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Abstract As an increasing number of manufacturers are
beginning to realize the importance of maintaining
throughput, many maintenance models have been devel-
oped to enable machines to achieve near-zero down-
time. However, previous maintenance models usually
ignore machine’s deterioration process. Therefore, this
paper develops a novel data-driven machinery prognos-
tic approach for machine performance assessment and
prediction. With this prognostic information, a predic-
tive maintenance model is proposed for a repairable
deteriorating machine. As machine performance can be
assessed, once it reaches the maintenance threshold, a
maintenance operation is performed to restore the ma-
chine. Moreover, an operational cost is introduced to
meet real manufacturing process. In this predictive
maintenance model, the optimal maintenance threshold
and maintenance cycle number are obtained with the
aim to minimize the long-term average cost. Finally, a
case study is presented. The computational results show
the efficiency of this proposed predictive maintenance
model.

Keywords Predictive maintenance . Prognostics .

Assessment . Prediction . Optimization

1 Introduction

In manufacturing, machines suffer increasing wear with
usage and age as deterioration process, which causes low
reliability and high operational cost [1]. Machine failures
usually make huge economic losses. Hence, maintenance
management as an important part in manufacturing systems
has been widely used to keep machines in good operation to
decrease failures and reduce high operational cost and
breakdown cost [2]. Many researchers have studied on a
rich variety of maintenance models.

Since 1960s, the analysis and modeling of maintenance
operations have aroused the interests from researchers. Barlow
andHunter first proposed a simple periodic replacement model
considering minimal repair, in which minimal repair was per-
formed immediately after machine failures to restore the ma-
chine to its prior state before failures [3]. Based on this time-
based maintenance model, a lot of scheduled maintenance
models that predetermine fixed time intervals to performmain-
tenance operations (i.e., machine’s unavailable periods are
known in advance) have been developed. For example,
Khandelwal et al. studied an application of periodic mainte-
nancemodel for a machine [4]. Then, Yak et al. used a periodic
maintenance model to achieve the reliability requirements for a
fault-tolerant computer system [5]. By comparing with failure-
based maintenance models, scheduled maintenance models
show that they are more positive and efficient [6]. However,
how to decide maintenance interval is a crucial work [7, 8]. If
the maintenance interval is too long, although it can decrease
maintenance operations so as to reduce maintenance cost,
machine reliability will be low and more failures will occur.
This leads to higher breakdown cost. If the maintenance inter-
val is too short, although the machine remains in good opera-
tion condition, maintenance cost will be much higher. Hence,
neither too long nor too short maintenance interval is suitable
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for maintenance models due to economic loss [9]. If mainte-
nance operations could be well planned according tomachine’s
condition, much more resources would be saved. Machine’s
condition should thus be known ahead to help arrange flex-
ible maintenance intervals for appropriate maintenance
operations. Based on this scheme, preventive mainte-
nance is studied for the optimization of those cases in
which maintenance operation is controllable [10–12].
Although now there is some research on preventive mainte-
nance models, most of them involved the use of common
function distributions to describe machine degradation, which
seems unpractical [13, 14].

Therefore, it becomes essential to develop good mainte-
nance planning based on machine’s real deterioration process.
With the development of complex manufacturing process,
condition-based maintenance which is a kind of maintenance
programs that recommends maintenance operations based on
machine’s condition is being implemented [15]. Condition-
based maintenance attempts to avoid unnecessary mainte-
nance tasks by performing operations only when there is
evidence of abnormal behaviors of the machine, which
requires machine’s condition information. In recent years,
with the applications of embedded agent techniques and
tether-free techniques [16], it is possible to monitor machine’s
condition information continuously. However, most of avail-
able condition-based maintenance research only set several
machine’s failed cases, then identify current machine’s condi-
tion whether belonging to those cases. Obviously, this kind of
condition-based maintenance ignores machine degradation,
which conducts the research on predictive maintenance mod-
els with machinery prognostic information nowadays. Predic-
tive maintenance is a positive and useful condition-based
maintenance methodology that machine’s condition can be
estimated and predicted through continuous monitoring [17].
As machine’s performance can be obtained, it is feasible for
predictive maintenance to determine the required maintenance
operations prior to any predicted failure, which can be proved
to greatly improve the machine safety [18].

Through reviewing previous literature research about
maintenance models, it can be found that maintenance models
are greatly improved and developed. Comparing with the
early failure-based maintenance models, time-based mainte-
nance models show that they are more positive and efficient
because this kind of scheduled maintenance models predeter-
mine fixed maintenance time intervals to reduce machine
breakdowns. However, as time-based maintenance models
do not consider machine’s condition which should be an
important issue for performing maintenance operations, pre-
ventive maintenance models are developed in which
machine’s condition is known ahead and maintenance oper-
ations are controllable. Later, because most of preventive
maintenance models used common function distributions to
describe machine degradation, they cannot satisfy real

manufacturing processes. Based on this scheme, condition-
based maintenance which is a kind of maintenance programs
that recommends maintenance operations based on machine’s
condition is being implemented. However, most of available
condition-based maintenance models only set several
machine’s failed cases, which ignores machine deterioration
process. Hence, in order to determine the required mainte-
nance operations prior to any predicted failure, a positive and
useful predictive maintenance methodology with machinery
prognostic information is researched to estimate and predict
machine’s performance through continuous monitoring,
which improves the machine safety greatly.

Thus, by comparing previous relevant maintenance re-
search, this paper is devoted to propose a predictive main-
tenance model to arrange the maintenance scheduling for a
repairable deteriorating machine with the aim to minimize
the long-term average cost. By applying the developed
novel data-driven machinery prognostic approach in this
paper, machine’s performance (i.e., machine’s health index
H) can be estimated and predicted. Whenever machine’s
health index reaches a maintenance threshold Hs, a predic-
tive maintenance operation is performed to restore the ma-
chine. Once it is the Nth time for the machine to reach the
maintenance threshold Hs, the machine should be replaced
to be “as good as new.” In this predictive maintenance
model, the optimal machine’s maintenance threshold H�

s

and predictive maintenance cycles number N* are deter-
mined under the criterion of minimization of the long-term
average cost in machine’s residual life. Thus, in this paper, a
predictive maintenance H�

s ;N
�� �

model with a data-driven
machinery prognostic approach is proposed to search good
maintenance scheduling for a repairable deteriorating ma-
chine. Moreover, in order to construct a more reasonable
maintenance model, an operational cost is introduced to
be variant according to machine’s condition and its
maintenance process.

The rest of this paper is structured as follows: Section 2
gives the development of this proposed predictive mainte-
nance model. Section 3 describes the problem description of
this study. Section 4 presents a novel data-driven machinery
prognostic approach for machine performance assessment
and prediction. Then, Section 5 provides the mathematical
framework of predictive maintenance optimization model.
In Section 6, a case study is demonstrated, and the compu-
tational results are discussed. Finally, Section 7 gives the
conclusions and future work of this paper.

2 Development of this proposed predictive maintenance
model

Comparing with the maintenance models available today,
this study tries to develop a predictive maintenance model
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focused on the following parts in order to meet more
practical situations:

1. In reality, machines suffer increasing wear with in-
creased age and usage due to machine degradation,
which causes low reliability [19]. In previous mainte-
nance models, machine’s deteriorating process is usual-
ly ignored. They just pre-design fixed maintenance
intervals to perform maintenance operations, or com-
pare current machine’s condition with bad cases to
decide whether maintenance operations are required. It
is obvious that machine’s condition and its deteriorating
process should be known for arranging suitable mainte-
nance operations. Hence, in order to meet practical
situations, this study develops a machinery prognostic
approach and considers machine’s deterioration process
to support maintenance planning. In this proposed pre-
dictive maintenance model, maintenance intervals can
be well controllable, and the suitable maintenance
threshold and maintenance cycles number can be solved
with the aim of minimizing long-term average cost.

2. As this predictive maintenance model is studied with the
aim of minimizing the long-term average cost, it is nec-
essary to discuss related cost factors for the cost objective
function [20]. Although researchers have provided many
maintenance models considering a maintenance cost, few
of them consider an operational cost. Generally, an oper-
ational cost is used to describe the cost occurred during
the operating process [21, 22]. However, few researchers
have focused on cost analysis about the operational cost
and moreover defined it as an invariant value. In real
manufacturing process, a machine becomes weak and
hard to operate after a long time operation; hence, the
operational cost should be higher. Once machine’s condi-
tion gets worse, it may be not an economical way to
perform maintenance operations only as the operational
cost becomes extremely high [23, 24]. When involved in
such situation, replacing the machine will be more eco-
nomical and practical. Therefore, in order to well con-
struct the predictive maintenance model, an operational
cost is considered in this paper. Moreover, it is defined to
be variant with usage and maintenance operations. By
adding this operational cost, this predictive maintenance
model could meet more practical situations.

3. For a repairable machine, maintenance operations can
restore the machine. However, if the maintenance model
is constructed without the limit of maintenance operations,
one issue appears. The issue is if a maintenance cost is low
enough, the maintenance cycles number N solved by
academic cost objective function will be an infinite value,
which is impossible in reality. In real manufacturing pro-
cess, a machine cannot be performed by maintenance
operations all along. That is to say, maintenance operations

cannot be performed without any restriction because there
will never be an infinite number ofmaintenance operations
in finite time [25, 26]. Hence, in order to avoid the situa-
tion of “no replacement but infinite number of mainte-
nance operations” caused by academic cost objective
functions, this study has taken an upper bound of mainte-
nance cycles number to be the restriction for cost objective
function in proposed predictive maintenance model.

With these above-mentioned considerations, this study tries to
develop a predictive maintenance model with machinery
prognostic information for a repairable deteriorating machine
to bridge the gaps between theory and practical situations.

3 Problem description

This paper studies a predictive maintenance model for a
repairable deteriorating machine with its machinery prognos-
tic information. In this study, machine’s condition obtained
from the original on-line collected data is used to estimate
machine’s health index (i.e., the initial input parameter about
machine’s condition in this predictive maintenance model is
machine’s health index H). It is supposed that once machine’s
health index reaches the maintenance threshold Hs, scheduled
predictive maintenance operations should be performed. The
predictive maintenance operations can reduce the increasing
risk of machine failures and can be able to restore the machine
to be “as good as new” (i.e., the machine is renewed). When it
is the Nth time for the machine to reach the maintenance
threshold Hs, the machine should be replaced. As shown in
Fig. 1, H0 (0≤H0≤1) is machine’s initial health index at the
beginning, Hnew is machine’s health index when machine’s
condition is “as good as new,” and Hfail is machine’s health
index when machine’s condition is bad. And i is the ordinal of
predictive maintenance cycles, where i ∈ {1,2,…,N}. It is
clear that Ti i ¼ 1; 2; � � � ;Nð Þ denotes each maintenance
interval during the maintenance process.

The whole research structure of this study is presented in
Fig. 2. Machine’s original condition data is collected by
monitoring tools and then used to estimate and predict
machine’s health index with proposed machinery prognostic
approach. Based on the obtained prognostic information
which is viewed as an inputting item for this proposed
predictive maintenance model, the optimal maintenance
threshold and maintenance cycle number are determined
with the aim to minimize the long-term average cost.

4 Data-driven machinery prognostic approach

Nowadays, in prognostic and health management research,
with the advancements in sensor and intelligent prognosis
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technologies, machine’s condition can be monitored and its
degradation can be estimated [27–29]. Machinery prognos-
tics that is the capability to provide early detection and
isolation of the precursor and/or incipient fault condition
to a machine failure condition has been applied to the field
of predictive maintenance. Prognostics is to know before, to
predict the future as a result of rational study and analysis of
available pertinent data [30]. In manufacturing process,
machine’s current and future conditions obtained by ma-
chinery prognostic approach provide the important informa-
tion for maintenance planning. The continuous assessment
and prediction of a machine’s performance can thus enable
collaborative machine life cycle management, which
conducts predictive maintenance to prevent unexpected
machine failures and reduce unscheduled costly downtime

[31–33]. Hence, it is vital to develop good machinery
prognostic approach to accurately estimate machine’s health
condition and predict machine’s deterioration process.

This section develops a data-driven machinery prognostic
approach based on statistical pattern recognition and auto-
regressive and moving average model. By applying this
approach, machine’s health condition can be estimated and
machine degradation can be predicted.

4.1 Machine performance assessment

This section develops a performance assessment method
based on statistical pattern recognition to estimate machine’s
health condition. With the collected monitoring data,
machine’s health index can be obtained by this performance

Fig. 1 Machine’s deterioration
process and its predictive
maintenance cycles
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Fig. 2 The research structure
of this predictive maintenance
model
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assessment method to describe machine’s health condition,
which provides the base for machine performance prediction.

First, because the collected monitoring data usually con-
tain multidimensional data sets, feature extraction is applied
to obtain dominant information. In this paper, principle
component analysis is adopted for feature extraction and
dimension reduction. The procedure is given as below:

Step 1: Normalize machine’s collected condition monitoring
data.

Step 2: Build correlation matrix.
Step 3: Compute the eigenvalues and eigenvector of

correlation matrix.
Step 4: Compare the variance contribution and accumula-

tion of eigenvalues.
Step 5: Obtain the dominant feature of machine’s condition

by selection criterion.

Then, the dominant feature is clustered by considering
statistical pattern recognition. The main idea is: By designing
a decision boundary, a given sample can be clustered into one
certain pattern with the decision function. Given a set of
patterns of machine’s condition {ω1,ω2,…,ωc}, c is the
number of patterns. If X0(x1,x2,…,xd)

T is the feature
vector for one certain machine’s condition, for two patterns
of machine’s condition ω1 and ω2, X is clustered into ω1

(e.g., X ∈ ω1) with the following decision criterion.

l Xð Þ ¼ p X w1jð Þ
p X w2jð Þ >

p w2ð Þ
p w1ð Þ ð1Þ

where l(X) is the likelihood function. With these recognized
patterns ofmachine’s condition, new sample can be recognized.

Finally, chi-square test is used to obtain machine’s health
index. Given a Gaussian distribution of multi-variables as
~X � MVN ~μ;Kð Þ, after applying feature extraction and di-

mension reduction, it transforms to be eX � MVN 0; Ip
� �

.

Thus, machine’s health index H ~X
� �

can be obtained by

H ~X
� � ¼ 1� Fc2p s

Xp
i¼1

ex2i
 !

ð2Þ

where s is the sensitivity factor (usually to be 0.25).

4.2 Machine performance prediction

Based on the obtained machine’s health index, auto-
regressive and moving average model is used to predict
machine degradation. Given a general machine performance
prediction model as

Ht �
Xp
i¼1

fi � Ht�i ¼ "t �
Xq
j¼1

θj � "t�j ð3Þ

where {εt} is the white noise, f1 f2 � � � fp is the auto-

regressive coefficient, and θ1θ2 � � � θq is the moving
average coefficient, p and q are the order, respectively.
Equation 3 means machine’s future health index Ht is
influenced by machine’s previous health index and the
turbulence occurred during this interval.

Given a set of samples of machine’s health index
H1;H2; � � � ;Hmf g, where m is the length, the mathematical

statements of machine performance prediction model are
presented as follows:

Step 1: Estimate a regression factor δ and residual
variance σ.

bd @mð Þ ¼ bd1;bd2; � � � ;bd@m� �T
¼ bg j� ið Þ½ ��1

@m�@m
bgðiÞ½ �@m�1

ð4Þ

bσ2
@m

¼ bgð0Þ � bgðiÞ½ �T@m�1 bg j� ið Þ½ ��1
@m�@m

bgðiÞ½ �T@m�1 ð5Þ

where bgðKÞ ¼ 1
m

Pm�K

t¼1
HtHtþK and ∂m is a multiple

of lg m.
Step 2: Obtain residual b"t.

b"t ¼ Ht �
X@m
i¼1

bdiHt�i ð6Þ

Step 3: Estimate model parameters bb and bσ2
pq.

bb ¼ bfbθ
� �

¼
bgH j� ið Þ
h i

p�p
bgH" j� ið Þ
h i

p�qbgH" j� ið Þ
h i

p�q

� 	T bg" j� ið Þ½ �q�q

0BB@
1CCA gH ðKÞ½ �p�1

gH"ðKÞ½ �q�1

 !

bσ2
pq ¼ bgð0Þ � bfbθ

� �T gH ðKÞ½ �p�1

gH"ðKÞ½ �q�1

 !

8>>>>>>><>>>>>>>:
ð7Þ
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where

bgHðKÞ ¼ 1

m� K

Xm�K

t¼1

HtHtþK ; K ¼ 1; 2; � � � ; p

ð8Þ

bg"ðKÞ ¼ 1

m� @m � K

Xm�K

t¼1

"t"tþK ; K ¼ 1; 2; � � � ; q

ð9Þ

bgH"ðKÞ ¼ 1

m� @m � K

Xm�K

t¼1

Ht"tþK ð10Þ

bg"H ðKÞ ¼ bgH" �Kð Þ ð11Þ
Step 4: Estimate the order p and q.

SBC criterion is used to estimate the order [34],
shown as

Minimize SBC ¼ lg bσ2
pq þ

pþ qþ 1ð Þ lg m� pð Þ
m� pð Þ

ð12Þ

5 Construction of this predictive maintenance model

In this section, the mathematical framework for predictive
maintenance model with the aim of minimizing the long-term
average cost is established to prove the structural characteristics
of the optimum. First, some assumptions are given as follows:

1. An independent machine is studied.
2. A new machine is installed at the beginning.
3. The machine is repairable and deteriorates with

increased usage and age.
4. Machine’s condition can be monitored continuously and

perfectly.
5. The time for maintenance operation is negligible.
6. The machine begins a new deteriorating process after

maintenance operations.

In order to minimize the long-term average cost for the
machine, the related cost factors in cost objective function
must be well considered. As discussed in Section 2, an
operational cost used to describe the cost during machine’s
operating process is considered. Moreover, it is viewed to be
variant with usage and maintenance operations. In this pa-
per, the operational cost is constructed by three parts: a fixed
cost for operating, a relative variant cost for the frequency of
maintenance operations, and a relative variant cost for time.

Hence, this study defines the operational cost Co(i,t)
changes according to i and t (i.e., Co(i,t) is relative with i
and t, where i is maintenance cycles and t is time). Co(i,t) is
constructed with three parts: coo, cvi, and cvt. coo represents
the fixed cost for operating, cvi represents the relative vari-
ant cost rate according to the maintenance cycles number,
and cvt represents the relative variant cost rate according to
time. Generally, cvi and cvt could be deduced from
machine’s history maintenance data. Hence, the operational
cost is constructed as:

Co i; tð Þ ¼ coo þ cvi � iþ cvt � t ð13Þ

With Eq. 13, it can be obtained that
R Ti
0 Co i; tð Þdt represents

the operational cost for each predictive maintenance cycle.
In this predictive maintenance model, for machine’s

whole life cycle, there will be probable predictive mainte-
nance cost, probable replacement cost, and probable opera-
tional cost. Generally, a maintenance cost Cpm is less than a
replacement cost Cr (i.e., Cpm<Cr). Thus, the expected long-
term average cost ETC for each predictive maintenance
cycle can be inferred as:

ETCi ¼
R Ti

0
Co i;tð ÞdtþCpm

Ti

for 0 < i < N

ð14Þ

where Ti is the ith maintenance interval. In this predictive
maintenance model, Ti could be estimated by the proposed
machinery prognostic approach given in Section 4.

For this predictive maintenance model, once it is the Nth
time to reach maintenance threshold Hs, the machine is
replaced. Hence, in the Nth maintenance cycle, replacement
is scheduled. Thus, the expected long-term cost for the Nth
maintenance cycle should be

ETCN ¼
R TN

0
Co N ;tð ÞdtþCr

TN

for i ¼ N

ð15Þ

Therefore, from the machine installation to replacement
(0< i≤N), the expected long-term average cost is:

ETC ¼
PN�1

i¼1

ETCi�TiþETCN �TNPN
i¼1

Ti

for 0 < i � Nð Þ

ð16Þ

With a given maintenance threshold in real situations, the
entire optimization is implemented as a two-variable search,
where the variable N is incremented. When the machine is
available within a permitted operating region, the minimal
ETC could be obtained by comparing all the local optimal
results corresponding to different maintenance threshold Hs.
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The procedures of the search algorithm are outlined as
follows:

Step 1: Fix the upper bound of maintenance cycle Nup

according to the related maintenance data.
Step 2: Initialize Cpm beyond the Nupth predictive

maintenance as a very larger number, say 107.
Step 3: Initialize ETC* as a very larger number, say 107

(ETC* is used to store the minimal ETC value).
Step 4: For the given maintenance threshold region

[H1,H2] where H1<H2, let Hs0H1.
Step 5: Search N from one in step of one until ETC cannot

be further reduced. For a given value of N:

Step 5.1: Calculate the value of {T1,…,TN} by Eqs. 3,
4, 5, 6, 7, 8, 9, 10, and 11.

Step 5.2: Calculate ETC by Eq. 16.
Step 5.3: If the calculated ETC is smaller than the

current ETC*, replace the current ETC* by
the calculated ETC (i.e., ETC*0ETC). And
the current value of N and {T1,…,TN} are
stored as the local optimal result, N*0N.

Step 6: Let Hs0Hs+0.01, if Hs≤H2, return to Step 5.
Otherwise, stop.

Note that the traversal of machine’s health index belong-
ing to maintenance threshold region is spaced with unit
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0.01, as such kind of precision of health index can well
satisfy real maintenance processes. And it also simplifies
computation. At the end of the entire search, the optimal
ETC* can be identified. Then, the corresponding predictive
maintenance plan (Hs

*,N*) is determined.

6 A case study

In this study, a case about a drilling machine is researched to
demonstrate the development and application. The drilling
machine is performed maintenance operations to decrease
its failures and keep health condition to remain its operating
status. Although frequent maintenance operations can keep
its operating status, high maintenance cost occurs. In order
to balance the trade-offs between high health condition and
low long-term average cost, a suitable predictive mainte-
nance model is required. The original data of this drilling
machine such as its condition data and cost factor can be
collected by monitoring tools and deduced from history
maintenance data.

6.1 Machine condition prognosis

In this example, a spindle load signal acquired from this
drilling machine is used for machine performance assess-
ment and prediction. First, 50 sets of samples of machine’s
perfect condition and 30 sets of samples of machine’s failure
condition are collected (see Figs. 3 and 4, the sampling
interval is 135 s).

By training these samples, the patterns of “good” and “bad”
machine conditions are recognized. Then, through applying
the machine performance assessment method in Section 4.1,
for a test set of samples (seen in Fig. 5), machine’s
corresponding health index is obtained to be H00.6088.

Then, 500 sets of samples of machine’s condition during
the operation process are collected, and the corresponding
machine’s health indexes are assessed. By applying the
machine performance prediction method in Section 4.2,
machine’s performance prediction model is built. Its param-
eters are in Table 1.

Figure 6 shows the comparison between the actual health
index and the predicted health index for these 500 sets of
samples. It can be seen that the 85% of variances belong to
[−2σ, +2σ] range, which satisfies T test or F test. Therefore,
this performance prediction model is reasonable and
effective.

Finally, assume machine’s health index threshold is
Hfail00.20 for maintenance operations. By applying this
machinery prognostic approach, it can be obtained that
machine’s residual life is 18.04 h. Through monitoring
machine’s real operation process, it is found that after
18.0 h, machine’s health index reaches 0.20. By comparing
the predicted results with the actual results (see Fig. 7), the
computation error is 0.22%, which satisfies T test or F test.
Thus, this developed data-driven machinery prognostic
approach can well describe machine degradation.

Fig. 5 A set of samples for
testing

Table 1 Parameters for machine’s performance prediction model

Parameter ϕ1 ϕ2 θ1 θ2

Estimation −0.016127 0.086295 −0.836623 −0.105490

Schwarz criterion −12.86193
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Fig. 6 Comparison between the actual data and the estimated data of
the 500 sets of samples
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6.2 Maintenance arrangement

As the machinery prognostic information is obtained,
this section uses it to construct predictive maintenance

model. Meanwhile, because the machine cannot be
performed only by maintenance operations all along,
discussed in Section 2, in order to avoid the situation
of “no replacement but infinite maintenance opera-
tions,” the upper bound of predictive maintenance
cycles number is restricted to be N≤10. Table 2 shows
the related cost factors in this predictive maintenance
model. Generally, these related cost factors are pre-
designed. In real manufacturing, maintenance engineers
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Fig. 7 Comparison between
machine’s predicted health
index and the actual health
index. a The predicted results, b
the actual results, c the error,
and d the error percentage

Table 2 The related
cost factors in this
example

Cpm Cr coo cvi cvt

500 5,000 4 1.2 0.05
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usually should be responsible for the design of these
cost factors.

Let the searching range of the maintenance threshold be
Hs ∈ [0.10, 0.40) for computation simplification and resour-
ces saving. According to the procedures of the search algo-
rithm about this predictive maintenance model presented in
Section 5, the computational results with the aim to mini-
mize the long-term average cost are obtained. Figure 8
illustrates the computational results of the predictive main-
tenance model for this drilling machine with the given
maintenance threshold Hs. If one maintenance plan requires
machine’s maintenance threshold to be Hs00.90, the opti-
mal maintenance scheduling is obtained: Among machine’s
maintenance threshold region, there is a minimal long-term
average cost ETC061.337 under a predictive maintenance

plan (0.13, 10). That is to say, there should be N−109
predictive maintenance cycles, and this machine should be
replaced when it reaches the maintenance threshold
Hs00.13 at the 10th time.

From Table 3, the computational results could also
prove that neither too small nor too large machine’s
maintenance threshold is suitable for maintenance ar-
rangement with the aim to minimize the long-term
average cost. It indicates that if this drilling machine
requires smooth working, in order to minimize the
long-term average cost, machine’s maintenance thresh-
old should be set to be 0.13 and the machine should
run 10 predictive maintenance cycles. When it is the
10th time for this machine to reach the maintenance
threshold, the machine should be replaced.
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Table 3 Computational results of ETC values when N010

Hs 0.39 0.38 0.37 0.36 0.35 0.34 0.33 0.32 0.31 0.3

ETC 66.704 66.583 66.462 66.342 65.985 65.633 65.516 65.400 65.285 64.715

Hs 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.2

ETC 64.602 63.719 63.611 62.865 62.656 62.552 62.448 62.345 62.243 62.140

Hs 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.1

ETC 61.937 61.836 61.735 61.635 61.535 61.436 61.337 61.347 61.357 61.367
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6.3 Results discussion

In order to discuss the influences of the cost parame-
ters, the computational results with the variation of
maintenance cost Cpm and replacement cost Cr are
shown in Tables 4 and 5, respectively. In Table 4, with
the increase of maintenance cost Cpm, the corresponding
ETC increases and the maintenance cycles number N
decreases. Table 5 illustrates the variation of replace-
ment cost. With the increase of replacement cost Cr, the
corresponding ETC increases and the maintenance
cycles number N increases. The computational results
in Table 5 indicate that increasing Cr means relatively
decreasing Cpm, which could be exactly in line with the
computational results in Table 4.

During the maintenance period, when machine’s
maintenance threshold becomes lower, the maintenance
interval gets longer, which brings high operational cost.
In the other hand, when machine’s maintenance thresh-
old becomes higher, the maintenance interval gets
shorter, which brings high maintenance cost. If one
maintenance plan cannot balance the maintenance cost,
the operational cost, and the replacement cost, the long-
term average cost cannot be minimal. It is thus impor-
tant to decide a suitable machine’s maintenance thresh-
old and maintenance cycles number to minimize the
long-term average cost. In Fig. 8, it is obvious that if
machine’s maintenance threshold is larger than 0.13,
frequent maintenance cost and replacement cost
make the long-term average cost high. If machine’s
maintenance threshold is smaller than 0.13, high oper-
ational cost makes the long-term average cost high. It
can be proved that the operational cost presented in
this study can meet practical manufacturing situations.

In addition, in order to discuss the importance of an oper-
ational cost in this predictive maintenance model, a situation
that “Do not consider the operational cost” is considered.
Figure 9 illustrates the relationship between ETC and Hs.

The optimal predictive maintenance plan H�
s ;N

�� �
without

considering the operational cost is (0.10, 10), and the
corresponding ETC is 50.264. For the situation of “Do not
consider the operational cost,” the maintenance arrangement
is mostly decided by the cost rate Cr/Cpm, which does not
consider the cost occurred and influenced in the maintenance
process. Obviously, it is not practical. In this study, this
proposed predictive maintenance model considers an opera-
tional cost to enrich the cost function for manufacturing
requirements. Moreover, this predictive maintenance model
further discusses the variant operational cost that can well
describe machine’s deterioration process. This proposed pre-
dictive maintenance model provides a good way for mainte-
nance scheduling to minimize the long-term average cost.

According to the original maintenance plan, this drilling
machine adopts periodic maintenance. Maintenance opera-
tion is performed every 18 h, and when this operation
reaches the fifth time (i.e., after 90 h), this machine is
replaced. The long-term average cost ETC obtained by this
periodic maintenance is 85.828. It can be found that the
value is much higher than that obtained by the proposed
predictive maintenance model in this paper. Moreover, as
this periodic maintenance model does not consider
machine’s deterioration process, it cannot assure machine’s
availability, which conducts huge losses due to the follow-
ing machine’s missing tasks. Therefore, the above compu-
tational results show that this predictive maintenance model
decreases the maintenance interval and performs better than
the original periodic maintenance model or age T models.
Moreover, the obtained maintenance interval can help pre-
pare those maintenance operations and achieve the goal of
near-zero inventory for the spare parts.

7 Conclusion and future works

Nowadays, as an increasing importance of maintenance
management in modern manufacturing process, machinery
prognostic approaches that can well describe machine

Table 4 Computational
results with the
variation of Cpm

Cpm ETC Hs N

100 42.289 0.13 10

200 47.051 0.13 10

300 51.813 0.13 10

400 56.575 0.13 10

1,000 85.146 0.13 10

1,500 108.956 0.13 10

2,000 132.765 0.13 10

3,000 180.385 0.13 10

4,000 227.992 0.13 9

Table 5 Computational
results with the
variation of Cr

Cr ETC Hs N

1,000 39.507 0.13 7

2,000 45.464 0.13 10

3,000 50.755 0.13 10

4,000 56.046 0.13 10

6,000 66.628 0.13 10

7,000 71.919 0.13 10

8,000 77.210 0.13 10

9,000 82.501 0.13 10

10,000 87.792 0.13 10
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degradation should be researched to support predictive
maintenance model construction. As many previous tra-
ditional maintenance models do not consider machine’s
deterioration process, this study is devoted to provide a
predictive maintenance model for maintenance schedul-
ing to minimize the long-term average cost of a repair-
able deteriorating machine. Through machine’s condition
data collected by intelligent monitoring tools, this paper
develops a novel data-driven performance assessment
and prediction approach to assess machine’s health con-
dition and predict machine’s residual life, which greatly
supports machinery prognostic research. Once machine’s
health index reaches the maintenance threshold, sched-
uled predictive maintenance operation is performed to
restore the machine. In order to meet real manufacturing
situations, a variant operational cost influenced by
machine’s condition and the maintenance process is
considered to reasonably describe machine degradation.
Through the case study about a drilling tool, this devel-
oped machinery prognostic approach and predictive
maintenance model is verified and discussed. The com-
putational results can well match machine’s real degra-
dation, which proves that this developed machine
performance assessment and prediction approach is effi-
cient and practical. Based on this prognostic approach,
the proposed predictive maintenance model performs
better than the original periodic maintenance model or
age T models. Therefore, this predictive maintenance
model can help reduce long-term average cost and pre-
pare maintenance operations to achieve the goal of near-
zero inventory for the spare parts.

However, there are still some research needed to be
further discussed based on this predictive maintenance
model. For example, although considering an operation-
al cost can improve this predictive maintenance model,
how to design those parameters for its influencing

factors must be studied, especially for some complex
maintenance processes.
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