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Abstract The existing interpolation algorithm cannot meet
the need of high-speed and high-accuracy machining of a
free-form surface. So this paper proposed a correcting and
compressing interpolation algorithm. Depending on the dis-
tance and angle evaluated from the adjacent command
points, the machining path of free form can be divided
into two machining types. For those regions where the
accurate figure is critical such as corners, the conven-
tion linear interpolation is performed exactly between
the adjacent command points. For those regions having
a large radius of curvature where the smooth figure is
critical, firstly, the interior point selection method based
on circle transition is derived to reduce the tolerance
between the machining path and the original surface;
secondly, the interior point correction method based on
the least-square method is proposed to reduce the cal-
culation error and round-off error in the interior point
and estimate the first- and second-order derivative vec-
tors of the interior point; thirdly, the shape-defining
point is selected by the bend direction of the machining
path and fitted to a quintic spline curve which has the

C2 continuity; fourthly, the fitting accuracy controlling
method is proposed to ensure the machining accuracy;
lastly, the curve interpolation is performed on the fitted
smooth curve. Machining tests carried out on a vertical
machining center show that the proposed algorithm can
improve the machining efficiency and machining quality
of a free-form surface.

Keywords High-speed machining . Interpolation
algorithm . Free-form surface

1 Introduction

Free-form surface is extensively applied to a wide range of
industries such as automotive, aerospace, and dies/molds,
but free-form surface computer numerical control (CNC)
machining is still difficult. In order to mill an entire free-
form surface and check collision in real time, the computer-
aided manufacturing (CAM) system generally converts the
free-form surface generated by computer-aided design
(CAD) system into a polyhedron as shown in Fig. 1 and
overlays this polyhedron with machining paths within the
specified tolerances, finally generating CNC codes com-
posed of many command points [1–3]. At this time, if the
linear interpolation is performed between the adjacent com-
mand points, it can lead to many small planes mapping on
the workpiece surface as shown in Fig. 13a and acceleration
jumping in the machining axis, which in turn can cause
resonance in machining elements [4, 5]. To describe the
above algorithm easily, this paper defines the linear
interpolation algorithm as the convention interpolation
algorithm.
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To overcome the above disadvantages, many interpola-
tion algorithms have been proposed by investigators. In
technology, FANUC [5] proposed that for those portions
of free-form surface having a large radius of curvature,
spline interpolation is performed on the smooth curve which
is calculated from the polygonal lines specified by com-
mand points (defining G-code as G05.1). In theory, Li et
al. [6] proposed a non-uniform rational B-spline (NURBS)
pre-interpolator for five-axis machining. Its feasibility has
been evaluated only by simulation. Ye et al. [7, 8] presented
an interpolation of continuous micro-line blocks based on
the look-ahead algorithm, but strictly speaking, this algo-
rithm still uses linear interpolation. Yau et al. [9] developed
a real-time cubic Bezier interpolator with look-ahead func-
tion to deal with continuous micro-line blocks, but the slope
discontinuity might still occur at the junction of the fitted
curve blocks. Lin et al. [10] applied NURBS curve fitting
technique to convert the continuous micro-line blocks to the
smooth curve with NURBS format. Yeh et al. [11–13]
developed a NURBS curve fitting and interpolation with a
look-ahead function to handle continuous micro-line blocks,
but NURBS curve fitting and interpolation require a large
computational time; it cannot meet the real-time require-
ments of interpolation. To describe above algorithm easily,
this paper defines the above interpolation algorithms as the
smooth interpolation algorithm.

The existing works all assume the command points from
the CAM system are just on the desired curve as shown in
Fig. 2, but practically, the command points from the CAM
system are placed on the boundary of tolerance [14, 15] as
shown in Fig. 3. For this reason, if generating a curve with
the existing algorithms capable of C2 continuity, the gener-
ated curve would depart from the desired curve and the
machining accuracy and quality would be reduced.

Based on the above research and analysis, this paper
proposed a correcting and compressing interpolation
algorithm. By using the bi-chord error test method, the
machining path was divided into two machining regions.
For those regions needing the accuracy, the linear inter-
polation is performed between the adjacent command
points. For those regions needing the smoothness, it
can create multiple interior points between adjacent
command points, which are closer to the original curve
than the command point from the CAM system. And
the position of each interior point was corrected in a
unit smaller than the least input increment of CNC
within tolerance; the impact of rounding error is re-
duced. So the machining accuracy of the free-form
surface can be improved compared to the existing
method.

This paper is organized in details as follows. Section 2
presents the design of the machining path analysis method.
A region criterion method, interior point selecting method,
and interior point correcting method are discussed in
Sections 2.1, 2.2, and 2.3, respectively. Section 3 describes
the design of the smooth curve generation and interpolation
method. The shape-defining point selection method, shape-
defining point fitting method, fitting accuracy controlling
method, and smooth curve interpolation method are dis-
cussed in Sections 3.1, 3.2, 3.3, 3.4, respectively. Section 4
shows the machining tests on the vertical machining center.
Section 5 concludes this paper.

Fig. 1 The original plane and approximated plane
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Fig. 2 The desired curve and command point
Fig. 3 The desired curve and command point in the actual CAM
system
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2 Analysis of the machining path

2.1 Criterion of the machining region

When a desired sculptured free-form surface is approximat-
ed by numerous command points, the distance between
adjacent command points and the angle between adjacent
segments are different between those regions that need
accuracy machining and those regions that need smooth
machining. For those regions that need accuracy machining,
the distance is longer or the angle is greater; for those
regions that need smooth machining, the distance and angle
are both smaller. So the machining regions can be deter-
mined by distance and angle between continuous three
adjacent command points. The bi-chord error criterion
method [9] can quickly determine if the machining regions
need the linear interpolation or smooth interpolation.

As shown in Fig. 4, if the distance Li−1i, Lii+1 between
three adjacent command points Pi-1, Pi, and Pi+1, the angle θ
between two line segments Pi-1Pi and PiPi+1, and the bi-
chord error δ1, δ2 which can be calculated by formula 1 are
all smaller than the critical length Lmax, critical angle θmax,
and critical contour error δcmax which are as CNC system
input parameter, it means that the machining region consist-
ing of three command points needs smooth interpolation. In
this work, the critical length Lmax is 0.01 mm, the critical
angle θmax is 45°, and the critical contour error δcmax is
0.01 mm.

d1 ¼ R 1� cos 8 1ð Þ
d2 ¼ R 1� cos 8 2½ � ¼ R 1� cos θ� 8 1ð Þ½ �
R ¼ Li�1i

2 sin 8 1

8 1 ¼ tan�1 Li�1i sin θð Þ
Li�1i cos θð ÞþLiiþ1

� �
8>>><
>>>:

ð1Þ

where R is the circular radius consisting of three adjacent
command points Pi−1, Pi and Pi+1, φ1 and φ2 are half of the
angle ffPi�1OPi and ffPiOPiþ1. By applying the existing bi-
chord error criterion method [9] for all command points, the
machining path can be divided into two regions.

2.2 Selection of the interior point

For every region needing smooth machining, the method
based on circle transition is proposed to calculate the interior
point as shown in Fig. 5, where Pi−1, Pi, and Pi+1 are the
three adjacent command points, and QiQi+1 is a circle which
is inserted in a corner as the transition circle between the line
block Pi−1Pi and PiPi+1. Supposing the inserted circle QiQi+1

is tangent to the line block Pi−1Pi and PiPi+1, Qi and Qi+1 are
the tangency points, and δt is the tolerance between the
corner point Pi and the circle QiQi+1. The geometrical rela-
tionship between the two line blocksPi−1Pi, PiPi+1 and the
circle QiQi+1 can be expressed as:

L ¼ sin θ
2

1�cos θ
2
dt

R ¼ cos θ
2

1�cos θ
2
dt

8<
: ð2Þ

where L is the transition distance from the tangency point Qi

or Qi+1 to the corner point Pi, θ is the included angle

between the two movement vectors Pi�1Pi
���!

and PiPiþ1
���!

, and
R is the radius of the inserted circle QiQi+1. Comparing
Fig. 5 with Fig. 3, it is easy to see that if the δt is equal to
the tolerance in the CAM system, the tangency points Qi and
Qi+1 are much closer to the original curve than the
command point Pi. So this paper takes the two points

Fig. 4 Schematic diagram of the bi-chord test Fig. 5 The circle transition
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Qi and Qi+1 as the interior points corresponding to
command point Pi. At this time, the coordinate of Qi

and Qi+1 can be calculated as:

Qi ¼ L
Li�1i

Pi�1 þ Li�1i�L
Li�1i

Pi

Qiþ1 ¼ Liiþ1�L
Liiþ1

Pi þ L
Liiþ1

Piþ1

(
ð3Þ

where Li−1i and Lii+1 are the length of line blocks Pi−1Pi

and PiPi+1. The coordinate of Pi−1, Pi, and Pi+1 can be
acquired from the CNC code. In order to avoid the
cross of two interior points as shown in Fig. 6, where

Qi�1and Qi are the two interior points corresponding to
the command point Pi−1, Qi and Qi+1 are the two
interior points corresponding to the command point Pi,

Qiþ1and Qiþ2 are the two interior points corresponding
to command point Pi+1. The transition distance L is also
confined by the length of two adjacent line blocks, as
shown in Eq. 4:

L � min
Li�1i

2
;
Liiþ1

2

� �
ð4Þ

For every region needing smooth machining, all interior
points except the start and end can be calculated by the
above circle transition method. The start and end command
points can be directly adopted as interior points.

2.3 Correction of the interior point

In order to reduce the calculation error and round-off error in
the interior point, the interior point correction method is
proposed. Before correcting the interior point, the paramet-
ric value must firstly be assigned to each interior point. The
centripetal method [16] is adopted in this paper. Equation 5
describes centripetal method to calculate the parametric
value for each interior point.

u1 ¼ 0

ui ¼ ui�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qi�1Qij jð Þ

p
Pn
j¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qj�1Qjj jð Þp ði ¼ 2; 3; � � � nÞ

8><
>: ð5Þ

where ui is a parametric value corresponding to interior
point Qi, Qi�1Qij j is the distance between the interior point

Qi−1 and Qi, and Qj�1Qj

�� �� is the distance between the interior
point Qj−1 and Qj. When all interior points have their own
parametric value, the orthogonal basis u3, u2, u, 1 is used to
approximate continuous five interior points. For arbitrary
continuous five interior points Qi, Qi+1, Qi+2, Qi+3, and Qi+4,
the approximation curve can be written as:

QiðuÞ ¼ aiu
3 þ biu

2 þ ciuþ di ui � u � uiþ4ð Þ ð6Þ

where ai, bi, ci, and di are coefficient vectors of Qi(u) (The
dimension of those coefficient vectors are the same as the
number of movement axis), ui and ui+4 are parameter values
corresponding to interior points Qi and Qi+4. The square sum
of distances Ji from the interior point Qi, Qi+1, Qi+2,Qi+3, Qi+4

to the respective curve point which is on the curve Qi(u) and
corresponds to the parameter value ui, ui+1, ui+2, ui+3, ui+4 can
be written as:

Ji ¼
Xiþ4

k¼i

Qi ukð Þ � Qkj j2 ¼ Jix þ Jiy þ Jiz ð7Þ

where

Jix ¼
Piþ4

k¼i
QixðukÞ � xkj j2

Jiy ¼
Piþ4

k¼i
QiyðukÞ � yk
�� ��2

Jiz ¼
Piþ4

k¼i
QizðukÞ � zkj j2

8>>>>>>><
>>>>>>>:

ð8Þ

Qix(uk), Qiy(uk), and Qiz(uk) are the coordinate values of
point Qi(uk) at x, y, and z directions; xk, yk, and zk are the
coordinate values of interior point Qk at x, y, and z direc-
tions; and Jx, Jy, and Jz are square sum of distances at x, y,
and z directions. In order to minimize the square sum of
distances Ji, the partial derivative of Jx, Jy, and Jz must meet
the following requirements:

@Jix
@aix

¼ @Jix
@bix

¼ @Jix
@cix

¼ @Jix
@dix

¼ 0
@Jiy
@aiy

¼ @Jiy
@biy

¼ @Jiy
@ciy

¼ @Jiy
@diy

¼ 0
@Jiz
@aiz

¼ @Jiz
@biz

¼ @Jiz
@ciz

¼ @Jiz
@diz

¼ 0

8><
>: ð9Þ

By substituting the coordinate value and parametric value
of the five interior points Qi, Qi+1, Qi+2, Qi+3, and Qi+4 into

Fig. 6 The crossing of two adjacent interior points
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Eq. 9, the coefficient vectors of curve Qi(u) at x, y, and z
directions can be represented as :

aix
bix
cix
dix

aiy
biy
ciy
diy

aiz
biz
ciz
diz

2
664

3
775 ¼

Piþ4

k¼i
u3k

Piþ4

k¼i
u2k

Piþ4

k¼i
uk

Piþ4

k¼i
1

Piþ4

k¼i
u4k

Piþ4

k¼i
u3k

Piþ4

k¼i
u2k

Piþ4

k¼i
uk

Piþ4

k¼i
u5k

Piþ4

k¼i
u4k

Piþ4

k¼i
u3k

Piþ4

k¼i
u2k

Piþ4

k¼i
u6k

Piþ4

k¼i
u5k

Piþ4

k¼i
u4k

Piþ4

k¼i
u3k

2
666666666664

3
777777777775

�1 Piþ4

k¼i
xk

Piþ4

k¼i
ukxk

Piþ4

k¼i
u2kxk

Piþ4

k¼i
u3kxk

Piþ4

k¼i
yk

Piþ4

k¼i
ukyk

Piþ4

k¼i
u2kyk

Piþ4

k¼i
u3kyk

Piþ4

k¼i
zk

Piþ4

k¼i
ukzk

Piþ4

k¼i
u2kzk

Piþ4

k¼i
u3kzk

2
666666666664

3
777777777775

ð10Þ

Once the coefficient vectors of Qi(u) are calculated, the
coordinate, first- and second-order derivative vectors on the
curve Qi(u) at parametric value ui, ui+1, ui+2, ui+3, ui+4 can be
calculated as:

QiðukÞ ¼ aiu3k þ biu2k þ ciuk þ di
Q0

iðukÞ ¼ 3aiu2k þ 2biuk þ ci
Q00

iðukÞ ¼ 6aiuk þ 2bi

8<
: i � k � iþ 4ð Þ ð11Þ

For all interior points except for the first three and last
three interior points such as Q1, Q2, Q3 and Qn−2, Qn−1, Qn,

the corrected interior point, first- and second-order deriva-
tive vectors can be estimated as the following:

Ok ¼ 1
3 QiðukÞ þ Qiþ1ðukÞ þ Qiþ2ðukÞð Þ

O0
k ¼ 1

3 Q
0
iðukÞ þ Q

0
iþ1ðukÞ þ Q

0
iþ2ðukÞ

	 

O00

k ¼ 1
3 Q

0
iðukÞ þ Q

0 0
iþ1ðukÞ þ Q

0 0
iþ2ðukÞ

	 

8<
: 1 � i � n� 4ð Þ

4 � k � n� 4ð Þ

ð12Þ
where Ok is the corrected interior point of the interior

point Qk, and O
0
k and O

0 0
k are the first- and second-order

derivative vectors at the point Ok. Due to the lack of the
extra neighboring interior point, the first three interior points
can be corrected as follows:

O1 ¼ Q1ðu1Þ;O2 ¼ 1
2 ðQ1ðu2Þ þ Q2ðu2ÞÞ;O3 ¼ 1

3 ðQ1ðu3Þ þ Q2ðu3Þ þ Q3ðu3ÞÞ
O

0
1 ¼ O

0
1ðu1Þ;O

0
2 ¼ 1

2 ðQ
0
1ðu2Þ þ Q

0
2ðu2ÞÞ;O

0
3 ¼ 1

3 ðQ
0
1ðu3Þ þ Q

0
2ðu3Þ þ Q

0
3ðu3ÞÞ

O
0 0
1 ¼ Q

0 0
1ðu1Þ;O

0 0
2 ¼ 1

2 ðQ
0 0
1ðu2Þ þ Q

0 0
2ðu2ÞÞ;O

0 0
3 ¼ 1

3 ðQ
0 0
1ðu3Þ þ Q

0 0
2ðu3Þ þ Q

0 0
3ðu3ÞÞ

8<
: ð13Þ

The last three interior points can also be corrected by
replacing Q1 with Qn, Q2 with Qn−1, and Q3 with Qn−2. With
the above method, the interior point can be corrected, and
the derivative vector can be estimated.

3 Generation and interpolation of the smooth curve

3.1 Selection of the shape-defining point

Considering the estimated first- and second-order derivative
victors, the quintic spline is chosen to fit the corrected
interior point. But if each two corrected interior points are
fitted to a curve, much more computation time and memory
space are needed. In order to reduce the computation time
and compress the interior point, the interior point where the
machining path bends to the different direction is defined as
the shape-defining point. Because in practical application, if

the machining path specified by more than three interior
points bends to the same direction, the fitted quintic spline
curve with first and end points will meet the accuracy
requirement. For the machining path specified by corrected
interior pointsO1, O2…, On−1 and On as shown in
Fig. 7, the shape-defining points can be selected as
the following steps:

1. Mark the start corrected interior point as the shape-
defining point, and calculate the normal vector v12 with

the first-order derivative vector O
0
1andO

0
2 at points O1

and O2 as follows:

v12 ¼ O
0
1 � O

0
2 ð14Þ

2. Judge whether the values of j and n are the same (j
starting from 3). If j<n, calculate the normal vector vj−1j
as Eq. 14 and jump to 3; else, mark the point Oj as the
shape-defining point and jump to 6.

Int J Adv Manuf Technol (2012) 62:1179–1189 1183



3. Calculate the intersection angleαj between the vector vj−2j−1
and vj−1j, and judge whether the value of αj is greater than
90°. If αj<90°, jump to 4; else, jump to 5.

4. If αj<90°, it shows the machining path at points Oj and
O1 bends to the same direction. Jump to 2 with j+ +.

5. If αj<90°, it shows the machining path at points Oj and
Oj−1 bends to the different direction. Mark the point Oj

as the shape-defining point, use Oj−1 as the new starting
point, and jump to 1 with j+ +;

6. Exit this shape-defining point selection.

3.2 Fitting of the shape-defining point

In the shape-defining point fitting, the objective is to con-
nect n shape-defining points with n−1 fifth-order spline
curves O1,…, On−1.These spline curves are fitted in such a
way that continuity up to the second derivative is preserved
along the overall composite curve. For the arbitrarily adja-
cent shape-defining points Oi and Oj, the polygonal line
machining path defined by corrected interior points Oi,…
Oj and the smooth curve machining path Ok(u) fitted by
geometry information of shape-defining points Oi and Oj are
shown in Fig. 8. The curve Ok(u) can be expressed as:

OkðuÞ ¼ Aku
5 þ Bku

4 þ Cku
3 þ Dku

2 þ Ekuþ Fk

u 2 ½ui; uj�
	 
 ð15Þ

where Ak, Bk, Ck, Dk, Ek, and Fk are coefficient vectors of
curve Ok(u) (the dimension of those coefficient vectors are

the same as the number of movement axis), ui and uj
are parameter values corresponding to shape-defining
points Oi and Oj. In order to make the curve Ok(u) pass
through the shape-defining point and ensure second-
order continuity, the coordinate, first- and second-order
derivative vectors at the shape-defining points Oi and Oj

are used as boundary conditions. The boundary condi-
tions can be written as:

u5i u4i u3i u2i ui 1
5u4i 4u3i 3u2i 2ui 1 0
20u3i 12u2i 6ui 1 0 0
u5j u4j u3j u2j uj 1

5u4j 4u3j 3u2j 2uj 1 0
20u3j 12u2j 6uj 1 0 0

2
66666664

3
77777775

Ak

Bk

Ck

Dk

Ek

Fk

2
6666664

3
7777775
¼

Oi

O
0
i

O
0 0
i

Oj

O
0
j

O
0 0
j

2
6666664

3
7777775

ð16Þ

where Oi, O
0
i , O

0 0
i , Oj, O

0
j , and O

0 0
j are the coordinates,

first- and second-order derivative vectors at the shape-
defining points Oi and Oj, which have been calculated
in Section 2.3. By substituting these values into Eq. 16,
the Ak, Bk, Ck, Dk, Ek, and Fk coefficients vector can be
calculated.

3.3 Controlling of fitting accuracy

Although the fitted curve passes through the shape-defining
points and has C2 continuity along the overall composite
curve, it does not ensure the accuracy at all corrected interior
points between the two adjacent shape-defining points. In
order to solve this problem, the distance from the corrected
interior point to the fitted spline curve is calculated to judge
whether the fitted spline curve meets the accuracy require-
ment at the corrected interior point. Considering the real
time of the CNC system, the above distance is replaced
by the distance between the interior point and the fitted
curve point which is on the fitted curve and corresponds
to the parameter value of the interior point. If the fitted
spline curve does not meet the accuracy requirement,
the shape of the fitted curve is amended by increasing
the shape-defining point. For the fitted curve Ok(u) and
corrected interior points Oi+1 … Oj−1 between the
shape-defining points Oi and Oj, the fitting accuracy
controlling can be carried out by the following steps
as shown in Fig. 9.

1. Calculate the distance Lm from the corrected interior point
Om (m starting from i+1) to the fitted curve point Ok(um),
where um is the parameter value corresponding to the
interior point Om. Judge whether the value of Lm is larger
than ecmax, where ecmax is the maximum allowableFig. 8 The fitted machining path

Fig. 7 Schematic diagram of the shape-defining point
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contour error in CNC machining. If Lm≤ecmax, jump to 2;
else, jump to 3.

2. If Lm≤ecmax, it shows the fitted curve Ok(u) meets the
accuracy requirement at the interior point Om. Judge
whether the values m and j are the same. If m<j, jump
to 1 with m + +; else jump to 4.

3. If Lm>ecmax, it shows the fitted curve Ok(u) does not
meet the accuracy requirement at interior point Om.
Keep the current m and Lm values as record, and judge
whether the values of m and j are the same. If m< j, jump
to 1 with m++; else jump to (4).

4. Jude whether there are m and Lm values in the record. If
not, it shows the fitted curve Ok(u) meets the accuracy
requirement at all the interior points and jump to 6; else,
it shows the fitted curve Ok(u) does not meet the accu-
racy requirement at some interior point; find the interior
point which is the farthest from the curve Ok(u) accord-
ing to the values of m and Lm, and mark it as new shape-
defining point; jump to 5.

5. According new and old shape-defining points be-
tween the shape-defining points Oi and Oj, generate
two new curves Os−1(u) and Os(u) to replace curve

Fig. 10 SMTCL VM650 CNC machining center

Fig. 9 Flowchart of the fitting accuracy controlling method

Fig. 11 The actual machining process

Fig. 12 The actual machining path
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Ok(u) as the new fitted curve between the shape-
defining points Oi and Oj. Repeat the above process,
until the fitted curve meets the accuracy requirement
at all the interior points between the shape-defining
points Oi and Oj.

6. Exit fitting accuracy controlling.

3.4 Interpolation of the smooth spline curve

In this paper, the spline curve interpolation algorithm based
on the second-order Taylor expansion [17] is adopted to

calculate the interpolation point on the fitted spline curve.
At this time, the value of parameter u at i interpolation cycle
can be expressed as:

ui ¼ ui�1 þ Vi�1&T

O0 ui�1ð Þj j þ
T 2

2

� Ai�1

2 O0 ui�1ð Þj j �
V 2
i�1 O

0
ui�1ð Þ�� ��& O0 0

ui�1ð Þ�� ��
2 O0 ui�1ð Þj j2

 !
ð17Þ

where T is the interpolation cycle, Vi−1 and Ai−1 are feedrate
and acceleration at i interpolation cycle, and O′(ui−1) and O″

(a) The conventional interpolation

(b) The smooth interpolation

(c) The proposed interpolation

Fig. 13 Comparison diagram
of feedrate. a The conventional
interpolation, b the smooth
interpolation, c the proposed
interpolation
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(ui−1) are the first- and second-order derivative vectors of
the spline curve O(u) at ui. Based on our previous work
[18], the feedrate Vi−1 and acceleration Ai−1 can be
planned. By substituting the planned parameter value
into Eq. 17, the interpolation point which is as reference
command of the servo motion control system can be
calculated.

4 Machining tests and discussion

To evaluate the proposed interpolation algorithm, the algo-
rithm has been implemented in SMTCL VM650 CNC ma-
chining center as shown in Fig. 10, which comprises an
industrial PC, a Mechatrolink-III communication card,
Mechatrolink-III filed bus, and a mechanical system with
three 3-phase Yaskawa AC servo packs. The industrial PC
with a Pentium M 1.6-GHz CPU and 512-M RAM is used to
run the open CNC system based on RTLinux (Real-Time
Linux) operating system which is developed by us [19]. The
tasks in the open CNC system are divided into the HMI task
for human and machine operations, the interpreter task for
interpreting CNC codes and generating smooth curve, the
motion controller task for interpolating trajectory point and
generating motion command, the PLC task for controlling I/O
status, and the field bus driver task for receiving and sending
communication card date. In terms of task cycle time, HMI is

20 ms, interpreter 5 ms, motion controller 2 ms, PLC 4 ms,
and field bus driver 2 ms. The Mechatroline-III communica-
tion card is used to control the three AC servo packs at a
sampling period of 2 ms.

The free-form surface as shown in Fig. 1 is used as a
machining example. Figure 12 shows the machining
path which is generated by CAD/CAM soft UG with
tolerance of 0.01 mm. The number of CNC blocks is
12,416. The machining parameters used in this example
are as follows: the interpolation cycle T is 2 ms, the
feedrate limit F is 3,000 mm/min, the acceleration limit
Amax is 500 mm/s2, the tolerance limit δtmax is 0.01 mm, the
contour error limit δcmax is 0.01 mm, and the tool is ball end
mill with diameter 6 mm; the machining process is
shown in Fig. 11.

In order to show the feedrate change for the conven-
tional interpolation algorithm, the smooth interpolation
algorithm, and the proposed algorithm expressly, an
arbitrary machining path composed of 39 line blocks
is adopted as shown in Fig. 12. The feedrate profiles
for different algorithms are shown in Fig. 13. For the
conventional interpolation algorithm, the machining time
is 3.294 s. Comparing with the conventional interpola-
tion algorithm, the machining times of the smooth in-
terpolation algorithm and proposed algorithm are respectively
reduced to 2.634 and 2.689 s. This is mainly because for
smooth interpolation algorithm and proposed interpolation

(a) The conventional interpolation (b) The smooth interpolation (c) The proposed interpolation

Fig. 14 Comparison results
with the original surface. a The
conventional interpolation, b
the smooth interpolation, c the
proposed interpolation

(a) The conventional interpolation (b) The smooth interpolation (c) The proposed interpolation

Fig. 15 The auto-diff solid report. a The conventional interpolation, b the smooth interpolation, c the proposed interpolation
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algorithm, the interpolation is performed on the smooth spline
curve; the transition feedrate between the adjacent blocks is
much increased.

Besides interpolation algorithm, there are many outside
factors affecting actual machining accuracy and quality such
as machine rigidity, servo system, and so on. Therefore, the
actual workpiece machining results cannot directly distin-
guish interpolation algorithm good or bad. In order to rule
out other outside factors, the interpolation points in the
actual machining process were sampled to compare with
the designed surface from the UG software in VERICUT
software within tolerance of 0.01 mm. The experimental
results for different interpolation algorithm were shown in
Fig. 14, and the compared reports of VERICUTsoftware were
shown in Fig. 15.

For the conventional interpolation algorithm, the numb-
ers of over-cut and owe-cut points are, respectively, 273 and
1,021 as shown in Fig. 15a, and there are a large number of
uneven corners and small planes mapping on the machining
surface as shown in Figs. 14a and 16a which is the actual
machining result. This is due to the fact that (1) the com-
mand points from the CAM system are not just located on
the target original curve, and (2) the tool movement
precisely follows the line segment which is used to
approximate a target original curve. Although this effect
is caused by high-accuracy machining which precisely
follows the command point, the uneven corners that
result will be judged unsatisfactory when smooth sur-
face is required.

After applying the smooth interpolation algorithm which
is the existing algorithm capable of C2 continuity, the
numbers of over-cut and owe-cut points are, respectively,
480 and 786 as shown in Fig. 15b. Comparing with the
conventional interpolation algorithm, the over-cut points
were reduced, but the total numbers of over-cut and owe-
cut points are not reduced. And it is easy to see that the
number of small planes mapped on the machining surface is
reduced, and the machining surface is much smoother as
shown in Figs. 14b and 16b. This is mainly because, for the
smooth interpolation algorithm, the interpolation is performed

on the smooth curve fitted by the command point, but the
tolerance, calculation error, and round-off error in the com-
mand point are not corrected.

After applying the proposed algorithm, the numbers
of over-cut and owe-cut points are all reduced as shown
in Fig. 15c, and the numbers of small place mapped on
the machining surface are reduced as shown in Figs. 14c
and 16c. This is mainly because the tolerance, calcula-
tion error, and rounding error in the command point are
corrected.

5 Conclusions

This paper proposed a correcting and compressing interpo-
lation algorithm for high-speed free-form surface machin-
ing. According to the command point, the algorithm can
automatically determine whether the accurate figure or
smooth figure is required for the current machining region.
For the machining region needing the accuracy, the tradi-
tional linear interpolation is performed exactly as specified
by the command points. For the machining region needing
the smoothness, the curve interpolation is performed on the
smooth curve which is calculated from the polygonal lines
specified by the command point. The proposed algorithm
can ensure that the fitted curve has the C2 continuity and
meets the requirements of machining accuracy. As a result,
smoother machining and better surface quality can be
obtained. The machining tests are performed on a three-
axis vertical machining center for testing the proposed al-
gorithm. The machining results show that the proposed
algorithm can reduce the machining time and increase the
machining quality.
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(a) The conventional interpolation (b) The smooth interpolation (c) The proposed interpolation

Fig. 16 The workpiece actual
machining results. a The
conventional interpolation, b
the smooth interpolation, c the
proposed interpolation

1188 Int J Adv Manuf Technol (2012) 62:1179–1189



References

1. Vickers GW, Bradley C (1992) Curved surface machining
through circular arc interpolation. Computer in Industry 19
(33):329–37

2. Erkormaz K, Altinas Y (2001) High speed CNC system design part
II: modeling and identification of feed drives. Int J Mach Tool
Manuf 41(8):1487–1509

3. Bedi S, Ali I, Quan N (1993) Advanced interpolation techni-
ques for CNC machines. ASME Trans J End Ind 115(8):329–
336

4. SIEMENS (2004) SINUMERIK 810D/840D tool and mold mak-
ing, 4

5. FANUC (2004) Series 30i/31i/32i—a user's manual for MC, GFZ-
63944 EN-2/03, 9

6. Li W, Liu YD, Yamazaki K, Fujisima M, Mori M (2008) The
design of a NURBS pre-interpolator for five-axis machining. In-
tern J Advanced Manufacture Tech 36(5):927–938

7. Ye P, Shi C, Yang K et al (2008) Interpolation of continuous
micro line segment trajectories based on look-ahead algorithm
in high-speed machining. Inter J Manufacture Tech 37:881–
897

8. Leng HB, Wu YJ, Pan XH (2009) Adaptive prospective interpo-
lation method for high speed machining of micro line blocks based
on the cubic polynomial model. Chinese J Mechanical Engineering
45(6):73–79

9. Yau HT, Wang JB (2007) Fast Bezier interpolator with real-time
look-ahead function for high accuracy machining. Int J Mach Tool
Manuf 47(10):1518–1529

10. Lin KY, UengWD, Lai JY (2008) CNC codes conversion from linear
and circular paths to NURBS curves. Int J AdvManuf Technol 39(7–
8):760–773

11. Yeh SS, Su HC (2009) Implementation of online NURBS curve
fitting process on CNC machines. Int J Adv Manuf Technol 40
(5):531–540

12. Wang JB, Yau HT (2009) Real-time NURBS interpolator: appli-
cation to short linear segments. Int J Adv Manuf Technol 41
(11):1169–1185

13. Tsai MS, Nien HW, Yau HT (2010) Development of a real-time
look-ahead interpolation methodology with spline-fitting tech-
nique for high-speed machining. Int J Adv Manuf Technol 47(5–
8):621–638

14. Hino TO, Fujiyoshida SI, Yamanashi HS (2007) Curve interpola-
tion method. United States Patent 7274969 B2, 2007, 09, 25

15. Yutkowitz S J, OH WC (2004) Motion control system and method
utilizing spline interpolation. United States Patent 6782306 B2,
2004, 08, 24

16. Lee ETY (1989) Choosing nodes in parametric curve interpolation.
Computer Aided Design 21(6):363–370

17. Yang DCH, Kong T (1994) Parametric interpolator versus linear
interpolator for precision surface machining. Computer-Aided De-
sign 26(3):225–234

18. Zhang XH, Yu D, Hu Y, Hong HT, Sun WT (2009) Development
of NURBS curve interpolator with look-ahead control and federate
filtering for CNC system. Industrial Electronics and Applications
(ICIEA), 25-27 May: 2755–2759

19. Yu D, Hu Y, Xu XW et al (2009) An open CNC system based on
component technology. IEEE Transactions On Automation Sci
Engineering 6(2):302–310

Int J Adv Manuf Technol (2012) 62:1179–1189 1189


	Correcting and compressing interpolation algorithm for free-form surface machining
	Abstract
	Introduction
	Analysis of the machining path
	Criterion of the machining region
	Selection of the interior point
	Correction of the interior point

	Generation and interpolation of the smooth curve
	Selection of the shape-defining point
	Fitting of the shape-defining point
	Controlling of fitting accuracy
	Interpolation of the smooth spline curve

	Machining tests and discussion
	Conclusions
	References


