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Abstract Computer-aided process planning is an important
interface between computer-aided design and computer-
aided manufacturing in computer-integrated manufacturing
environments. In this paper, the complicated process plan-
ning is modeled as a combinatorial optimization problem
with constraints, and a hybrid graph and genetic algorithm
(GA) approach has been developed. The approach deals
with process planning problems in a concurrent manner by
simultaneously considering activities such as sequencing
operations, selecting manufacturing resources, and deter-
mining setup plans to achieve the global optimal objective.
Graph theory accompanied with matrix theory, as the basic
mathematical tool for operation sequencing, is embedded
into the main frame of GA. The precedence constraints
between operations are formulated in an operation prece-
dence graph (OPG). The initial population composed of all
feasible solutions is generated by an elaborately designed
topologic sort algorithm to the OPG. A modified crossover
operator guaranteeing only feasible offspring generated is
used, two types of mutation strategies are adopted, and a
heuristic algorithm is applied to adjust the infeasible plan
generated by the mutation operator to the feasible domain. A
case study has been carried out to demonstrate the feasibility
and efficiency of the proposed approach.
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1 Introduction

Computer-aided process planning (CAPP) has received much
attention in both the academe and industry during the last
three decades [1]. Process planning, as an essential component
for linking design and downstream manufacturing processes,
deals with the selection of necessary manufacturing processes
and determination of their sequences to “transform” a design-
er's ideas (namely the designed part) into a physical compo-
nent economically and competitively [2]. For a part with
complex structures and numerous features, process planning
is well known as a complicated decision-making process
involving selecting machining operations for every feature
and sequencing the aggregate of all the operations considering
precedence constraints, choosing available manufacturing
resources, determining setup plans, and machining parame-
ters, etc. These activities must be carried out simultaneously to
achieve an optimal plan against a predetermined criterion such
as minimum processing time or minimum machining cost, so
the manufacturing efficiency could be largely increased or the
production cost could be decreased.

In the past two decades, many optimization approaches,
such as the genetic algorithm (GA) [3–13], simulated anneal-
ing (SA) algorithm [14–16], particle swarm optimization
(PSO) [17, 18], and artificial neural networks [13, 19], have
been developed and widely applied for solving complex man-
ufacturing system problems, e.g., job shop scheduling and
process planning, and significant improvements have been
achieved. However, there still remains potential for further
improvement. For example, optimization algorithms need to

W. Huang (*) :Y. Hu
School of Mechanical Science & Engineering,
Huazhong University of Science & Technology,
Wuhan, China
e-mail: wjhuang529@yahoo.com.cn

L. Cai
College of Mechanical Engineering and Applied Electronics
Technology, Beijing University of Technology,
Beijing, China

Int J Adv Manuf Technol (2012) 62:1219–1232
DOI 10.1007/s00170-011-3870-9



be improved to be more efficient, and a more reasonable
constraint modeling and handling mechanism need to be
developed; also, the approach should provide the multiple
alternative optimal plans, and some practical manufacturing
environment should be considered.

This paper developed a hybrid graph theory and GA
approach to process planning for a prismatic part within the
context of CAPP. In this approach, operations and the pre-
cedence constraints among all the operations are formulated
in an operation precedence graph (OPG), the decision mak-
ing of selecting alternative manufacturing resources and tool
approach direction (TAD) for every operation, determining
in what order to perform a set of selected operations such that
the resulting sequence satisfies the precedence constraints
established by both features and operations, is considered
concurrently to achieve the optimal plan.

2 Related research work

The potential for application graph theory to operation se-
quencing was addressed by Prabhu et al. [20]. Irani et al.
[21] developed the Hamiltonian path (HP) analogy for the
process planning problem based on the precedence graph and
operation cost matrix, and the Latin multiplication method for
constrained enumeration of all feasible HPs was implemented.
The optimal process plan is an HP that corresponds to the least
number of setups required for machining each feature once
and only once from a feature graph. Though the Hamiltonian
method can enumerate all the paths, it is inefficient due to a
large number of precedence constraints. Lin et al. [22]
designed a graph-search strategy for operation sequence plan-
ning in a prismatic part with interacting features. The search
graph is built by considering alternative machining operations
in converting a blank stock into the final part configuration.
The high-quality process plan is generated by the graph-
search process considering several heuristic rules concerning
machining practices. Since the approaches are based on heu-
ristic rules and reasoning, the final solution may be only
feasible, and the optimal plans might be lost during the rea-
soning process.

The global search techniques such as the GAs and PSO
have been successfully applied to solve the combinatorial
optimization problems. Dutta et al. [3] have used GAs for
the sequencing of operations in process planning for a parallel
machining environment where combinations of interacting
work-holding and tool-holding devices are used. A new cod-
ing method to translate between an operation sequence and its
string representation is developed in their work. But the oper-
ation features with multiple parents are not considered. The
evaluation criterion is minimum processing time. Zhang et al.
[4] present a novel CAPP model for parts to be machined in a
job shop manufacturing environment. GA is used to carry out

the selection of machining resources and sequencing opera-
tions simultaneously. The dynamic status of machining
resources in the job shop and alternative optimal plans are
not taken into account. Reddy et al. [5] proposed a GA-based
operation sequencing optimization approach to identify opti-
mal or near-optimal operation sequences in a dynamic plan-
ning environment. A feature precedence graph (FPG) is
defined to identify the feasible sequences, and the size of the
solution space in operation sequencing can be reduced with
the FPG .The minimum production cost is used as the evalu-
ation criterion. Li et al. [6] developed a hybrid genetic algo-
rithm and a simulated annealing approach for optimizing
process plans for prismatic components. They modeled the
process planning as a combinatorial optimization problem
with constraints. The evaluation criterion was the combination
of machine costs, cutting tool costs, machine change costs,
tool change, and setup costs.

Automated processing planning based on GA and/or SA
also has been reported byQiao et al. [7], Lee et al. [8], Rocha et
al. [9], Alam et al.[10], Li et al. [11, 12, 16], Ding et al. [13],
Ma et al. [14], and Ong et al. [15]. Ding et al. [13] present a
global optimization strategy incorporating the GA, neural net-
work, and analytical hierarchical process (AHP) for process
sequencing. A global fitness function was defined including
the evaluation of manufacturing rules using AHP, calculation
of cost and time, and determination of relative weights using
neural network techniques.

Guo et al. [17] proposed a PSO approach to operation
sequencing problem. The initial process plan solutions ran-
domly generated are encoded into particles of the PSO algo-
rithm. To avoid being trapped into local optima and improve
the particles' movements, several new operators have been
developed. Penalty strategy is used considering the evaluation
of infeasible particles (process plans).

Though significant improvements have been achieved,
several problems of these approaches still exist, including
the following aspects:

1. Feature is usually used as the basic unit for process plan-
ning, i.e., supposing each feature is machined out in one
setup and process routing of a component is represented by
a features sequence. In practice, the roughing and finishing
operations of a feature must be assigned to different setups
sometimes. If a component is with high-precision require-
ments, or a large deformation occurs during themachining,
and heat treatment processes are required, a feature is
usually machined in more than one setup.

2. The generating of an initial population in GA or PSO is
usually done randomly, which makes some of the pro-
duced solutions infeasible because of their violation of the
precedence constraints. And during the implementation of
algorithms, new infeasible solutions are likely to be pro-
duced by the operator. The penalty strategy employed is
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not effective in performance. So it is essential to develop a
general methodology for allowing the generation of only
feasible solutions or adjusting infeasible solutions to a
feasible domain.

3. Most of the proposed method for process planning can
only generate a single process plan in a simple or limited
machining environment without regard to resource avail-
ability on the shop floor; due to the limitation, most of the
process plans generated by these methods are likely to be
too inefficient to implement.

3 Process planning problem description

To conduct process planning, parts are commonly described
by features with technological attributes such as tolerances
and surface finishes, which are geometric forms having
machining meanings, e.g., planes, slots, and holes. The
CAD information about features of a part is recognized
and extracted by the CAPP system before the process plan-
ning is carried out. Then the operation methods for each
feature are selected according to the requirements of different
features. An operation method refers to an operation in name
without any attachment of corresponding machines, tools, and
TADs, e.g., turning, reaming, and milling. When the specific
machine, tools, and TAD are assigned to a related operation
method, the operation can be executed. Each operation can be
executed by several alternative plans if different machines,
cutting tools, or setup plans are chosen for this operation [23,
24]. In this paper, a setup is defined as a group of operations
owning the same TAD executed on a machine continuously,
and a TAD is defined as a direction from which a cutting tool
can access a feature [25]. The features and their valid TADs
can be recognized using a geometric reasoning approach
[6, 13]. In our study, the machining environment is a work-
shop layout with both conventional machines and CNC 3-axis
vertical milling machines without rotatable fixtures, so one
setup can only machine features in one TAD.

However, even though the determination of operation
methods for features has been completed, it is impossi-
ble to specify any individual machine or tool for each
operation method. This is owing to the fact that ma-
chining resources and setup plan decision are subject to
process planning, which can be accomplished only in a
simultaneous manner with the activities of sequencing
operations. This leads to the dilemma that in process
planning, machining resources information is available,
but this information cannot be specified until operation
sequencing is performed.

The quality measurement of a process plan for a part is
based on two considerations: (1) the optimum selection of
machine, cutting tool, and TAD for every operation and (2)
the optimum sequence of the operations for machining the

part. Hence, the proposed approach to address these two
aspects is carried out.

3.1 Knowledge-based representation of a process plan

For a part, a process plan provides detailed information about
the sequence of the operations, applicable candidate manufac-
turing resources, setup plans, machining parameters, etc.
Since knowledge-based representation could produce good
performance results, the operations and their relevant
machines, cutting tools, and TADs are represented as a chro-
mosome for the application of GA. Each operation has a set of
candidate machines, cutting tools, and TADs by which the
operation can be executed, and the details are listed in Table 1.

Therefore, a process plan is represented using a string
which consists of n bits, each bit represents an operation once
and only once, and the order of all those bits within the string
determines the machining sequence. Any sequence of all bits
is a possible solution (chromosome) for a process plan in the
solution space. In the paper, a process plan is formulated in a
vector: Oper[n], n is the total number of operations.

Figure 1 shows the representation of a process plan, a
sequence with six machining operations: Oper[6]. “op5” rep-
resents operation 5; m-01, t-02, and +x in the second column
represent the machine, tool, and TAD that will be used to
execute operation 5, respectively; so are the other columns.
Here, the index of vector Oper represents the operation's
executing order in the sequence, i.e., the machining route is
starting with Oper[0] (op5), then Oper[1] (op4),…, the last is
Oper[5] (op2).

3.2 Precedence constraints analyzing and modeling

The preliminary precedence constraints among operations
come from the consideration of geometrical and manufactur-
ing interactions between features as well as technological
requirements in a part [6, 26]. The constraints imply prece-
dence relationships (PRs) to determine in what order to

Table 1 Class definition of an operation

Class_operation type: an operation

Variable Description

Operation_id The ID of the operation

Machine_id The ID of the machine to execute the operation

Machine_list[] The candidate machine list for executing
the operation

Tool_id The ID of the tool to execute the operation

Tool_list[] The candidate tool list for executing the operation

TAD_id The ID of a TAD to apply the operation

TAD_list[] The candidate TAD list for executing the operation
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perform a set of selected operations. It is necessary for a
process plan not to violate any of the precedence constraints.

Supposing there is a total of eight operations required for
a test part to be machined, i.e., the operation aggregation is
{op1, op2,⋯, op8}, and after the geometrical, manufacturing
interactions, and technological requirements analysis, the PRs
between operations are identified, as listed in Table 2.

Here, all the operation and PRs are formulated in an OPG,
e.g., considering a set of PRs among operations (listed in
Table 2) of a part, a directed graph, as an effective precedence
constrained model, can be conveniently constructed, as shown
in Fig. 2. To represent these PRs, every element of the oper-
ation aggregation is represented as the corresponding vertex of
the OPG, and the PR between every two operations is repre-
sented as a directed edge which the two vertices lie on, i.e.,
one vertex that the arrow points to must be executed after the
other. An example is given in Fig. 2, where the directed edge
starts from vertex “op1” and the arrow points to vertex “op3,”
which is equivalent to the operation of op1 must be prior to
op3. Complying with the PRs among vertices, traversing
every vertex of the OPG once and only once can obtain a
Hamiltonian path, which is also a feasible operation sequence.

Because computers are more adept at manipulating
numbers than at recognizing pictures, it is standard practice
to communicate the specification of a graph to a computer in
matrix form [25]. The adjacency matrix is frequently used to
represent the relationships among vertices of a graph. The
adjacency matrix of a given OPG in the paper is formulated
by a matrix P, and there is:

P ¼ pijð Þn� n ð3:1Þ
where n is the total number of operations for a part, and the

value of pij is calculated in accordance with the following
rules:

& When there is a directed edge connecting the vertex opi
and opj, and the arrow comes from opj and points to opj,
then pij01 and pji00; otherwise, pij00, (i≠ j);

& pii ¼ 0 i ¼ 1; 2; � � � ; nð Þ
In Fig. 2, the OPG can be represented with an adjacency
matrix, as illustrated in Fig. 3.

3.3 Process plan evaluation criterion

The criterion of minimum production cost is generally used
for process plan evaluation. The detailed analysis of the cost
is based on the consideration of the time required to com-
plete every machining operation, which consists of the fol-
lowing aspects: unproductive time, preparation time, tool
change time, and cutting time [27, 28]; for more details on
the machining time calculation, see [27, 28]. Because de-
tailed information on tool paths and machining parameters
has not been determined so far in the paper, instead of
accurate cost and time calculation, we use the estimated
production cost to evaluate process plans in the macro-
planning stage, which comprises five factors: machine uti-
lization cost, tool utilization cost, machine change cost, tool
change cost, and setup cost [6, 11, 17]; the calculation
procedures of these cost factors is described in detail below.

1. Total machine cost (MC). MC is the total costs of the
machines used to accomplish a process plan, and it can
be calculated as:

Fig. 1 Representation of a
process plan

Table 2 The precedence relationships between operations

Operation ID Precedence relationship description

op3 op1 and op2 must be performed prior to op3

op4 op3 must be performed prior to op4

op5 op3 must be performed prior to op5

op6 op2 must be performed prior to op6

op7 op4 must be performed prior to op7

op8 op5 and op6 must be performed prior to op8
Fig. 2 An operation precedence graph
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MC ¼
Xn�1
i¼0

MCIj; j ¼ Oper i½ �:machine id ð3:2Þ

where n is the total number of operations (the length of
Oper), MCIj is the machine cost index for using
machine-j, a constant for a specific machine.

2. Total tool cost (TC). TC is the total costs of the cutting
tools used to accomplish a process plan, and it can be
calculated as:

TC ¼
Xn�1
i¼0

TCIj; j ¼ Oper i½ �:tool id ð3:3Þ

where TCIj is the tool cost index for using tool-j, a
constant for a specific cutting tool.

3. Number of machine changes (NMC) and total machine
change cost (MCC). A machine change occurs when
two adjacent operations in Oper are executed on differ-
ent machines.

NMC ¼ Pi¼n�2
i¼0

Ω1 Oper i½ �:machine idð ;

Oper iþ 1½ �:machine idÞ
ð3:4Þ

MCC ¼ NMC�MCCI ð3:5Þ

Ω1 X ;Yð Þ ¼ 1; X 6¼ Y
0; X ¼ Y

�
ð3:6Þ

where MCCI is the machine change cost index. Oper[i].

machine_id is the ID of the machine used to perform oper-
ation–Oper[i].operation_id
4. Number of tool changes (NTC) and total tool change

cost (TCC): The definition of a tool change is described
in Table 3, so NTC and TCC are calculated as follows:

NTC ¼ Pi¼n�2
i¼0

Ω2 Ω1 Oper½i�:machine id;ðð
Oper iþ 1½ �:machine idÞ;

Ω1 Oper i½ �:tool id;Oper iþ 1½ �:tool idð ÞÞ
ð3:7Þ

TCC ¼ NTC � TCCI ð3:8Þ

Ω2 X ;Yð Þ ¼ 0; X ¼ Y ¼ 0
1; otherwise

�
ð3:9Þ

where TCCI is the tool change cost index and is a constant.
5. Number of setup changes (NSC), the number of setups

(NS), and the total setup cost (SC).
The definition of a setup change is depicted in Table 4,

and NSC is calculated as follows:

NSC ¼ Pi¼n�2
i¼0

Ω2 Ω1 Oper i½ �:machine id;ðð
Oper iþ 1½ �:machine idÞ;

Ω1 Oper i½ �:TAD id;Oper iþ 1½ �:TAD idð ÞÞ
ð3:10Þ

The corresponding NS and SC can be calculated as:

NS ¼ NSCþ 1 ð3:11Þ

SC ¼ NS� SCI ð3:12Þ
Where SCI is the setup change cost index.
6. Total production cost (PC)

PC ¼ MCþ TCþ SCCþMCCþ TCC ð3:13Þ

4 Hybrid graph and GA approach

The application of GA-based approaches for optimization
generally includes these steps: (1) generating the initial
population comprising a specified number of process
plans, (2) fitness calculation for individuals of the

Fig. 3 The adjacency matrix

Table 3 Definition of a tool change

Conditions of machining two consecutive operations Tool change

Same tool and same machine No

Same tool and different machines Yes

Different tools and same machine Yes

Different tools and different machines Yes

Table 4 Definition of a setup change

Conditions of machining two consecutive operations Setup change

Same TAD and same machine No

Same TAD and different machines Yes

Different TADs and same machine Yes

Different TADs and different machines Yes
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population, (3) reproducing chromosomes using a certain
selection strategy, and (4) applying the crossover and
mutation operators. The steps (2–4) are repeated until
the number of iterations.

4.1 The technique to initializing populations

Initialization is an important procedure that generates a
certain number of chromosomes with which the implemen-
tation of GA begins. The production of the initial population
in GA is usually done randomly. But, since the existence of
precedent constraints, some operation sequences generated
randomly are likely to be infeasible because of the violation
of constraints, which makes the performance of GA re-
duced. So, it is necessary to propose an approach that can
guarantee that the initial population consists of all the fea-
sible chromosomes.

To discuss the approach to produce the initial popula-
tion of all feasible solutions, the process planning prob-
lem mentioned in chapter 3.2 is used as an example.
Now there is an operation aggregation {op1, op2,⋯,
op7, op8}, and each operation is initialized to a legal
value based on the available machining resources in the
workshop, i.e., randomly select one machine, tool, and
TAD from the corresponding candidates and assign them
to the correlative operation. Initially, the OPG G is
established according to the PRs list in Table 1. Pn×n

(n08 here), as the adjacency matrix correlative with G, is
generated by the mentioned rules.

To eliminate the infeasible chromosomes, a randomly
topologic sorting algorithm for operation sequencing is
designed, and the number of initialized chromosomes is
prescribed as N; the procedures of initializing populations
are given as follows:

Firstly, several variables required in the implementation
of the algorithm mentioned below are defined.

Inedge For any vertex opi in G, calculate the total number
of edges with an arrowpoint to opi, and this
number is denoted by the variable “inedge,”
obviously, which is equal to the number of
operations prior to opi. As the calculating of any
vertex in inedge, there is a formula:

inedge opið Þ ¼
Xn
j¼1

pji: ð4:1Þ

G′ A graph with the same forms as G, and G′ is
initialized to an empty graph.

Mn×n A variable with the same forms as Pn×n, and M is
initialized to an empty matrix, i.e., all the element
of M is set to 0, mij  0; i;j ¼ 1; 2; � � � ; nð Þ.

q An integral variable q is defined.

1. Copy G to G ′, and copy P to M , i.e., mij ¼
pij; i;j ¼ 1; 2 . . . ; nð Þ, set q←0.

2. Calculating the inedge value of all vertices of G′:

inedge opið Þ ¼Pn
j¼1

mji, i ¼ 1; 2; � � � ; n
3. Randomly select one vertex (here, which is expressed

as opk) among the operation vertices with inedge equal
to 0. Delete opk in digraph Gx′, and delete all the
edges that start from opk, which can be achieved on
operating M by setting all elements of the ith row
as 0.

4. Calculating the inedge of the remaining vertices of G′,
from the remaining operations, randomly select one
(expressed as opl)with inedge equal to 0, delete opl in
digraph G′, and delete all the edges that start from opl.

5. Repeat 3 until every vertex has been selected for once
from G′, then a sequential listing of all the vertices (a
toplogical order for G′) is obtained.

6. Revisit the sequential listing of all the vertices (Oper)
in ascending sequence; the current position index is q.

7. Randomly select a machine, tool, and TAD from the
candidates that can be used for performing Oper[q]
and assign them to the operation-Oper[q].

8. q←q+1;
9. Repeat 6, 7, and 8 until each operation has been re-

assigned a machine, tool, and TAD (i.e., q is equal
to n).

10. Repeat steps 1–10 until the number of prescribed chro-
mosome is reached.

Applying the initialization approach, the initial solutions are
produced in the feasible domain.

4.2 Fitness function of GA

Fitness function is used to connect the problem and the
algorithm and assess the capability of a chromosome.
Whether a chromosome is relatively better or not and wheth-
er a chromosome should be reserved or not is decided
directly by the fitness function. Since the objective of GA
is often to achieve the maximum, the fitness calculation
function f can be defined as:

f ¼ UL� PC ð4:2Þ
PC is the total production cost of a process plan, as in
Eq. 3.13, and UL is the upper limit constant of PC.

4.3 The GA operators

The design of appropriate genetic operators, including the
reproduction, crossover, and mutation, plays a crucial role
for the successful implementation of GA.
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4.3.1 Reproduction

The strategies of “elitism” and the “tournament selection” are
adopted as reproduction operators in this paper. This works in
two steps: firstly, to guarantee the astringency, it applies
“elitism” by copying the optimal individual of the population
in the current generation to the next generation; secondly,
other remaining individuals of the current generation are
selected to the next generation by using the “tournament
selection” operator. Assuming there are k (k0N−1) individ-
uals to be selected, select two individuals randomly from
the population and keep the better one for the next gener-
ation. Repeating this procedure k times, all individuals of
the next generation will be obtained consequently.

4.3.2 Crossover

Crossover operator is applied, at a given probability pc, to
the chromosomes that resulted from reproduction by split-
ting and recombining between two parent chromosomes to
create new chromosomes for the next generation. A modi-
fied crossover operator, which is similar to Zhang et al. [4],
is adopted in this paper. Since the existence of precedence
constraints, the operator must ensure that PRs are main-
tained and only feasible plans are generated. The procedure
of the operator is described as follows:

1. Randomly select two chromosomes from the current
population as parent chromosomes.

2. Based on the chromosome length, a crossover point is
randomly selected, and each parent chromosome is divid-
ed into left and right segments from the crossover point.

3. Copy the left segment of parent 1 to form the left
segment of child 1. Find the operations in the right
segment of parent 1 and copy them to the right segment
of child 1 according to their sequence orders in parent 2.

4. The role of parents 1 and 2 will then be exchanged in
order to produce another offspring, child 2.

This procedure is illustrated with an example shown in
Fig. 4.

4.3.3 Mutation

The mutation operator is applied with a small probability to
investigate some of the unvisited points in the search space
and introduce some genetic diversity; thus, being trapped at
a local optimum could be avoided.

In the proposed GA, two types of mutation strategies are
applied. The first strategy is to randomly choose two genes
(operations) in a chromosome and exchange them at the
prescribed probability pm1. An example of the first mutation
process is shown in Fig. 5.

After mutation 1, the newly produced chromosome may
be infeasible because of the violation of precedence con-
straints, e.g., shown in Fig. 6, the operation sequence viola-
tes the PR list in Table 1. Thus, a heuristic algorithm aimed
at a specific problem will be applied to adjust them to the
feasible domain and is described as follows:

Firstly, a chromosome is represented by a vector Oper[n],
the OPG is G, and its adjacency matrix is Pn×n; the variable
pt is the vector's index and initialize pt0n−1; calculate the
inedge of operation vertex Oper i½ �;i ¼ 0; 1; 2; � � � ; n� 1.

Algorithm for adjusting the infeasible chromosome:

Repeat (until pt is equal to 0) 
{ 

if ( inedgeof [ ]Oper pt is not equal to 0) 
// Indicate that [ ]Oper pt  cannot be treated as the last among all the current operations which have

not been finished. 
{ p pt ; 

Repeat (until the inedgeof [ ]Oper p  is equal to 0) { -1p p ;} 
    Exchange the position of [ ]Oper pt and [ ]Oper p  in the chromosome [ ]Oper n ; 
    The inedge  of all [ ]Oper p ’s predecessor minus 1; //Corresponding to delete all the edges

that point to node [ ]Oper p  ofG , and synchronously the vertex [ ]Oper p  is removed} 
else { -1pt pt ;  The inedge  of [ ]Oper p ’s predecessors minus 1; } 

} 

The algorithm is illustrated with an example shown as
follows:

The second mutation strategy refers to machine, tool, and
TAD mutation of an operation. In practice, machine change is
an important factor in considering processing time and

production cost. So here, three mutation operators were devel-
oped based on the heuristic knowledge of process planning.

1. Machine mutation is used to change the current machine
of an operation if there is any candidate machine for it.
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The algorithm for machine mutation operator is de-
scribed as follows:

(a) Select an operation randomly from a chromosome and
use the probability pm2 to determine whether the ma-
chine needs to be changed.

(b) Randomly choose a machine (m-j) from the candidates
to replace the current machine (m-i) of the operation.

(c) Identify all the other operations with m-i as current
machine in the one chromosome. If any operation has
m-j as a candidate, replace machine (m-i) with machine
(m-j).

The procedure is illustrated with an example shown in
Fig. 7.

2. Tool mutation occurs after machine mutation. The
mechanism is similar to machine mutation.

3. TAD mutation occurs after tool mutation. The mecha-
nism is also similar to machine mutation.

4.3.4 The GA's termination criterion

There are several termination criteria for the search process
of GA. Usually, the user pre-set maximum iteration times.
Once the iteration times for the program have reached the

maximum, then stop. The final obtained solution is regarded
as the optimal or suboptimal result satisfying the optimiza-
tion objective.

5 Process planning for a sample part

5.1 Problem description

A sample part taken from the work of Guo et al. [17] is used
here to test the developed approach (Fig. 8). The part, which
is assumed to be manufactured in a job shop manufacturing
environment, consists of 14 manufacturing features, includ-
ing planes, holes, pockets, etc. These features can be ma-
chined with 20 operations (n020). The relevant information
of features, operations, manufacturing resources, and prece-
dence constraints of the part are given, respectively, in
Tables 5 and 6.

Complying with the PRs among operations in Table 6,
the corresponding OPG of the sample part can be estab-
lished easily, as shown in Fig. 9. The adjacency matrix of
the OPG, P20×20, can be formulated by the mentioned rules
in chapter 3.2.

5.2 Determination of parameters in GA approach

In order to realize the dual goals of maintaining diversity in
the population and sustaining the convergence capacity of
the GA, the usage of adaptive probabilities of crossover and
mutation is recommended in this paper; the detailed settings
of GA parameters were as follows:

1. Population size, N0100.
2. In the fitness calculation function of Eq. 4.2, determine

the upper limit UL05,000.Fig. 5 An example of mutation 1 application

Fig. 4 An example of applying the crossover operator
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3. An adaptive crossover probability is designed by im-
proving the calculation method in the adaptive GA
(AGA) proposed by Srinvivas et al. [29], and pc is
calculated by Eq. 5.1:

Pc ¼ Pc1 � Pc1�Pc2ð Þ f 0�favgð Þ
fmax�favgð Þ ; f 0 � favg

Pc1; f 0 < favg

(
ð5:1Þ

In Eq. 5.1, Pc100.9, Pc200.6, fmax, and favg represent
maximal and average fitness of the individuals of the
population in each generation, respectively; f′ represents
the larger fitness of the two individuals for crossover
operation.

4. The adaptive probability pm1 of the first mutation strat-
egy is calculated by Eq. 5.2:

Pm1 ¼ P0
m1 � P0

m1�P1
m1ð Þ f�favgð Þ

fmax�favgð Þ ; f � favg

P0
m1; f < favg

8<
: ð5:2Þ

In Eq. 5.2, P0
m1 ¼ 0:1, P1

m1 ¼ 0:001, f represents the
fitness of the individual for the first mutation.

5. The second mutation strategy probability pm2. The
availability of alternative machines, tools, and TADs
must be adequately traversed in the optimizing process,
and the three mutation rates for machines, tools, and
TADs are determined by Eq. 5.3.Fig. 7 An example of mutation 2 application

a b

c d

e f

Fig. 6 An example of adjusting
an infeasible process plan to
feasible domain
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Pm2 ¼ P0
m2 � P0

m2�P1
m2ð Þ f�favgð Þ

fmax�favgð Þ ; f � favg

P0
m2; f < favg

8<
: ð5:3Þ

In Eq. 5.3, P0
m2 ¼ 0:6, P1

m2 ¼ 0:1:

6. Terminating criterion. The maximal iteration time of
1,500 generations is selected.

a

b

Fig. 8 A sample part with 14 machining features
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Table 5 The features, operations, and manufacturing resources information of the sample part

Features Feature descriptions Operation
(operation_id)

TAD
candidates

Machine candidates Tool candidates Available machining resources
in a workshop environment

F1 Planar surface Milling (op1) +z m-02, m-03 t-06, t-07, t-08 m-01 (10): drilling press

F2 Planar surface Milling (op2) −z m-02, m-03 t-06, t-07, t-08 m-02 (40): 3-axis vertical
milling machine

F3 Two pockets arranged
as a replicated feature

Milling (op3) +x m-02, m-03 t-06, t-07, t-08 m-03 (100): CNC 3-axis
vertical milling machine

F4 Four holes arranged
as a replicated feature

Drilling (op4) +z, −z m-01, m-02, m-03 t-02 m-04(60): boring machine

F5 Planar surface Milling (op5) +x, −z m-02, m-03 t-06, t-07 t-01 (7): drill 1

F6 Planar surface Milling (op6) +y, −z m-02, m-03 t-07, t-08 t-02 (5): drill 2

F7 Planar surface Milling (op7) −a m-02, m-03 t-07, t-08 t-03 (3): drill 3

F8 A compound hole Drilling (op8) −a m-01, m-02, m-03 t-02, t-03, t-04 t-04 (8): drill 4

Reaming (op9) m-01, m-02, m-03 t-09 t-05 (7): tapping tool

Boring (op10) m-02, m-03 t-10 t-06 (10): milling 1

F9 A protrusion (rib) Milling (op11) −y, −z m-02, m-03 t-07, t-08 t-07 (15): milling 2

F10 A compound hole Drilling (op12) −z m-01, m-02, m-03 t-02, t-03, t-04 t-08 (30): milling 3

Reaming (op13) m-01, m-02, m-03 t-09 t-09 (15): reamer

Boring (op14) m-03, m-04 t-10 t-10 (20): boring tool

F11 Nine holes arranged as
a replicated feature

Drilling (op15) −z m-01, m-02, m-03 t-01 MCCI0160

Tapping (op16) m-01, m-02, m-03 t-05 SCI0100

F12 A pocket Milling (op17) −z m-02, m-03 t-07, t-08 TCCI020

F13 A step Milling (op18) −x, −z m-02, m-03 t-06, t-07 Note: values in brackets are
cost indicesF14 a compound hole reaming(op19) +z m-01,m-02,m-03 t-09

Boring (op20) m-03, m-04 t-10

Table 6 The PRs between operations

Features Operation
(operation_id)

Precedence constraint descriptions

F1 Milling (op1) F1 (op1) is the datum and supporting face for the part; hence, it is machined before all features

F2 Milling (op2) F2 (op2) is before F10 (op12, op13, op14) and F11(op15, op16)

F3 Milling (op3)

F4 Drilling (op4)

F5 Milling (op5) F5 (op5) is before F4 (op4) and F7 (op7) for the datum and material removal interactions

F6 Milling (op6) F6 (op6) is before F10 (op12, op13, op14) for the datum interaction

F7 Milling (op7) F7 (op7) is before F8 (op8, op9, op10) for the datum and material removal interactions

F8 Drilling (op8) op8 is before (op9 and op10); op9 is before opo10 for the fixed order of machining operations
Reaming (op9)

Boring (op10)

F9 Milling (op11) F9 (op11) is before F10 (op12, op13, op14) for the datum interaction

F10 Drilling (op12) op12 is before op13 and op14; op13 is before op14; F10 (op12, op13, op14) is before F11 (op15, op16) for the
datum interaction; op12 is before F14 (op19, op20)Reaming (op13)

Boring (op14)

F11 Drilling (op15) op15 is before op16 for the fixed order of operations
Tapping (op16)

F12 Milling (op17)

F13 Milling (op18) F13(op18) is before op4 and op17 for the material removal interaction

F14 Reaming (op19) op19 is before op20 for the fixed order of machining operations
Boring (op20)
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5.3 Computational results under different conditions
and criteria

To test the capability and flexibility of the proposed optimi-
zation approach in a dynamic workshop environment, we
carried out the process planning under three different con-
ditions. Conditions 1 and 2 assume that all the machining
resources are available, while condition 3 assumes that
vertical milling machine m-02 and tool t-08 are down.

Since the performance of GA is not guaranteed and can
never be evaluated on the basis of a single run, the program
for each condition will be repeatedly run 10 times with the
same parameter settings and different random initialization
seeds. The computational results under different conditions
and criteria are presented as follows:

Condition 1: All machines and tools are available. By
repeatedly running the program 10 times,
the optimal process plan in each run is

generated with the machining cost varying
from 2,527 to 2,585, and the process plans
with the cost of 2,527 appeared five times in
the 10-time run, therefore they are selected
as the final optimal process plans and are
listed in Table 7.

Condition 2: All machines and tools are available. Consid-
ering the machine costs, the numbers of set-
ups, and the number of machine changes are
mainly factors in calculating the total machin-
ing cost, we ignore secondary factors such as
tool cost and tool change cost to simplify the
calculation, and PC0MC+SC+MCC. By re-
peatedly running the program 10 times, the
multiple optimal process plans with cost 2,120
are obtained as listed in Table 8, and they can
be selected as the final optimal solutions.

Condition 3: Suppose machine m-02 and tool t-08 are
down, we set PC0MC+SC+MCC. In a dy-
namic workshop environment, some
machines or tools may be in the state of
bottleneck usage or breakdown. Some opti-
mal or suboptimal process plans are listed in
Table 9 when m-02 and tool t-08 are down
and only certain aspects of costs are consid-
ered, so process plan 1 and 2 can be selected
as the final optimal solutions now.

The optimal process plan for the same part reported in the
work of Guo et al. [17] is with the production cost 2,535,
while ours is 2,527 with the same evaluation criterion in
condition 1. Through comparison with the computational
result reported in [17], it can be seen that our hybrid graph
and GA approach can generate higher-quality solutions. In
addition, the more significant improvement of the proposed

Fig. 9 The OPG of the sample part

Table 7 Two optimal process plans generated under condition 1

Process plan 1

Order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Operation ID 1 5 3 18 6 2 11 12 13 17 7 8 9 19 14 20 10 4 15 16

Machine ID 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1

Tool ID 6 6 6 6 6 6 7 3 9 7 7 2 9 9 10 10 10 2 1 5

TAD +z +x +x −z −z −z −z −z −z −x −a −a −a +z −z +z −a −z −z −z

NMC02, NS010, NTC09, MCC0320, SC01,000, TCC0200, MC0770,TC0237; total cost, 2,527

Process plan 2

Order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Operation ID 1 3 5 2 18 6 11 12 13 17 7 8 9 19 14 20 10 15 16 4

Machine ID 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1

Tool ID 6 6 6 6 6 6 7 3 9 7 7 2 9 9 10 10 10 1 5 2

TAD +z +x +x −z −z −z −z −z −z −x −a −a −a +z −z +z −a −z −z −z

NMC02, NS010, NTC09, MCC0320, SC01,000, TCC0200, MC0770,TC0237; total cost, 2,527
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approach is that it can produce multiple optimal or subopti-
mal process plans considering different conditions and cri-
teria in a dynamic environment.

6 Conclusion

A hybrid graph and GA approach were proposed to solve
the optimization problem of process planning for prismatic
parts by simultaneously considering the assignment of

machining resources, determining sequencing operation
and setup plans. The approach presented here has several
advantages in the following aspects:

1. The precedence constraints are formulated in an OPG
manipulated in the approach, and the operation se-
quencing is always conducted in a feasible solution
domain so the search space of the GA can be re-
duced and the efficiency of optimization algorithm
can be improved.

Table 8 Two process plans generated under condition 2

Process plan 1

Sequence Order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Operation ID 1 11 2 6 12 13 14 18 15 16 3 5 4 19 20 7 8 9 10 17

Machine ID 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Tool ID 6 7 7 7 2 9 10 6 1 5 6 7 2 9 10 7 3 9 10 7

TAD +z −z −z −z −z −z −z −z −z +x +x +z +z +z +z −a −a −a −a −x

NMC01, NS08, MCC0160, SC0800, MC01160; total cost, 2,120

Process plan 2

Sequence order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Operation ID 1 18 17 5 6 4 11 2 12 13 7 8 9 3 10 19 20 14 15 16

Machine ID 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

Tool ID 7 6 7 7 8 2 7 6 2 9 7 2 9 8 10 9 10 10 1 5

TAD +z −x −x −z −z −z −z −z −z −z −a −a −a +x −a +z +z −z −z −z

NMC01, NS08, MCC0160, SC0800, MC01,160; total cost, 2,120

Table 9 Some optimal and suboptimal process plans generated under condition 3

Process plan 1

Sequence order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Operation ID 1 18 17 2 6 11 12 13 5 14 7 8 9 10 3 19 20 4 15 16

Machine ID 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1

Tool ID 7 6 7 6 7 7 2 9 6 10 7 2 9 10 6 9 10 2 1 5

TAD +z −x −x −z −z −z −z −z −z −z −a −a −a −a +x +z +z −z −z −z

NMC01, NS07, MCC0160, SC0700, MC01,730; total cost, 2,590

Process plan 2

Sequence order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Operation ID 1 6 2 5 11 12 13 14 17 18 7 8 9 10 19 20 3 4 15 16

Machine ID 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1

Tool ID 6 6 7 7 7 2 9 10 7 6 7 2 9 10 9 10 6 2 1 5

TAD +z −z −z −z −z −z −z −z −x −x −a −a −a −a +z +z +x −z −z −z

NMC01, NS07, MCC0160, SC0700, MC01,730; total cost, 2,590

Process plan 3

Sequence order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Operation ID 1 11 2 6 12 13 14 18 15 16 3 5 4 19 20 7 8 9 10 17

Machine ID 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Tool ID 6 7 7 7 2 9 10 6 1 5 6 7 2 9 10 7 3 9 10 7

TAD +z −z −z −z −z −z −z −z −z +x +x +z +z +z +z −a −a −a −a −x

NMC00, NS06, MCC00, SC0100, MC02,000; total cost, 2,600
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2. The approach can generate multiple optimal process
plans. The availability of alternative optimal process
plans can provide the production scheduling module
with the flexibility to select different plans depending
on the status of machining resources and make the
scheduling module implement the scheduling algorithm
under a more relaxed set of constraints.

Future work includes the development of the algorithm
for the automatic identification of the precedence relation-
ships between operations, further elaborating the evaluation
criterion of machining costs to adapt well to more complex
and practical machining environments.

Acknowledgments This work was financially supported by the Na-
tional Natural Science Foundation of China (grant number 50675078).
The authors are appreciative of the referee's careful and valuable com-
ments that helped to improve the manuscript.

References

1. Cay F, Chassapis C (1997) An IT view on perspectives of com-
puter aided process planning research. J Comput Ind 34:307–337

2. Xun X, Wang LH, Newmanc ST (2011) Computer-aided process
planning—a critical review of recent developments and future
trends. Int J Comput Integr Manuf 24(1):1–31

3. Dutta D, Yip HD (1998) A genetic algorithm application for
sequencing operations in process planning for parallel machining.
IIE Trans 28:55–68

4. Zhang F, Zhang YF, Nee AYC (1997) Using genetic algorithms in
process planning for job shop machining. IEEE Trans Evolutional
Comput 1(4):278–289

5. Reddy SVB, Shunmugam MS et al (1999) Operation sequencing
in CAPP using genetic algorithms. Int J Prod Res 37(5):1063–
1074

6. Li WD, Ong SK, Nee AYC (2002) Hybrid genetic algorithm and
simulated annealing approach for the optimization of process plans
for prismatic parts. Int J Prod Res 40(8):1899–1922

7. Qiao L, Wang XY, Wang SC (2000) A GA based approach to
machining operation sequencing for prismatic parts. Int J Prod Res
38(14):3283–3303

8. Lee H, Kim SS (2001) Integration of process planning and sched-
uling using simulation based genetic algorithms. Int J Adv Manuf
Technol 18:586–590

9. Rocha J, Ramos C, Vale Z (1999) Process planning using a genetic
algorithm approach. Proceedings of the 1999 IEEE International
symposium on Assembly and Task Planning. Porto, Portugal, July.
pp 338–343

10. Alam MR, Lee KS, Rahman M, Zhang YF (2003) Process plan-
ning optimization for the manufacture of injection moulds using a
generic algorithm. Int J Comput Integr Manuf 16(3):181–191

11. Li L, Fuh JYH, Zhang YF, Nee AYC (2005) Application of genetic
algorithm to computer-aided process planning in distributed man-
ufacturing environments. Robot Comput Integr Manuf 21:568–578

12. Li XY, Shao XY, Gao L (2008) Optimization of flexible process
planning by genetic programming. Int J Adv Manuf Technol
38:143–153

13. Ding L, Yue Y, Ahmet K, Jackson M, Parkin R (2005) Global
optimization of a feature-based process sequence using GA and
ANN techniques. Int J Prod Res 43(15):3247–3272

14. Ma GH, Zhang YF, Nee AYC (2000) A simulated annealing-based
optimization for process planning. Int J Prod Res 38(12):2671–
2687

15. Ong SK, Ding J, Nee AYC (2002) Hybrid GA and SA dynamic
set-up planning optimization. Int J Prod Res 40(18):4697–4719

16. Li WD, McMahon CA (2007) A simulated annealing-based opti-
mization approach for integrated process planning and scheduling.
Int J Comput Integr Manuf 20(1):80–95

17. Guo YW, Mileham AR, Owen GW, Li WD (2006) Operation
sequencing optimization using a particle swarm optimization ap-
proach. Proc IMechE B J Eng Manuf 220:1945–1958

18. Jerald J, Asokan P, Prabaharan G, Saravanan R (2005) Scheduling
optimization of flexible manufacturing systems using particle
swarm optimization algorithm. Int J Adv Manuf Technol 25:964–
976

19. Amaitik SM, Engin Kiliç S (2007) An intelligent process planning
system for prismatic parts using STEP features. Int J Adv Manuf
Technol 31:978–993

20. Prabhu P, Elhence S, Wang H (1990) An operations network
generator for computer aided process planning. J Manuf Syst
9:283–291

21. Irani SA, Koo HY, Raman S (1995) Feature-based operation se-
quence generation in CAPP. Int J Prod Res 38(17):4285–4300

22. Lin AC, Lin SY, Lu WF (1998) An integrated approach to deter-
mining the sequence of machining operations for prismatic parts
with interacting features. J Mater Process Technol 73:234–250

23. Case K, Wan H (2000) Feature-based representation for manufac-
turing planning. Int J Prod Res 38(17):4285–4300

24. Maropoulos PG, Baker RP (2000) Integration of tool selection
with design (part 1. Feature creation and selection of operations
and tools). J Mater Process Technol 107:127–134

25. Zhang HC, Lin E (1999) A hybrid graph approach for automated
set-up planning in CAPP. Robot Comput Integr Manuf 15:89–100

26. Faheem W, Hayes CC, Castano JF, Gaines DM (1998) What is
manufacturing interaction? Proceedings of the 1998 ASME Design
Engineering Technical Conference, Atlanta, GA, USA, 1–6

27. Ciurana J, G. Romeu ML, Ferrer I, Casades M (2008) A model for
integrating process planning and production and control planning
in machining processes. Robot Comput Integr Manuf 24(4):532–
544

28. Blanch R, Pellicer N, G-Romeu ML, Ciurana J (2011) Machining
processes time calculating tool integrated in computer aided pro-
cess planning (CAPP) for small and medium enterprises (SMEs).
Int J Comput Integr Manuf 24(1):40–52

29. Srinivas M, Patnaik LM (1994) Adaptive probabilities of crossover
and mutation in genetic algorithms. IEEE Trans Syst Man Cybern
24(4):656–667

1232 Int J Adv Manuf Technol (2012) 62:1219–1232


	An effective hybrid graph and genetic algorithm approach to process planning optimization for prismatic parts
	Abstract
	Introduction
	Related research work
	Process planning problem description
	Knowledge-based representation of a process plan
	Precedence constraints analyzing and modeling
	Process plan evaluation criterion

	Hybrid graph and GA approach
	The technique to initializing populations
	Fitness function of GA
	The GA operators
	Reproduction
	Crossover
	Mutation
	The GA&newapos;s termination criterion


	Process planning for a sample part
	Problem description
	Determination of parameters in GA approach
	Computational results under different conditions and criteria

	Conclusion
	References


