sup-
plier delivers its products to merchants. In order to
enhance the quality of service, we assume some of
the merchants to be distribution centers and the others
to be retailers. The main supplier delivers the products
to distribution centers and distribution centers deliver

the products to assigned retailers. In this distribution
system, transportation cost comprises the transportation
cost from the main supplier to the distribution centers
and from distribution centers to retailers. In this prob-
lem, the number of distribution centers, their locations,
allocation of retailers to DCs, and the inventory level
to be stored in each DC are decision variables. The
objective function of the problem is to minimize the
total cost of locations, inventory, and transportation
costs.

3.1 The assumptions

The assumptions considered to formulate the problem are as
follows:

1. Distribution centers receive the cost of transportation of
products to the retailers from the main supplier.

2. The location of the main supplier and retailers are
given.

3. Planning period is so short, and hence, the total need
product is supplied at the beginning of period and the
cost of ordering is neglected.

4. Retailers can only be allocated to points which are
selected as distribution centers.

3.2 Developing the model considering deterministic
environment

In this sub-section, we are going to develop the model of the
problem considering the deterministic demand of products
in retail. In the following, we define the parameter and
decision variable which are common to develop the model
under fuzzy environment.

3.2.1 Notation

j Distribution index
k Retailer index
I Set of retailers
Dk Mean of annual demand at retailer k, ∀ k ∈ I
Fj Fixed cost of constructing a distribution center at node

j, ∀ j ∈ I
hj Annual cost of storing one unit of products in

distribution center j, ∀ j ∈ I
aj Transportation cost of one unit of products from the

main supplier to distribution center j ∀ j ∈ I
cjk Transportation cost of one unit of products from

distribution center j to retailer k ∀ k ∈ I
Xj equals 1, if retailer j is selected as a distribution center,

and 0, otherwise.
Yjk equals 1, if retailer k is supplied by distribution center

j, and 0, otherwise.
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3.2.2 The model

The objective function of the model can be written as:

min
X
j

FjXj þ
X
k

cjkDkYjk þ aj
X
k

DkYjk þ
hj
P
k
DkYjk

2

24 3524 35
ð13Þ

The terms of objective function are described as follows:

FjXj Fixed cost of constructing distribution centerP
k
cjkDkYjk Transportation cost of products from DC j to

retailer
aj
P
k
DkYjk Transportation cost from the main supplier to

DC j
hj
P
k

DkYjk

2
Inventory holding cost at DC j

The mathematical of problem in deterministic situation is
written below:

min
X
j

FjXj þ
X
j

X
k

cjkDkYjk þ
X
j

aj
X
k

DkYjk þ
hj
P
k
DkYjk

2

24 35
ð14Þ

Subject to:

P
j
Yjk ¼ 1 8k 2 I ð15Þ

Yjk � Xj � 0 8j; k 2 I ð16Þ

Yjk 2 0; 1f g 8j; k 2 I ð17Þ

Xj 2 0; 1f g 8j 2 I ð18Þ
The first constraint 15 asserts that each retailer is allocated

to just one DC and constraint 16 asserts that retailers may only
be allocated to the node j if it is DC.

Constraints 17 and 18 assert the 0–1 type of decision
variable.

3.3 Formulating the location–inventory model under fuzzy
environment

Since critical values are used to rank fuzzy variables and in
this model our goal is to minimize the objective function, we
will use α-pessimistic critical value. Since we assume demand
to be a trapezoidal fuzzy number in this problem, the objective
function will also be fuzzy which means we should assume
the total corresponding costs to be fuzzy as well.

In this problem, we want to minimize the a-critical total
value rather than the objective function.

Our model will take the form:

min f ð19Þ
Subject to:

Cr
X
j

FjXj þ
X
j

X
k

cjk eDkYjk þ
X
j

aj
X
k

eDkYjk þ
hj
P
k

eDkYjk

2

264
375 � f

8><>:
9>=>; � a ð20Þ

P
j
Yjk ¼ 1 8k 2 I ð21Þ

Yjk � Xj � 0 8j; k 2 I ð22Þ

Yjk 2 0; 1f g 8j; k 2 I ð23Þ

Xj 2 0; 1f g 8j 2 I ð24Þ
Now, by applying theorems 2 and 3, the model can be

transformed to a solvable model. According to theorem 3,
we have:

Cr
X
j

FjXj þ
X
j

X
k

cjk eDkYjk þ
X
j

aj
X
k

eDkYjk þ
hj
P
k

eDkYjk

2

264
375 � f

8><>:
9>=>; � a , f � xinf að Þ ð25Þ
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Then,

f � xinf að Þ ð26Þ
Now, since eDk ¼ D1

k ;D
2
k ;D

3
k ;D

4
k

� �
is assumed to be a

trapezoidal fuzzy number, from theorem 2, the objective
function of the fuzzy model will be as follows, and our
objective function will also be a trapezoidal number.

min f ¼ 2a r2 � r1ð Þ þ r1 if a � 0:5
2 1� að Þ r3 � r4ð Þ þ r4 if a > 0:5

�
ð27Þ

Subject to:

r2 ¼
X
j

FjXj þ
X
j

X
k

cjkD
1
kYjk þ

X
j

aj
X
k

D1
kYjk þ

hj
P
k
D1

kYjk

2

24 35
ð28Þ

r2 ¼
X
j

FjXj þ
X
j

X
k

cjkD
2
kYjk þ

X
j

aj
X
k

D2
kYjk þ

hj
P
k
D2

kYjk

2

24 35
ð29Þ

r3 ¼
X
j

FjXj þ
X
j

X
k

cjkD
3
kYjk þ

X
j

aj
X
k

D3
kYjk þ

hj
P
k
D3

kYjk

2

24 35
ð30Þ

r4 ¼
X
j

FjXj þ
X
j

X
k

cjkD
4
kYjk þ

X
j

aj
X
k

D4
kYjk þ

hj
P

D4
kYjk

2

" #
ð31Þ

Thus, the fuzzy location–inventory model will be of
general form,

min f ¼ 2a r2 � r1ð Þ þ r1 if a � 0:5
2 1� að Þ r3 � r4ð Þ þ r4 if a > 0:5

�
ð32Þ

Subject to:

r1 ¼
X
j

FjXj þ
X
j

X
k

cjkD
1
kYjk þ

X
j

aj
X
k

D1
kYjk þ

hj
P
k
D1

kYjk

2

24 35
ð33Þ

r2 ¼
X
j

FjXj þ
X
j

X
k

cjkD
2
kYjk þ

X
j

aj
X
k

D2
kYjk þ

hj
P
k
D2

kYjk

2

24 35
ð34Þ

r3 ¼
X
j

FjXj þ
X
j

X
k

cjkD
3
kYjk þ

X
j

aj
X
k

D3
kYjk þ

hj
P
k
D3

kYjk

2

3524
ð35Þ

r4 ¼
X
j

FjXj þ
X
j

X
k

cjkD
4
kYjk þ

X
j

aj
X
k

D4
kYjk þ

hj
P

D4
kYjk

2

#"
ð36Þ

P
j
Yjk ¼ 1 8k 2 I ð37Þ

Yjk � Xj � 0 8j; k 2 I ð38Þ

Yjk 2 0; 1f g 8j; k 2 I ð39Þ

Xj 2 0; 1f g 8j 2 I ð40Þ

4 Solution method and computational results

4.1 Solution method

In this section, a genetic algorithm (GA) is presented to solve
the model. In the following, the elements of GA are described.

4.1.1 Chromosome

We use a vector for chromosomes, in which a gene with value
0, the node and a gene with value other than 0 means that DC
covers the mentioned node. Consider the following example.

Assume we have seven shopping centers. For example,
consider the following:

3063063Chromosome

The above chromosome illustrates that distribution cen-
ters are located in nodes 3 and 6. Retailers 1, 4, and 7 are
supplied by distribution center 3, and retailers 2 and 5 are
supplied by distribution center 6.

4.1.2 Initial population

To start, a popsize by n matrix is created in which each
element is initially 1. Each chromosome in the population is
produced as follows:
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Assume we have seven facilities of which centers 3 and 4
are randomly designated to serve as DC. In what follows,
we set entries 3 and 4 to be 0. Thus,

1110011

Now starting from the beginning of the chromosome, we
randomly allocate the 1 s in the chromosome to one of the
selected distribution centers.

3440034

The potential problem in this step is that there is a
distribution center which does not serve any retailer, which
arises from the random nature of distribution center alloca-
tion. As an example, consider:

3040034

A modifier procedure of chromosome is written to solve
this potential problem which is explained later.

4.1.3 Crossover operator

The crossover operator being used in this model is called
single-point crossover. The problems of this step would be
that the produced children may be infeasible. As an exam-
ple, consider the following two chromosomes as selected
parents:

0733077

3430033

If the cutting point is point 5, the produced children are as
follows:

3433077

0730033

As, it is seems the produced children are not feasible;
therefore to correct them, we apply the modifier function.
Suppose the modifier procedure is applied to above chro-
mosomes and the modified chromosome are as follows:

3333033

0733033

4.1.4 Modifier procedure

The modifier procedure is applied to solve two problems in
generated chromosome.

1. When a retailer is allocated to a DC which itself is a
retailer. As an example:

3433033

In which retailer 6 is allocated to retailer 4. The modifier
procedure is to allocate a retailer to a valid DC randomly.

3333033

2. Maybe a distribution center does not provide any retailer.
As an example:

0730033

Table 1 Analysis of sensitivity
to cost of constructing parameter Size of problem Repeat count Cost of constructing Mean objective Best solution

7 5 17, 27, 13, 15, 18, 29, 27 18,146.108 18,044.490

7 5 19, 32, 18, 20, 25, 33, 38 19,020.746 18,065.490

7 5 21, 34, 20, 22, 30, 35, 39 19,176.882 18,078.490

7 5 29, 36, 39, 41, 33, 39, 25 19,606.243 18,184.420

Table 2 Analysis of sensitivity
to cost of transportation param-
eter from distribution center to
retailer

Size of
problem

Repeat count Cost of constructing Mean objective Best solution

7 5 0.56, 0.67, 0.43, 0.65, 0.74, 0.59, 0.47 18,146.108 18,044.490

7 5 0.66, 0.77, 0.55, 0.74, 0.81, 0.62, 0.53 20,924.471 18,080.872

7 5 0.71, 0.81, 0.63, 0.78, 0.88, 0.71, 0.66 21,212.321 18,095.548

7 5 0.88, 0.90, 0.74, 0.82, 0.95, 0.86, 0.81 22,254.548 18,113.378
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In this example, center 4 is a DC, but supplies no
retailer. To correct this error, we remove distribution
center 4 and allocate it as a retailer to another DC
randomly.

0733033

4.1.5 Mutation operator

This operator is implemented by selecting two retailers and
substituting their corresponding distribution centers. This is
illustrated in the following example:

Initial chromosome

3430033

New chromosome

3340033

4.2 A numerical example

Assume a network with n07 nodes. The construction costs
of DC at each node are as:

7654321Centers (j)

27291815132717jF

Transportation costs Cjk for any pair of nodes are as
follows:

cjk ¼

0:0 0:84 0:34 0:65 0:44 0:65 0:54
0:46 0:0 0:45 0:67 0:43 0:67 0:23
0:53 0:34 0:0 0:46 0:87 0:34 0:75
0:56 0:22 0:67 0:0 0:63 0:46 0:85
0:43 0:24 0:23 0:25 0:0 0:63 0:34
0:53 0:27 0:54 0:24 0:67 0:0 0:85
0:89 0:78 0:89 0:89 0:87 0:21 0:0

2666666664

3777777775
Now, considering the demand of customers to be trape-

zoidal fuzzy numbers:

eD1 ¼ 50 55 60 65½ � ; eD2 ¼ 94 98 102 105½ � ; eD3 ¼ 150 155 160 165½ �eD4 ¼ 122 126 128 130½ � ; eD5 ¼ 64 65 68 70½ � ; eD6 ¼ 55 57 60 66½ �eD7 ¼ 74 75 78 80½ �

Table 3 Analysis of sensitivity
to cost of storing parameter Size of problem Repeat count Cost of storing Mean objective Best solution

7 5 17, 27, 13, 15, 18, 29, 27 18,146.108 18,044.490

7 5 19, 32, 18, 20, 25, 33, 38 24,609.973 23,212.778

7 5 21, 34, 20, 22, 30, 35, 39 30,875.978 30,561.540

7 5 29, 36, 39, 41, 33, 39, 25 35,566.934 35,399.778

Table 4 Analysis of sensitivity to the demand parameter

Size of problem Repeat count Demand Mean objective Best solution

7 5 [94 98 102 105], [50 55 60 65], [122 126 128 130] 18,146.108 18,044.490
[64 65 68 70], [74, 75, 78, 80], [150 155 160 165]

[55 57 60 66]

7 5 [110 115 120 125], [62 68 72 76], [84 85 88 90] 20,773.418 19,882.288
[132 136 138 140], [160 165 170 175], [65 67 70 76]

[74 75 78 80]

7 5 [120 125 130 135], [72 78 82 86], [142 146 148 150] 23,623.168 22,430.088
[170 175 180 185], [75 77 80 86], [84 85 88 90]

[94 95 98 100]
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Transportation costs from the main supplier to the distri-
bution centers are:

7654321Centers (j)

0.470.590.980.650.430.670.56ja

Holding costs for each unit of products for 1 year are
indicated in the following table:

7654321Centers (j)

125140290100175180120jh

Assume a00.6 and best solution equals 18,044.49

4.3 Sensitivity analysis

4.3.1 Sensitivity analysis to cost of construction

Should the cost of transportation from DCs to retailers in-
crease, the objective function increases as well. Furthermore,
increases in the cost of the establishment of distribution

centers, transportation cost from the main supplier to the
distribution centers, and inventory costs would result in
increases in the objective function, with the objective function
being most sensitive to increases in inventory cost. The fol-
lowing table shows the analysis of sensitivity to the parame-
ters of costs of establishment, with all input parameters being
constant while the establishment costs vary (Table 1).

The following tables show the analysis of sensitivity to
other parameters (Tables 2 and 3).

4.3.2 Analysis of sensitivity to demand parameter

By increasing the demand, the objective function increases
rapidly. The following table (Table 4) shows the analysis of
sensitivity to the demand parameter, with all parameters
being constant but the demand parameter.

4.3.3 Sensitivity of solutions to a

It is concluded from the location–inventory model that the
value of the objective function depends on parameter a as
well. Here, we consider different values for a (Table 5).
The objective function is increasing in a which is in con-
formance with the following remark (2).

4.4 Performance analysis of proposed GA

In this step, we evaluate the performance of proposed GA by
comparing the results of optimal method (explicit numera-
tion) and the results of GA. To perform the comparison, we
will solve the problem using both methods under same
conditions. The running time and the solution from the
two methods are recorded, and percentage of discrepancy

Table 5 Sensitivity
analysis with respect
to parameter a

Size of
problem

Parameter a Objective
function

7 0.1 12,654.112

7 0.2 12,793.524

7 0.3 12,923.936

7 0.4 13,072.348

7 0.5 13,211.760

7 0.6 14,150.874

7 0.7 14,290.368

7 0.8 17,690.926

7 0.9 17,859.888

7 1 18,022.850

Table 6 A comparison of the results obtained from GA against optimal method

Size of problem GA Optimal method Error %

Run-time (s) Number of distribution centers Objective Run-time (s) Number of distribution centers Objective

5 1 2 14,150.874 1 2 14,150.874 0

6 1 3 14,523.606 2.76 3 14,523.606 0

7 1 3 18,044.490 47.05 3 18,044.490 0

8 1 4 17,523.204 1,569.625 4 17,523.204 0

9 1 4 21,299.688 17,857.93 4 21,299.688 0

10 1 5 24,686.306 56,016.02 5 24,698.100 0.04

11 2 5 28,250.732 101,700.42 5 28,250.732 0

12 2 5 31,248.202 142,128.38 5 31,248.048 0

13 2 6 34,218.202 188,028.22 6 34,218.202 0.02

14 2 6 38,039.322 271,404.35 6 38,039.322 0

15 2 6 40,000.176 328,680.25 6 40,000.176 0
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between the two solutions (error) is calculated using the
following formula:

Error ¼ solution from the optimal method� solution from the genetic method

solution from the optimal method
� 100%

As indicated in Table 6, error equals 0 in most cases and
is negligible in two cases. Furthermore, it takes about 4 days
to obtain the optimal solution for n015. Thus increasing the
number of centers; the calculation time of the optimal solu-
tion rises and it is not possible to solve the problems with
larger sizes.

4.4.1 Performance analysis of GA for medium and large size

Here, we evaluate the performance of proposed GA in large
problems (Table 7). We solved many problems with size 20
to 100 nodes and results are tabulated in Table 6. The
convergence graph is presented in Fig. 1.

5 Conclusion

Considering the location decisions and inventory decisions
simultaneously play a main role in optimizing the cost of
supply chain. Since the supply chain environment is uncer-
tain in real world, therefore, developing the location–inven-
tory model in fuzzy environment is valuable. This is the first
attempt on developing the location–inventory model in
fuzzy environment. We developed the model and a genetic
algorithm to solve it. The performance of proposed genetic
algorithm is reasonable based on numerical results. Our

model determines the number of distribution centers, loca-
tion of distribution centers, allocation of retailers to DCs,
and inventory levels in DCs. This research can be extended
by considering multi products with interdependent relation-
ships and stochastic demand for products. Considering

Table 7 Performance analysis
of proposed GA for medium
and large size problem

Size of
problem

Repeat
count

Run-time (s) Number of distribution centers Mean objective Best solution

20 5 6 8 52,843.948 49,697.418

30 5 7 11 89,926.599 85,421.242

35 5 8 12 106,607.222 95,676.912

40 5 9 13 123,636.838 113,150.576

45 5 10 15 147,873.335 137,997.488

50 5 12 17 163,708.592 155,735.482

55 5 13 18 187,661.364 177,075.588

60 5 14 22 207,862.834 192,598.090

65 5 15 21 227,905.698 210,636.078

70 5 16 20 246,867.962 239,245.020

75 5 17 24 270,140.900 255,263.500

80 5 18 25 287,243.114 277,329.356

90 5 20 29 323,526.537 303,989.110

100 5 25 33 355,598.934 341,076.418

Fig. 1 GA convergence graph
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customers behavior on choosing DCs and amount of de-
mand is also another valuable extent of this research.

References

1. Brimberg J, Hansen P, Mladenovic N (2000) Improvements and
comparison of heuristics for solving the multisource Weber prob-
lem. Oper Res 48:252–263

2. Hansen P, Mladenovic N, Taillard E (1998) Heuristic solution of
the multisource Weber problem as a p-median problem. Oper Res
22:55–62

3. Beasley JE (1993) Lagrangean heuristics for location problems.
Oper Res 65:383–399

4. Boffey B, Yates D, Galvao RDG (2003) An algorithm to locate
perinatal facility in the municipality of Rio de Janeiro. Oper Res
54:21–31

5. Chardaire P, Lutton J, Sutter A (1999) Upper and lower bounds for the
two-level simple plant location problem. Ann Oper Res 86:117–140

6. Harkness J, Revell C (2003) Facility location with increasing
production costs. Eur J Oper Res 145:1–13

7. Bhattacharya U, Rao JR, Tiwari RN (1992) Fuzzy multi-criteria
facility location problem. Fuzzy Sets Syst 51:277–287

8. Bhattacharya U, Rao JR, Tiwari RN (1993) Bi-criteria multi facility
location problem in fuzzy environment. Fuzzy Sets Syst 56:145–163

9. Canos MJ, Ivorra C, Liern V (1999) An exact algorithm for fuzzy
p-median problem. Eur J Oper Res 116:80–86

10. Chen CB, Wei CC (1998) An efficient fuzzy MADM method for
selecting facility location. J Eng Valuat Cost Anal 2:19–32

11. Darzentas J (1987) A discrete location model with fuzzy accessi-
bility measures. Fuzzy Sets Syst 23:149–154

12. Rao JR, Sarawait K (1988) Facility location problem on network
under multiple criteria- fuzzy set theoretic approach. Int J Syst Sci
12:2555–2559

13. Tzeng GH, Chen YW (1999) Optimal location of airport fire
stations: a fuzzy multi-objective programming and revised genetic
algorithm approach. Transport Plann Tech 23:229–241

14. Kuo RJ, Chi SC, Kao SS (1999) A decision support system for
locating convenience store through fuzzy AHP. Comput Ind Eng
37:323–326

15. Chen SM (2001) Fuzzy group decision-making for evaluating the
rate of aggregative risk in software development. Fuzzy Sets Syst
118:75–88

16. Chen CT (2001) A fuzzy approach to select the location of the
distribution center. Fuzzy Sets Syst 118:65–73

17. Chu TC (2002) Selecting plant location via a fuzzy TOPSIS
approach. Int J Adv Manuf Technol 20:859–864

18. Ertugrul I, Karakasoglu N (2008) Comparison of fuzzy AHP and
fuzzy TOPSIS methods for facility location selection. Int J Adv
Manuf Technol 39:783–795

19. Liu B, Liu YK (2002) Expected value of fuzzy variable and
expected value models. IEEE Trans Fuzzy Syst 10:445–450

20. Liu B (2009) Theory and practice of uncertain programming, 3rd
edn. UTLAB

21. Zhou J, Liu B (2007) Modeling capacitated location-allocation
problem with fuzzy demands. Comput Ind Eng 53:454–468

Int J Adv Manuf Technol


	Developing a location–inventory model under fuzzy environment
	Abstract
	Introduction
	Literature review
	Basic definition
	Critical values


	Problem formulation
	The assumptions
	Developing the model considering deterministic environment
	Notation
	The model

	Formulating the location–inventory model under fuzzy environment

	Solution method and computational results
	Solution method
	Chromosome
	Initial population
	Crossover operator
	Modifier procedure
	Mutation operator

	A numerical example
	Sensitivity analysis
	Sensitivity analysis to cost of construction
	Analysis of sensitivity to demand parameter
	Sensitivity of solutions to 

	Performance analysis of proposed GA
	Performance analysis of GA for medium and large size


	Conclusion
	References




