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Abstract Aiming to minimize the average project dura-
tion, a discrete-event simulation (DES) approach with
multiple-comparison procedure is presented to solve the
stochastic resource-constrained project scheduling prob-
lem (SRCPSP). The simulation model of SRCPSP is
composed of a resource management model and a proj-
ect process model, where the resource management
model is used to administrate resources of the project,
and the project process model based on an extended-
directed-graph is proposed to describe the precedence
constraints and resource constraints in SRCPSP. A simplified
simulation strategy based on activity scanning method is used
in the simulation model to generate feasible schedules of the
problem. Amultiple-comparison procedure based on the com-
mon random numbers is adopted to compare the multiple
scheduling alternatives obtained from the stochastic simula-
tion model and provide more information to select the optimal
scheduling alternative. The cases are given to compare with
other methods for the same SRCPSP from literature and show
that the simulation tool by utilizing DES with a statistical
method improves the efficiency of simulation in stochastic
project planning.

Keywords Discrete-event simulation .Multiple-comparison
procedure . Common random numbers . Stochastic
resource-constrained project scheduling

1 Introduction

Resource-constrained project scheduling problem (RCPSP)
is an NP-hard problem and concerned with single-item or
small batch production where scarce resources have to be
allocated to dependent activities over time [1]. The models
in this area are rich, and many problems can be considered
as the type of RCPSP. For instance, the job-shop scheduling
problem (JSP) is a special case of RCPSP [2–4]. Existing
literature on this topic largely focuses on the deterministic
project scheduling problem with fixed activity durations
[5–10]. However, in many real-world applications, one or
more parameters of systems tend to be stochastic, such as
the arrive times and due dates of jobs in JSP [4], and the
customer demand, travel times, or a combination of these in
vehicle routing problems (VRP) [11]. Generally, stochastic
variables of known probability distributions are utilized to
model these parameters.

Similarly, in a real-world project, activities are often subject
to considerable uncertainty due to many different factors [12,
13], such as activities may take more or less time than origi-
nally estimated, resources may become unavailable, materials
may arrive behind schedule, workers may be absent, and
weather conditions may cause severe delays. This kind of
RCPSP with random activity durations belongs to stochastic
resource-constrained project scheduling problem (SRCPSP).
The activity durations in SRCPSP are not known in advance
and usually represented as random variables which can be
drawn from historical data or a probability distribution.

There are few studies on SRCPSP and most of them
concentrate on the optimal scheduling algorithms, such as
greedy randomized adaptive search procedure [13], branch-
and-bound [14], zero–one integer programming [15], tabu
search [16], constraint programming based approximate
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dynamic programming (CP-ADP) [17], priority-rule-based
methods and genetic algorithm [18, 19]. In the SRCPSP,
since the activity durations are randomly distributed (e.g.,
beta, uniform and normal distributions), the corresponding
project duration is also a random variable. Therefore, in
order to evaluate the stochastic output performances, Stork
[14], Golenko-Ginzburg and Gonik [15], and Tsai and
Gemmill [16] took a user-specified number (e.g., 100) of
repeating experiments for each feasible scheduling alterna-
tive obtained by their methods, and the alternative with the
minimal sample mean, i.e., minimal average project dura-
tion, was selected as the best solution. Some other sampling
techniques [13, 17–19] (e.g., Monte Carlo simulation) are
also used to obtain high-quality solution with the minimal
average project duration. All these algorithms can obtain
feasible or optimal solutions for SRCPSP. However, it is
difficult for them to model the stochastic and dynamic
aspects of the problem, especially when a project has more
activities and complicated constraints.

Discrete-event simulation (DES) as a powerful comput-
ing technique for understanding the behavior of systems can
be used to describe the dynamic and stochastic perspectives
of a project, and also help project managers understand the
project structure in a simple and convenient way, without
the need to build mathematical models. The uncertainty
characteristic of the project lends itself very well to simula-
tion applications [20]. Badiru [20] developed a computer
program, named STARC, to illustrate the effectiveness of
computer simulation analyses for project planning. And in
the use of simulation, the activity durations are modeled
using three time estimates (i.e., an optimistic time, the most
likely time, and a pessimistic time) and generated randomly
from a fitted beta probability distribution function. Reddy et
al. [21] developed a modeling and scheduling system which
coupled genetic algorithm with Petri nets to solve multi-
mode and multi-resource-constrained project scheduling.
But the randomicity of the activity durations which would
result in random performances is ignored in the proposed
method. Zhang et al. [22–24] combined DES with different
methods to solve deterministic, stochastic, and fuzzy con-
struction project scheduling problems. In the work of Zhang
et al. [23], the authors proposed a simulation–optimization
method integrated particle swarm optimization with DES to
determine the optimal resource combination for a construc-
tion operation. The activities that have the stochastic dura-
tions are defined in triangular probability distributions, and
a multiple-comparison procedure, namely MCP-MN, is
adopted to compare multiple resource combination alterna-
tives so as to select the best one which has the maximal
mean productivity.

When stochastic behaviors such as random activity dura-
tions are considered in the simulation model, the corresponding
output performances contain random variances [23]. So, special

statistical method is required to evaluate the output perform-
ances of different scheduling alternatives. Research in SRCPSP,
most literature exploits the fixed sample size to evaluate each
alternative, which cannot get satisfied solutions or results in a
lower efficiency. Therefore, a suitable sample size needs to be
determined to avoid a large amount of experiments which may
slow down the simulation efficiency.

There are two kinds of popular statistical methods in DES
[25]: ranking and selection (R&S) and multiple-comparison
procedures (MCPs). For R&S method, the goal is to
choose the best solution from among a set of competing
alternatives. For MCPs method, it can not only make a
decision, but can also identify the differences between
alternatives' output performances. The typical MCPs in-
clude: Rinott's procedure (procedure R) [26], Dudewicz
and Dalal's procedure (procedure DD) [27], Clark and
Yang's procedure (procedure CY) [28], as well as Nelson
and Matejcik's procedure (procedure NM) [29]. Among
these procedures, procedures R and DD adopt indepen-
dent random nunmbers (IRN) for simulation. While pro-
cedures CY and NM exploit common random numbers
(CRN) for simulation.

The multiple-comparison procedure MCP-MN used in
Zhang et al. [23] is a kind of MCPs based on IRN which
is easy to be implemented, and according to the authors the
simulation–optimization under MCP-MN is more effective
than the general simulation with regard to the number of
experiments needed to find out the final result. It is well
known that the CRN approach is a variance reduction tech-
nique which is frequently employed in system simulation,
and the use of CRN can reduce the total number of repli-
cations required to achieve the desired probability of correct
selection [30, 31]. For the MCPs using CRN, procedure CY
is a conservative procedure and does not make special
assumptions about the covariance induced by CRN, while
procedure NM is based on a structural assumption (sphericity)
for the covariance matrix that may or may not apply in
practice, so researches tend to be on the conservative side in
their computational requirements [32, 33].

In this paper, a simulation tool exploration discrete-event
stochastic method is proposed to solve stochastic resource-
constrained project scheduling problem. Firstly, an intuitive
graphical modeling method is used to describe the problem.
Then, a simplified simualtion strategy is exploited to imitate
the randomicity of activities and generate the scheduling
alternatives of the problem. At last, a multiple-comparison
procedure is adopted to rank the different scheduling alter-
natives. The main contribution of this paper includes two
aspects: (1) a discrete-event simulation tool is provided to
generate project scheduling alternatives satisfied with the
precedence constraints and resource constraints of SRCPSP;
(2) a multiple-comparison procedure (procedure CY) based
on CRN is exploited to compare the multiple scheduling
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alternatives obtained from the stochastic simulation so as to
select the best scheduling alternative with the minimal av-
erage project duration.

The paper is organized as follows. In the next section, we
describe the stochastic resource-constrained project sched-
uling problem. In Section 3, we introduce our simulation
procedure for generating stochastic resource-constrained
project scheduling alternatives. In Section 4, we illustrate
the procedure CY to compare multiple scheduling alterna-
tives generated from the stochastic simulation model. In
Section 5, we use two project instances to describe the
implementation of the simulation-based scheduling method-
ology and multiple alternatives comparisons based on pro-
cedure CY. A summary and some conclusions are given in
Section 6.

2 Problem statement

The SRCPSP can be stated as follows: a project consists of n
non-dummy activities and two dummy activities. The two
dummy activities with zero durations and resource require-
ments are used to represent the start and end of the project,
respectively. The non-dummy activities are subject to two
kinds of constraints. The first is precedence constraints, i.e.,
any activity cannot start before all of its predecessors have
been finished. The second is resource constraints, i.e., any
activity cannot start without satisfying its resource require-
ments. There are K renewable resource types, and the avail-
able amount of each resource k is Rk, k01,…, K. Each
activity i (i01, 2,…, n) has a duration time di which is a
random number drawn from historical data or a probability
distribution, a start time si and a finish time fi, and requires
rik units of resource k to be processed.

The aim of SRCPSP is to obtain the optimal scheduling
alternative, i.e., the feasible sequence of the n activities
which leads to the minimal average project duration with
the known precedence constraints and resource constraints.

When using DES to understand the behavior of system,
the objective and constraints of the system are replaced by
discrete-event simulation model; the decision variables are
the conditions the simulation is run under; and one or
several of the responses produced by the simulation model
is the system performance. In this paper, according to the
description of SRCPSP and the characteristics of DES, there
are three procedures for solving SRCPSP based on DES as
shown in Fig. 1.

In Fig. 1, the procedures of DES for SRCPSP are as follows:

1. Building simulation model: According to the analyses of
the problem, the simulation model of SRCPSP
based on graphical method is built to describe the
project scheduling problem.

2. Running simulation program: The information of simu-
lation model serve as the input of the simulation program.
Then running the simulation program based on the activity
scanning strategy, the feasible scheduling alternative of the
project is generated.

3. Analyzing simulation outputs: The responses produced
by the simulation model are analyzed based on the
multiple-comparison procedure so as to select the best
solution.

3 Simulation-based schedule generation for SRCPSP

3.1 The representation of simulation model for SRCPSP

1. Resource management model
In project management, a resource pool is a set of

resources available in the project, and the use of re-
source pool makes it easier to administrate the different
resources assigned to activities. In this paper, in order to
manage kinds of resources more effectively, a resource
management model is proposed, where many resource
pools are defined and the resources with the same type
are put in a same pool which is named after the resource
type. Each resource pool is described using a two-tuple
as follows:

P0<Type, Policy>, where Type is the type of
resources (e.g., human resource) in the resource
pool and is also the unique identification of the
resource pool and Policy is the allocation rule of
these resources (e.g., select activities randomly,
RAN) in this pool.

In addition, each resource in a resource pool is
defined using a three-tuple as follows:

R0<Name, Count, Available>, where Name is the
resource name and is also the unique identification
of the resource, Count is the total amount of the
resource, and Available is the state of resource (i.e.,
busy or idle).

Therefore, each particular resource in the resource
management model is represented by a combination
of (P, R), i.e., five-tuple<Type, Policy, Name, Count,
Available>.

Building 
simulation model

Based on graphical 
method

Based on activity 
scanning strategy

Based on 
multiple-comparison 

procedure

Running 
simulation program

Analyzing
simulation outputs

Input Output

The procedures of DES for SRCPSP

Fig. 1 The procedures of DES for SRCPSP
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2. Project process model
In general, the project process is depicted by an

activity-on-node (AON) network due to its easy and
visualization. Both Critical Path Method (CPM) and
Program Evaluation and Review Technique (PERT)
use this method to analyze the project. However, the
AON model only represents the activities and their
precedence constraints in the project, but ignores the
resource constraints of activities, which will only rarely
be the case in a real-world project. Therefore, an
extended-directed-graph (EDG) based on AON is pro-
posed to model the resource-constrained project pro-
cess. The EDG for SRCPSP can be represented as
EDG0(N, A), where N is the set of nodes, and A is the
set of directed arcs.

(a) Set N0{AEN, REN, DSN, DEN} is the set of node
types. There are four different types of nodes in
EDG, and each type is defined as follows:

& AEN0{ae1, ae2,…, aen} is the set of non-
dummy activity nodes, where n is the number
of non-dummy activities in the project.

& REN0{re1, re2,…, rem} is the set of resource
nodes, where m is the number of activities
which require resources.

& DSN0{ds} is the dummy start node represent-
ing the start of the project.

& DEN0{de} is the dummy end node meaning
the end of the project.

And the attributes of different types of
nodes are set as follows:

& ae0<ID_a, Name_a, Time_a, Description_a>,
where ID_a is the unique identification of ac-
tivity node, Name_a is the name of the node,
Time_a is the activity duration, and Descrip-
tion_a is the job description about the activity.

& re0<ID_r, Name_r, Type, Name, Require-
ment>, where ID_r is the unique identification
of resource node, Name_r is the name of the
node, Type is the resource type required by an
activity, Name is the resource name required by
an activity, and Requirement is the number of
resources assigned to an activity. Moreover, the
values of Type and Name are corresponding to
the definition of resource in the resource man-
agement model.

& ds0<ID_ds>, where ID_ds is the identification
of dummy start node.

& de0<ID_de>, where ID_de is the identification
of dummy end node.

(b) Set A0{ar1, ar2,…, arj} is the set of directed arcs
representing the relations between two nodes, where
j is the number of directed arcs in the EDG. The
attributes of directed arc is designed as follows:

ar0<ID_ar, SNID, ENID>, where ID_ar is
the identification of the directed arc; SNID0

<ID_ds>|<ID_a>is the start-node ID of the
directed arc; ENID0<ID_de> |< ID_a> |<
ID_r>is the end-node ID of the directed arc.

Based on the project resource management model and
process model described above, an example of SRCPSP
simulation model is built as shown in Fig. 2.

In Fig. 2, the resource management model contains
one resource pool, and in the pool it defines two avail-
able workers which belong to the type of human re-
source and are allocated using RAN policy. The project
process model includes five non-dummy activity nodes,
two resource nodes, and two dummy activities standing
for the start and end of the project, respectively. For the
non-dummy activities, A1 and A4 are the starting activ-
ities, while A2 and A5 are the ending activities; the
precedence relation among A1, A2, and A3 state that

A1

A5A3

A2

A4 R2
Attributes of Activity:
ID_a: 0104
Name_a: A4
Time_a:[5,8]
Description_a:install shell

Attributes of Resource:
ID_r: 0202
Name_r: R2
Type: human resource
Name: worker
Requirement: 1

R1

Dummy Start Node

Dummy End Node Activity Node 

Directed ArcResource NodeLegend

Attributes of Resource:
ID_r: 0201
Name_r: R1
Type: human resource
Name: worker
Requirement: 2

Resource management model:
P=<Type="human resource", Policy="RAN">
R=<Name="worker", Count="2", Available="idle">

Fig. 2 An example of SRCPSP
simulation model
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the parallel activities A2 and A3 can be activated and
started when A1 has been finished; while the relation
among A3, A4, and A5 indicate that A5 can be started
until the parallel activities A3 and A4 both have been
finished. In addition, A1 requires resource R1, while A4
needs R2. From the attributes definition of different
nodes, it can be known that A4 is an activity for
installing shell and its activity duration is a stochastic
number in the given interval [5, 8]; the resource R1 has
been defined two workers, and A4 needs one worker
defined in R2. However, the total amount of the work-
ers is two, so there is a resource competition between
A1 and A4 and will be solved using the RAN policy.

3.2 Data structure of simulation model

In order to provide an easy and executable form for computer
simulation, the resource management model and project pro-
cess model should converted to another forms which can be
implemented on computer. In this paper, the Extensible Mark-
up Language (XML) document is used to represent and store
the resource management model. In addition, two kinds of
matrices are used to store the information of project process
model. One is activity dependency matrix (ADM), which is
used to express the activities and precedence constraints. The
other is activity resource matrix (ARM), which is adopted to
describe the activities and resource constraints.

The construction process of XML document corresponding
to the resource management model is as follows:

1. First, build the root node (i.e., Proot) of the document,
then take each resource pool (e.g., P) in the resource
management model as its sub-node and add the resource
type and allocation policy (i.e., <Type, Policy>) as the
attributes of the sub-node.

2. Then, for each sub-node (e.g., P), take each resource in
this resource pool as its sub-node and add the resource
information (i.e., <Name, Count, Available>) as the
attributes of the sub-node.

Therefore, the XML document corresponding to the re-
source management model in Fig. 2 is shown below.

<?xml version="1.0" encoding="GB2312"?> 
<Proot> 
 <P Type="human resource" Policy ="RAN" > 

       <R Name="worker" Count="2" Available="idle" />  
    </P> 
 </Proot> 

The construction process of ADM is the mapping process
of EDG to ADM. The definition of ADM is as follows:

1. The number of ADM rows and columns are both equal
to the number of activity nodes in EDG.

2. The element aij of ADM is designed as follows:

aij ¼
1; if activity j is a direct precedence constraint to activity i

0; otherwise

(

Hence, the ADM corresponding to the EDG in Fig. 2 is
shown below.

A1 A2 A3 A4 A5

ADM ¼

A1
A2
A3
A4
A5

0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 1 0

266664
377775

The construction process of ARM is the mapping process
of EDG to ARM. The definition of ARM is as follows:

1. The number of ARM rows is equal to the number of
resource nodes in EDG, and the number of ARM col-
umns is equal to the number of activity nodes in EDG.

2. The element bij of ARM is designed as follows:

bij ¼
1; if activity j needs resource i

0; otherwise:

�
So, the ARM corresponding to the EDG in Fig. 2 is

shown below.

A1 A2 A3 A4 A5

ARM ¼ R1
R2

1 0 0 0 0
0 0 0 1 0

� �

3.3 A simplified simulation strategy

Simulation model can describe the SRCPSP, but cannot give
a feasible solution to reflect the execution process of a real-
world project. Therefore, a suitable simulation strategy is
required to control the execution of simulation model so as
to generate scheduling alternatives for SRCPSP.

In DES, the most common simulation strategies include
event scheduling (ES), activity scanning (AS), and process
interaction (PI) [34]. ES is often used to enhance PI and AS,
and AS is particularly suitable to systems with interdepen-
dent components subject to complex activation conditions
where many resources with distinct properties may collabo-
rate according to highly dynamic rules [34, 35]. According
to the characteristics of SRCPSP, a simplified simulation
strategy based on AS is applied to the simulation model.

The simplified AS views the system as the composition
of activities which are subject to specified activation con-
ditions. During simulation advancement, the system scans
the unscheduled activities and executes the activities that are
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satisfied with the conditions (i.e., precedence constraints
and resource constraints). Therefore, with the known prece-
dence constraints stored in ADM and resource constraints
stored in ARM as well as the information in resource man-
agement model, a simplified AS simulation strategy is pre-
sented in Fig. 3 and detailed as follows:

1. Firstly, the current time (m_CT) is initialized as 0 and the
records for end events (m_EEL) are initialized as empty,

while the records for scanned activities (m_SL) are ini-
tialized as all the unscheduled activities in the project.

2. Check if there is any end event in m_EEL happening at
m_CT, if No, go to next step; if Yes, do the following
operations: release resources occupied by the activity
that the current end event points to and update the
available amount of the resources; delete the current
end event from m_EEL.

3. Scan m_SL. Check the precedence constraints of activ-
ities in m_SL, and mark the activities that are satisfied
with the precedence constraints stored in ADM.

4. Then, according to the resource allocation policy (e.g.,
minimum slack, MINSLK) defined in the resource man-
agement model, determine the priorities of these marked
activities.

5. According to the execution priorities, check the resource
constraints of these marked activities based on the infor-
mation recorded in ARM. If any activity is satisfied with
resource constraints, then execute this activity, including:
update the available amount of resources occupied by this
activity; get the activity duration di and compute the activ-
ity end event time (fi0m_CT+di), if it is a stochastic
duration, then take the expected duration as the current
activity duration di; add activity end event to m_EEL and
delete the activity from m_SL.

6. When all of the marked activities in m_SL have been
scanned, the m_CT is advanced to the earliest end event
time in m_EEL, and then return to step 2. This iterative
process will be continued until the termination of sim-
ulation. There are two termination signals: (1) all activ-
ities have been finished and (2) the specified simulation
cycle times are exceeded. After the simulation, a num-
ber of scheduling alternatives will be generated which
are satisfied with the precedence constraints and re-
source constraints of the SRCPSP.

4 Analyses of simulation outputs

4.1 Evaluation of scheduling alternative

Since the random activity durations are considered in the
simulation model, the project duration resulted from the
simulation is also a random variable. Therefore, given a
particular feasible sequence generated by the simulation,
the expected project duration should be estimated.

Suppose PS is a particular feasible sequence which rep-
resents the priorities of activities during the scheduling; DSn
is the set of activities which have been scheduled; eRkt is the
available amount of renewable resource k at time t, andeRkt ¼ Rk �

P
i2AðtÞ rik , (k01,2,…,K, and A(t) is the set of

activities being processed at time t). The heuristic procedure

Start

Initialize current time (m_CT),
end event list (m_EEL), 

scan activity list (m_SL), 
and others

Scan end events that 
happen at m_CT from 

m_EEL

Is there  any end event 
happening at m_CT

Have activities 
met  resource constraints 

stored  in ARM

Yes

No

Satisfy the
termination signals

Stop

Yes

Scan is over

Yes

Advance m_CT to the earliest 
end event time in m_EEL

No

Update the available 
amount of resources that 

the current activity 
requires

Delete the current
end event from m_EEL

Get the activity duration 
di and compute the end 

event time (fi=m_CT+di)

Release resources and 
update the available 
amount of resources

Output results

No

Yes

No

According to the resource
allocation policy, 

determine the priorities of 
these marked activities

Scan activities from m_SL, 
mark the activities that are 
satisfied with precedence 

constraints  stored  in ADM 

Add activity end event  
to m_EEL and delete this 

activity from m_SL

Fig. 3 A simplified AS simulation strategy for simulation model
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to calculate the project duration of scheduling alternative PS
is described as follows.

Heuristic for the calculation of project duration:

1. Initialize n01, DS10Ø, S0PS;
2. While there are unscheduled activities do:

Step 1: According to the sequence of activities in S, select
the activity i with the highest priority from S, and
one activity duration di for the activity i is drawn
randomly from the given distribution;

Step 2: Get the latest finish time of predecessor activi-
ties related to activity i from DSn, and take it as
the earliest possible start time ESi of activity i;

Step 3: Calculate the earliest start time of activity i
when it both meets the precedence con-
straints and resource constraints, i.e., si ¼
min tjESi �f t; rik � eRkt :; t ¼ t; . . . ; t þ di �
1; t ¼ 0; 1; . . .g;

Step 4: Calculate the finish time of activity i, i.e., fi ¼
si þ di;

Step 5: Remove activity i from S and update theDSnþ1 ¼
DSn [ if g;

Step 6: Set n0n+1;
3. End while

When the procedure is over, the project duration (i.e., fn) of
the feasible sequence PS is calculated. Further, when the
heuristic for calculation of project duration is repeated a
number of times with different sets of activity durations, and
then the average project duration is reported as the expected
project duration for the particular feasible sequence.

4.2 Comparison and selection of multiple scheduling
alternatives

When running the simulation program with different kinds
of resource allocation policies, a number of scheduling
alternatives will be generated, and the aim of SRCPSP is
to obtain the scheduling alternative with the minimal
expected project duration. Therefore, in order to compare
the multiple scheduling alternatives with random output
performances and select the best one, the procedure CY
exploiting CRN is used for comparing the multiple alternatives
in this paper.

The following notation will be used throughout the pro-
cedure CY: i01, 2,…, k, where k means the total number of
alternatives and θi is the alternative i; μi is the expected
output performance of θi; Yi. denotes the overall sample of θi
and Y i: is the sample mean; Yir represents the rth independent
and identically distributed (i.i.d.) simulation output (i.e.,
replication) from θi.

For procedure CY, when use of CRN, the rth replication
of each alternative will use the same random numbers, then

the rth outputs of all alternatives Y.r0{Y1r, Y2r,…, Ykr} will
be not independent, but correlated. We know that the co-
variance matrix of k random alternatives is as follows:

X
¼

σ11 σ12 � � � σ1k

σ21 σ22 � � � σ2k

. .
.

σk1 σk2 � � � σkk

0BBB@
1CCCA

Where бij0Cov(θi-θj)0E{[θi-E(θi)][θj-E(θj)]}, which repre-
sents the covariance of alternatives i and j (i, j01, 2,…, k).
The goal of CRN is to generate positive correlation between
alternatives i and j, and force бij>0. For Var(θi-θj)0Var(θi)+
Var(θj)-2бij, only if бij>0, the variance of alternatives gen-
erated by CRN will be smaller than the variance by IRN.
Therefore, the use of CRN can sharpen the comparison of
two or more alternatives. In the case of ranking and selection,
“sharpening” means reducing the total number of replications
required to achieve the desired probability of correct selection
[31].

The procedure CY under CRN for comparing multiple
scheduling alternatives contains the following steps:

1. Specify the confidence level 1-α, indifference zone δ,
number of feasible alternatives k, and the common initial
sample size, i.e., the number of experiments n0. Let t ¼
t1� a= k�1ð Þ½ �;n0�1 , which is the (1−[α/(k−1)])-quantile of

the t distribution with n0−1 degree of freedom.
2. Make n0 runs of simulation experiments for each alter-

native i (i01, 2,…, k), then the sample Yi1; Yi2; . . . ; Yin0
from each of the k alternatives can be obtained by using
CRN across alternatives. The application of CRN to
simulate the random out performances of alternatives
is designed as follows:

Step 1: Select one of the feasible scheduling alternative i
from the k alternatives.

Step 2: Calculate the project duration of this particular
schedule using the heuristic procedure pre-
sented above (in section 4.1). Simultaneously,
record the random vector of activity durations
during the calculation, i.e., D0(d1, d2,…, dn).

Step 3: Repeat the step 2 n0 times, then the sample Yir
(r01, 2,…, n0) from the alternative i can be
obtained, and the random time vectors Dr(r01,
2,…, n0) are recorded and used as CRN.

Step 4: Then all of the other feasible schedules are
simulated using the same common random
activity durations Dr(r01, 2,…, n0).

3. Calculate the sample variances of the differences

Sij
2 ¼ 1

n0�1

Pn0
r¼1

Yir � Yjr � Y i� � Y j�
� �� �2

, for all i≠ j,

i01, 2,…, k, and Y i� ¼ 1
n0

Pn0
r¼1

Yir.
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4. Calculate the second-stage sample size or number of
experiments

N ¼ max n0;max
j 6¼i

tSij=d
� �2� �

,N takes an integer value.

5. Take N−n0 additional simulation experiments for each
alternative i (i01, 2,…, k) by using CRN across
alternatives.

6. Calculate the overall sample means

Y i� ¼ 1
N

PN
r¼1

Yir, for i01, 2,…, k.

7. Select the alternative with the minimal Y i� as the best.
8. Simultaneously form the multiple comparisons with the

best (MCB) confidence intervals

μi�min
j6¼i

μj 2 "Li ; "
H
i

� 	¼ min 0; Y i� �min
j6¼i

Y j��

�

dÞ;

max 0; Y i� �min
j6¼i

Y j� þ d


 ��, for i01, 2,…, k.

If the expected output performance (i.e., μi) smaller the
alternative is better, the MCB confidence intervals bound
the difference between the performance of each alternative
and the best of the others. For example, if μi �min

j6¼i
μj 2

"Li ; "
H
i

� 	
is totally to the left of zero, i.e., "Hi < 0, it means

that μi �min
j6¼i

μj < 0 without a doubt and alternative i is

better than alternative j; if μi �min
j 6¼i

μj 2 "Li ; "
H
i

� 	
is totally

to the right of zero, i.e., "Li > 0, it means that μi �min
j6¼i

μj > 0

without a doubt and alternative i is worse than alternative j; if
μi �min

j 6¼i
μj 2 "Li ; "

H
i

� 	
contains zero, i.e., "Li < 0 and "Hi > 0,

it means that there is no difference between alternative i and
alternative j according to the current statistical data.

If the alternative i is expected to have the minimal output
performance μi, then μi �min

j6¼i
μj i ¼ 1; . . . ; kð Þ indicates the

true difference between the best alternative and the second.
With the user-specified indifference zone δ and confidence
level 1-α, it means that if we use the procedure CY, then the
alternative with the minimal performance estimate μi will be
selected as the best alternative, and the probability of
correct selection is at least 1-α when the performance of
the best is at least δ smaller than the second best,

i.e.,P CSf g ¼ P μi �min
j 6¼i

μj � �d


 �
� 1� a.

5 Case studies and discussion

5.1 Case 1

The simulation tool for SRCPSP has been implemented with
java. An example from Patterson set is used to demonstrate

the effectiveness of the simulation method proposed in this
paper, and it has also been used by Tsai and Gemmill [16] to
illustrate the solution found using tabu search. This project
has 11 non-dummy activities, and 3 types of renewable
resources (resources A, B, and C) with total amount of 6,
7, 6, respectively. The sample project is a deterministic
project, and Tsai and Gemmill solve it at first using their
method. Then they modify the sample to make it stochastic,
where they choose a beta distribution with the parameters
(α, β) to model activity durations. Three time estimates (a,
m, b), i.e., (an optimistic time estimate, the most likely time
estimate, and a pessimistic time estimate), used in PERT are
utilized to calculate the parameters for the beta distribution.
For the three time estimates (a, m, b) of each activity, a is set
to 0.8 times the deterministic activity duration, m is equal to
the deterministic activity duration, and b is set to 1.5 times
the deterministic activity duration. This implies that α≈
2.595, β≈4.671. The three time estimates and resource
requirements of each activity are in Table 1.

5.1.1 Schedule generation based on simulation

1. Application of simulation approach to the deterministic
problem

According to the project network from [16], the
project simulation model including resource manage-
ment model and the EDG process model is shown in
Fig. 4.

In Fig.4a, the minimum slack first (MINSLK) re-
source allocation policy defined in the resource man-
agement model is also exploited by Tsai and Gemmill
[16] to find a starting feasible sequence for tabu search,
and the project duration for the sequence is 23 deter-
mined using their procedure. When using the same
policy, the scheduling results generated by our simula-
tion method are shown in Table 2. It can be seen that the
feasible sequence with the MINSLK policy is [1, 2, 3, 7,

Table 1 The three time
estimates and resource
requirements of each
activity [16]

Activity Three time
estimate

Resource
requirements

1 2.4, 3, 4.5 3, 2, 1

2 4, 5, 7.5 2, 4, 2

3 4.8, 6, 9 3, 1, 2

4 1.6, 2, 3 4, 3, 1

5 2.4, 3, 4.5 2, 0, 3

6 2.4, 3, 4.5 1, 1, 1

7 3.2, 4, 6 3, 1, 1

8 4, 5, 7.5 2, 2, 2

9 3.2, 4, 6 3, 2, 3

10 1.6, 2, 3 4, 1, 0

11 2.4, 3, 4.5 5, 4, 2
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9, 8, 4, 5, 6, 10, 11], and the project duration for this
sequence is 23 which is same to the result of Tsai and
Gemmill.

2. Application of simulation approach to the stochastic
problem

For the stochastic version of the sample project in
Fig. 4, Tsai and Gemmill [16] generate a feasible se-
quence by utilizing the expected duration of each activ-
ity and the MINSLK rule, and the expected project
duration of the particular feasible sequence is 24.346
using a sample size of 100 with their method. When
using the same resource allocation policy and sample
size, our simulation method is applied to this stochastic
sample project, and the results are shown in Table 3. It is
obvious that the feasible sequence is [1, 2, 3, 7, 9, 8, 4,
5, 6, 10, 11], and the expected project duration is 24.242
which is nearly identical to 24.346.

From this example and the experimental results shown
in this section, one can easily see that the AS-based

simulation approach proposed in this paper is capable
of solving the deterministic and stochastic project sched-
uling problem.

5.1.2 Scheduling alternatives comparisons

In order to describe the multiple alternatives compari-
sons in the stochastic project, we exploit five general
resource allocation policies to generate five different
scheduling alternatives for evaluation and comparison.
The five rules chosen from literature [20, 36] are the
MINSLK, most successor operations (MSP), shortest
activity duration (SAD), great resource allocation factor
(RAF) and minimum late finish time (MINLFT). The
feasible sequences obtained by simulation with the dif-
ferent policies are shown as follows: θ10[1, 2, 3, 7, 9,
8, 4, 5, 6, 10, 11] with MINSLK; θ20[1, 2, 4, 3, 5, 6,
7, 9, 8, 10, 11] with MSP; θ30[1, 2, 4, 5, 6, 7, 3, 8, 9,
10, 11] with SAD; θ40[1, 2, 4, 5, 7, 6, 3, 8, 9, 10, 11]
with RAF; and θ50[1, 2, 3, 7, 4, 8, 9, 6, 5, 10, 11]
with MINLFT. From literature [16], the best feasible
sequence is [2, 1, 4, 3, 5, 7, 9, 8, 10, 6, 11] with an
average project duration of 21.706 determined using
tabu search.

(b) EDG process model 

(a) Resource management model

P=<Type="Renewable Resource", Policy ="MINSLK">
R1=<Name="A",Count="6",Available="idle">
R2=<Name="B",Count="7",Available="idle">
R3=<Name="C",Count="6",Available="idle">

Fig. 4 Project simulation model. a Resource management model. b
EDG process model

Table 3 The average duration of the sample project for the schedule
determined using simulation

Activity Mean start time Mean duration
time

Mean finish time

1 0 3.250 3.250

2 0 5.281 5.281

3 3.250 6.272 9.521

7 5.281 4.193 9.473

9 9.521 4.173 13.694

8 9.937 5.356 15.293

4 13.694 2.124 15.818

5 15.818 3.179 18.998

6 15.818 3.125 18.943

10 18.998 2.098 21.095

11 21.095 3.147 24.242

Table 4 Comparison results generated by procedure CY

Alternative
θi

Sample
size Ni

Y i� Y i� �min
j 6¼i

Y j� MCB
interval

1 10 23.874 2.509 [0, 3.509]

2 10 21.365 −1.751 [−2.751, 0]

3 10 24.141 2.776 [0, 3.776]

4 10 24.179 2.814 [0, 3.814]

5 10 23.116 1.751 [0, 2.751]

Table 2 Scheduling results generated by the simulation method

Activity Start time Duration time Finish time

1 0 3 3

2 0 5 5

3 3 6 9

7 5 4 9

9 9 4 13

8 9 5 14

4 13 2 15

5 15 3 18

6 15 3 18

10 18 2 20

11 20 3 23
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When using procedure CY to compare the five alterna-
tives, the parameters are set as follows: k05, δ01(1 day),
n0010, 1−α00.95, and t02.685. The comparison results
generated by procedure CY are shown in Table 4. It is
obvious that procedure CY will select alternative 2 as the
best solution with the minimal sample mean 21.365 which is
close to the optimal solution 21.706 determined using tabu

search. The total number of replications (i.e.,
Pk
i¼1

Ni) is 50 by

using CRN across alternatives, and no additional experiments
are required. The MCB confidence intervals indicate that the
alternatives 1, 3, 4, 5 are inferior to alternative 2, because the
lower endpoints of their MCB confidence intervals are all 0.

To illustrate the impact of CRN, the covariance matrix of
these five alternatives is obtained as follows. It can be seen
that all бij in the covariance matrix are positive, which
means that the CRN is effective to induce positive correla-
tion across alternatives.

Σ ¼

0:548 0:261 0:545 0:499 0:032
0:261 0:416 0:366 0:359 0:186
0:545 0:366 0:671 0:622 0:100
0:499 0:359 0:622 0:584 0:116
0:032 0:186 0:100 0:116 0:172

0BBBB@
1CCCCA

5.1.3 Comparisons with other statistical methods

In order to demonstrate that the procedure CY under CRN
reduce the number of replications required to attain the same
confidence level 1-α and whisker length δ, procedure R
under IRN is used to compare the same five alternatives.
For procedure R, k05, δ01, n0010, 1-α00.95, and h03.692
[29], and the comparison results are shown in Table 5.

From Table 5, it can be seen that procedure R also
selects alternative 2 as the best solution (21.615), but it
requires 85 total replications which are more than the
replications of procedure CY. In procedures CY and R,
the sample sizes are a function of the variances of the
alternatives; the larger the variance the greater the num-
ber of replications. Because CRN can reduce the varian-
ces whenever CRN is effective, the procedure CY that
exploits CRN should need significantly fewer total rep-
lications than procedure R to attain the same confidence

level and whisker length, especially when a project is
larger and more complicated.

For the same example, Tsai and Gemmill [16] use a general
statistical method, that is, each alternative is repeated 100 times
with IRN and the average project duration for the feasible
sequence is reported as the expected project duration. This
statistical method with the same number of replications is also
exploited in this paper, and the comparison results are shown in
Table 6. It can be observed that the general method also selects
alternative 2 as the best solution, but it requires 500 total
replications which are more than the replications of procedures
CY and R.

5.2 Case 2

A more complicated case from literature [15] is also studied
to demonstrate the effectiveness of the stochastic simulation
method based on CRN for analyzing the larger projects.
This project has 36 activities and a single renewable re-
source with total amount of 50. We assume that the duration
of each activity is subject to beta distribution with parame-
ters (α02, β03) and limited in a given interval [a, b]. The
beta distribution is also considered by Golenko-Ginzburg
and Gonik [15]. They do not give a feasible scheduling
alternative, but only report that the minimal average project
duration is 433.88 determined by a heuristic algorithm.

In our study, five alternatives generated randomly by AS-
based simulation with RAN (i.e., select activities randomly)
resource allocation rule are selected for comparison. For the
procedures CY and R, set k05, δ05 (5 days), n0010, and 1
−α00.95. For the general statistical method, each alterna-
tive is repeated 100 independent simulation runs. The one
with the minimal sample mean is also selected as the best
alternative. The comparison results of procedure CY,

Table 5 Comparison results generated by procedure R

Alternative
θi

Sample
size Ni

Y i� Y i� �min
j 6¼i

Y j� MCB
interval

1 10 23.874 2.259 [0, 3.259]

2 21 21.615 −2.157 [−3.157, 0]

3 16 24.575 2.960 [0, 3.960]

4 22 24.471 2.856 [0, 3.856]

5 16 23.772 2.157 [0, 3.157]

Table 6 Comparison results generated by general method

Alternative
θi

Sample
size Ni

Y i� Y i� �min
j 6¼i

Y j� MCB
interval

1 100 24.242 2.421 [0, 3.421]

2 100 21.821 −2.012 [−3.012, 0]

3 100 24.395 2.574 [0, 3.574]

4 100 24.645 2.824 [0, 3.824]

5 100 23.833 2.012 [0, 3.012]

Table 7 The comparison results of different statistical methods

Statistical methods Sample size Ni Best alternative Y i�

Procedure CY 125 θ1 430.836

Procedure R 265 θ1 431.533

General method 500 θ1 433.296
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procedure R and the general statistical method for the five
alternatives are shown in Table 7. It can been observed that the
three methods all select the same alternative (here, θ101, 5, 3,
14, 12, 2, 25, 4, 24, 7, 16, 6, 11, 23, 8, 26, 9, 10, 15, 28, 31, 32,
13, 30, 18, 17, 20, 21, 19, 34, 22, 33, 27, 29, 35, 36]) as the
best solution. But procedure CY can generate the minimum
average project duration (i.e., 430.836) and need the fewest
number of replications (i.e., 125), while the general method
requires the most number of replications (i.e., 500).

From the comparisons among the three statistical methods
for the same SRCPSP, it can be seen that procedure CY using
CRN is more effective than the other two methods using IRN
considering the solution quality and the simulation efficiency.
In addition, procedures CY and R can avoid a large amount of
experiments in contrast with the general method.

6 Conclusions

A simulation-based method is proposed for solving the
SRCPSP in order to select the best project scheduling
alternative.

1. A resource management model is proposed to adminis-
trate all kinds of resources in the project and an extend-
directed-graph based on the AON network is used to
model the project process with precedence constraints
and resource constraints. A simplified activity scanning
strategy is adopted to generate the feasible schedules for
SRCPSP. The developed simulation tool can help project
engineers generate the stochastic resource-constrained
project schedules conveniently and quickly.

2. A statistics method, i.e., multiple-comparison proce-
dure, is used to carry out the comparisons of mul-
tiple scheduling alternatives with random output
performances that result from the stochastic behavior
of the simulation model. The MCB confidence inter-
vals provided by the procedure CY enable the ana-
lyst to select the best scheduling alternative and
gain insight about the best one comparison to the
rest of other alternatives.

3. The experimental analyses demonstrate the effective-
ness of the proposed method considering the required
number of replications and the solution quality in con-
trast with other methods.

Currently, the method in this paper only considers the
priority-rule-based scheduling policies to solve SRCPSP, the
simulation integrated with other heuristic methods as well as
multiple activity-execution modes are not included, and will
be our further work.
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