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Abstract In order to obtain efficiency and flexibility, as-
signment of machines’ layout and determination of jobs’
schedule on each machine are among the most important
decisions. These decisions are interrelated and may impact
each other but they are often treated separately or as a
sequential decision in prior researches. In this paper, we
propose a new approach to concurrently make the layout
and scheduling decisions in a job shop environment. In
other words, we consider an extension of the well-known
job shop scheduling problem with transportation delay in
which in addition to decisions made in the classic problem,
the locations of machines have to be selected among possi-
ble sites. The only goal of the problem is the minimization
of the makespan. A hybrid metaheuristic approach based on
the scatter search algorithm is developed to tackle this
problem. Using 43 randomly generated benchmark instan-
ces, the performance of the scatter search and its compo-
nents are evaluated. We also applied our procedure to the
classic job shop scheduling problems. Computational results
show that our procedure is efficient.

Keywords Job shop scheduling problem . Layout .
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1 Introduction

The design of an effective and flexible job shop production
system in some companies involves two major decisions:
determination of layout and scheduling. Layout involves the
process of assignment of machines to possible locations and
scheduling deals with the problem of sequencing different
jobs on each machine. These decisions are interrelated and
may impact each other but they are often treated separately
or as a sequential decision in prior researches.

It is often the case that growing companies need to
purchase some new machines, produce new products or
increase production quantity. In these cases, optimization
of layout and scheduling is proposed. In practice, usually
these two problems are tackled separately, while sometimes
their impacts on each other are not negligible. A similar
situation happens in companies having seasonal production.
As a practical example, consider a factory that produces
some types of air cooler in spring and summer and some
types of gas stoves in fall and winter. Although there are
several common machines and similar operations in produc-
tion of these two categories of products, some machines and
operations are different. Basically, scheduling of operations
for production of air cooler based on the optimal layout
designed for production of gas stove or vice versa is not
an optimal decision. In addition, assignment of machines to
possible locations regardless to operations and their routes
increases transportation costs.

The problem proposed in this paper is the concurrent
layout and scheduling problem in a job shop environment
(CLSPJE). In the CLSPJE, it is assumed that there are a set
of jobs where each one includes a set of operations. Also,
there are a set of machines and a set of possible locations
where the number of machines and locations are identical.
For simplicity, the assumption of the quadratic assignment
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problem (QAP) is considered where each machine can be
assigned to every possible site. It is presumed that at the
beginning, all jobs are in a fixed place like a warehouse.
Moreover, all of the classic job shop scheduling problem
(JSP) assumptions are considered that involves the non-
preemptive scheduling of each job’s operations on machines
in order to minimize the makespan. It is assumed that the
sequence of operations for each job is predetermined, nei-
ther release times nor due dates are specified, each machine
can process only one job at a time and each job can be
processed on only one machine at a time. In addition to
these assumptions, it is supposed that transportation times
between each pair of machines as well as between the
warehouse and each machine is symmetric. The transporta-
tion times are job- and machine–independent, and they
depend only on distances. Moreover, different jobs can be
transported simultaneously and speed of transportation is
identical for all jobs. The only goal of the problem is
minimization of the makespan. Since the JSP is NP-
complete [1] and this problem is harder than the JSP, it is
NP-complete as well.

The remainder of this paper is organized as follows.
A review of the literature is given in Section “2”.
Section “3” describes the problem description and for-
mulation. The schedule representation and generation
scheme are discussed in Section “4”. Also, the scatter
search algorithm is described with detail in Section “5”.
Computational results are presented in Section “6”,
while Section “7” is reserved for overall conclusions
and suggestions for future research.

2 Literature review

The literature on the concurrent scheduling and layout prob-
lem is almost void but there are some related works on the
QAP and the JSP. Several exact and heuristic procedures are
presented in the literature for the QAP. Branch-and-bound [2]
and branch-and-cut [3] are the exact algorithms that have been
applied for the QAP. Also, a cooperative parallel tabu search
[4], a robust tabu search [5], a greedy genetic algorithm [6]
and a hybrid genetic algorithm [7] are some of the recent
metaheuristics designed for this problem. In addition, an iter-
ated local search [8] and a novel chaotic search [9], belonging
to the heuristic approaches, have been developed for the QAP.

On the other hand, many researchers have mainly fo-
cused on solving the JSP. The JSP is widely acknowledged
as one of the most difficult NP-complete problems [1].
Thus, it is unrealistic to solve even a medium-sized problem
using time-consuming exact algorithms such as integer
programming [10] or branch-and-bound [11]. Therefore,
metaheuristic approaches such as tabu search [12–14], hy-
brid tabu search [15], simulated annealing [16], scatter

search [17], filter-and-fan [18], ant colony [19] and particle
swarm optimization [20] have been developed for the JSP
and achieved very good results. Moreover, heuristic
approaches like those in Ref. [21], developed based on
global equilibrium search techniques, and Ref. [22], devel-
oped based upon utilizing the properties of backbone and
big valley, have found very good results for the hard instan-
ces of the JSP.

The JSP with transportation delay has been considered by
Hurink and Knust [23], but in which the location of each
machine is fixed. Also, a dynamic scheduling approach for
the spatial layout planning for block assembly in the ship-
building industry was proposed by Li et al. [24]. Spatial
scheduling problem, in general, consists of the spatial layout
planning and the spatial sequencing of objects to be sched-
uled. Moreover, in the field of cellular manufacturing, a
genetic algorithm has been developed by Wu et al.
[25] for integrating cell formation with machine layout
and scheduling.

3 Problem description and formulation

The CLSPJE can be described based on the following list of
assumptions:

a. There are n jobs, m machines, m possible sites and a
warehouse.

b. Each job i where i01,…, n constituted of a set of
operations (k, i) where k indicates index of machines.
We do not consider recirculation, i.e., each job visits
each machine at most one time. This assumption is
considered for simplicity of notations and is based on
the formulation of Pinedo [26].

c. Each job i has a specified route on the machines. This is
denoted by set A and includes the precedence constraints
among operations of each job.

d. The processing of job i lasts for pki time units on
machine k where k00 indicates the warehouse and
poi00 for i01,…, n.

e. Transportation time between locations u and v is
denoted by tuv.

Based upon the assumptions of the CLSPJE mentioned in
Section “1”, it can be formulated as an integer programming
model by introducing the following variables:

ski ¼ the start time of job i on machine k

zku ¼
1; if machine k is placed on location u

0; otherwise

(

xkij ¼
1; if job i comes before job j on machine k

0; otherwise

8<
:
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Min Cmax ð1Þ
s.t.

Cmax � silast ;i þ pilast ;i; 8ilast ð2Þ

Xm
k¼1

zku ¼ 1; u ¼ 1; . . . ;m ð3Þ

Xm
u¼1

zku ¼ 1; k ¼ 1; . . . ;m ð4Þ

sli � ski � pki þ tuv �M 1� zkuð Þ þ 1� zlvð Þð Þ; for all
k; ið Þ ! l; ið Þ 2 A and u; v ¼ 1; . . . ;m

ð5Þ

skj � ski � pki �M 1� xkij
� �

; for all k; ið Þ and k; jð Þ ð6Þ

ski � skj � pkj �Mxkij; for all k; ið Þ and k; jð Þ ð7Þ

z00 ¼ 1 ð8Þ

s0i ¼ 0; i ¼ 1; . . . ; n ð9Þ

ski 2 Nþ; i ¼ 1; . . . ; n; k ¼ 1; . . . ;m ð10Þ

zku 2 0; 1f g; k; u ¼ 0; 1; . . . ;m ð11Þ

xkij 2 0; 1f g; for all k; ið Þ; k; jð Þ ð12Þ
In this model, the objective function (1) minimizes the

makespan. Constraint (2) shows that makespan is not less
than the finish time of the last operation of each job. In this
constraint, index ilast indicates the machine that processed
the last operation of job i. Constraints (3) and (4) assure that
each location is assigned to one machine and each machine
is assigned to one location, respectively. If job i should be
processed by machine k before being processed by machine
l, the constraint (k, i) → (l, i) is proposed where symbol →
represents the precedence constraints between two opera-
tions (k, i) and (l, i). In this case, the start time of job i on
machine l should be greater or equal to the start time of that
job on machine k plus its processing time on machine k and
transportation time between machines k and l. If machines k
and l are placed at locations u and v, respectively, we can

show this restriction by constraint (5) in which M is a big
positive integer. Also, constraint (5) prevents processing a
job on two or more machines at a time. Since it is assumed
that each machine can process at most one job at a time,
when two different jobs require the same machine, one
should precede the other. This restriction is shown in con-
straints (6) and (7). Constraint (8) ensures that the location
of the warehouse is fixed, and constraint (9) indicates that
start time of all jobs on machine zero (warehouse) is zero,
implying the ready times of all jobs are zero. Constraint (10)
shows that variable ski gets nonnegative integers, and con-
straints (11) and (12) represent that decision variables zku
and xkij are binary variables.

4 Solution representation and generation scheme

Each solution S of the CLSPJE is shown by a double vector
S 0 (s, q) in which s 0 (ski); ∀(k, i) where integer ski indicates
the start times of operation (k, i) and q 0 (q1,…, qm) where
qk ∊ {1, 2,…, m} indicates the location of machine k. Our
developed metaheuristic procedure is based on two algo-
rithms, i.e., a constructive heuristic algorithm and an im-
proving metaheuristic. Our constructive heuristic algorithm
constructs solutions and our metaheuristic algorithm
improves them.

Our constructive heuristic algorithm uses a solution rep-
resentation to encode a solution and uses a solution gener-
ation scheme (SGS) to translate the solution representation
to a solution S 0 (s, q). The SGS determines how a feasible
solution is constructed by assigning the machines to the
locations and the start times to the operations, whereby the
locations and relative priorities are determined by the solu-
tion representation. A solution S of the CLSPJE is repre-
sented by a double list ω 0 (λ, q). The λ− list where λ 0

(λ1,…, λπ) is a list of operations, a sequence of operations
where λi is the operation number with ith priority for being
scheduled using the SGS. Also, π belongs to {m, m + 1,…,
mn} because it is assumed that there is at least one operation
and at most n operations on each machine. The q− list where
q 0 (q1,…, qm) is a list of locations, where qk represents the
location assigned to machine k.

Since the JSP is a special version of the resource-
constrained project scheduling problem (RCPSP) [27], ac-
tivities and renewable resources in the RCPSP correspond to
operations and machines in the JSP, respectively. Also, the
dependencies among the operations can be shown by a
network of operations in which each real operation has
exactly one predecessor and one successor. Based on these
similarities, we use ideas developed in the literature for the
RCPSP to design more efficient solution representation for
the CLSPJE. An operation list is known as precedence
feasible if every operation is positioned after its predecessor,

Int J Adv Manuf Technol (2012) 62:1249–1260 1251



determined based on operations’ order of jobs. We also
enforce the topological order (TO) condition introduced by
Valls et al. [28] in our operation list representation. To
embed the TO condition in a given operation list, at first,
operations are scheduled using a serial SGS (SSGS) [29]
and then they are sequenced based upon nonincreasing order
of their finish times. In other words, for all i and j, if
fi(S) > fj(S), where fi(S) and fj(S) denote the finish times
of operations i and j in solution S, respectively, opera-
tion i comes before operation j in the topologically
ordered operation list (TOOL). The advantage of this
is that, whereas several operation lists can result in the
same solution using a serial SGS (SSGS), each topolog-
ical order corresponds to a unique solution, except in
the case of identical operations finish times. Each oper-
ation list obtained using the TO condition is also a
precedence feasible operation list for the reverse net-
work in which all dependencies of the operation net-
work are reversed. The TO condition was applied
successfully with the concept of the reverse network in
a scatter search metaheuristic in Ref. [30].

Each solution representation is translated to a real
solution S using the SSGS. The SSGS is chosen be-
cause it generates active schedules and is robust against
the precedence infeasible operation list [27]. In order to
translate a solution representation ω 0 (λ, q) to a
solution S, the machines are assigned to the sites
according to the given list q. Then, a list scheduling
approach is applied, i.e., operations are selected one by
one and are scheduled as soon as possible. Selection of
the operations is based on the priorities specified by λ−
list as well as the dependencies among operations. Each
selected operation (k, i) can be started at time instant t
if two conditions are satisfied. Firstly, finish time of its
precedent operation plus transportation time between
these two operations is not greater than t. Secondly,
machine k is free from time instant t to t + pki.

5 The scatter search algorithm

The SS is an evolutionary method that creates new solutions
by combining elite available solutions. For a general intro-
duction to SS, we refer the reader to Ref. [31]. Figure 1
shows the main structure of our developed SS procedure.

In the first step, an initial population P containing |P|
solutions is generated. In the second step, the reference set
(RefSet) including RefSet1 and RefSet2 is constructed. Sol-
utions of RefSet1 and RefSet2 are called reference solutions.
Next, NewSubsets is generated where each contains two
reference solutions. Subsequently, two solutions of each
subset are combined and new solutions are generated using
a new combination method. The idea of the combination
method is taken from the PR algorithm which explores a set
of solutions on the path between the solutions in the selected
subset solutions. The combination of each pair of solutions
results in two new solutions, and the quality of these new
obtained solutions may be improved by a local search with
probability Pls. Then, the TO condition is applied to the best
solution so far and is transferred to the new population. In
the next step, the dependencies in the operation network are
reversed to perform a forward–backward improvement
scheduling step [32]. More precisely, our developed proce-
dure uses direct schedules, obtained from the operation net-
work with original dependencies, to generate reverse children
and vice versa. In other words, our procedure is a bipopulation
(bpop) SS including direct and reverse populations. Steps 2–9
are repeated until the termination criterion, considered as a
number of generated schedules (ns), is reached.

5.1 Construction of initial population P

An SS must be initialized with a starting population. The
methods for creating an initial population |P| are varied:
feasible only, randomized, using heuristics, etc. For this
problem, we choose to use randomized approach for the

Fig. 1 Scatter search procedure
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following reasons. Firstly, randomized approach increases
diversity of solutions quickly. Secondly, in terms of machine
assignment, infeasible solutions are not created because the
assumptions of the QAP are considered. Lastly, the SSGS is
robust against precedence infeasible operation list. The size
of |P| is dependent to the size of RefSet which depends on
the termination criterion (ns).

5.2 The local search

A local search procedure is applied over each generated
solution S with probability pls. The general structure of this
local search is constituted of a while loop that will be
repeated at most m/2 times. At the first iteration of this
procedure, locations of two machines, having the minimum
distance, are exchanged while locations of other machines
and the operation list λ remain unchanged. By applying the
SSGS to the new generatedω, a new solution is obtained. If
the makespan of this solution is not improved, the procedure
is stopped; otherwise, the TO condition is applied on the
newly obtained solution. The resulting solution is replaced
with the corresponding unimproved solution in P. If any
improvement is achieved in this iteration, the loop will be
repeated by exchanging locations of two machines having
the second minimum distance at the next iteration. This
procedure is stopped whenever no more improvement is
attained or the locations of two machines with the maximum
distance have been exchanged.

In terms of schedule types, known as direct and reverse,
all solutions of each population have the same schedule
type. On the other hand, the TO condition converts sched-
ules from direct to reverse or vice versa. Since the local
search procedure may not be applied over all solutions of a
population, modification is required. In order to preserve the
schedule type, after applying the SSGS, operations are se-
quenced in nondecreasing order of their start times. This
idea is a basis for construction of single population (spop)
SS in which entire generated schedules are direct. We com-
pare the performance of the bpop and spop versions of our
developed SS in Section “5.3”.

5.3 Reference set building and subset generation methods

Unlike a traditional genetic algorithm that acts on the entire
population, the SS maintains a smaller reference set of
members separated from the larger population. The best b
members (elite) of the population are copied to the RefSet.
A reference set is a small set of solutions that contains not
only the best solutions but also solutions to maintain diver-
sity. The construction of high quality solutions, RefSet1,
starts with the selection of the solution in P with the lowest
makespan. The representation of this solution is added to
RefSet1 as ω1 and is deleted from P. The next best solution

with representation ω in P is chosen and added to RefSet1
only if Dmin(ω)≥ t1, where Dmin(ω) is the minimum of the
distances of solution representation ω to the elements cur-
rently in RefSet, and t1 is a threshold distance. The
distance between two solution representations ωα and
ωβ is calculated as Eq. (13).

D wa;wb
� � ¼

Pnm
i¼1

D lai ; l
b
i

� �
þ Pm

k¼1
D qbk ; q

b
k

� �
nmþ m

ð13Þ

where D lai ; l
b
i

� �
¼ 1; if lai 6¼ lbi

0; otherwise

(
and

D qbk ; q
b
k

� �
¼ 1; if qbk 6¼ qbk

0; otherwise

(

This process is repeated until b1 elements are selected for
RefSet1. To construct diverse solutions in RefSet2, the same
strategy is followed but with t2 > t1 and with Dmin(ω) as the
minimum distance to the elements in both RefSet1 and
RefSet2. Therefore, both RefSet1 and RefSet2 contain diver-
sified solutions, but with more emphasis on diversification
in RefSet2. When no qualified solution can be found in the
population, RefSet is completed with randomly generated
solutions based upon the method used for building the initial
population. In this case, the minimum threshold distance
condition is not checked for generated solutions.

After the RefSet construction, NewSubsets are generated.
Each subset includes two solutions from RefSet1 or one
solution from RefSet1, and the other one from RefSet2.
Therefore, since |RefSet1|0b1 and |RefSet2|0b2, then
NewSubsetsj j ¼ b1 b1 � 1ð Þ=2þ b1b2.

5.4 Solution combination method

Only solutions in the reference set are candidates to be used
for combining to regenerate the new large population, unlike
using the whole population in a genetic algorithm. Our devel-
oped combination method is based on the idea of the PR
algorithm, referred to as PR combination method. In this
approach, the solutions of each subset, generated fromRefSet,
are combined. In order to relatively measure the performance
of the PR combination method, we also apply the two-point
crossover method [33], usually used in the genetic algorithm,
as the combination method in our SS procedure. This ap-
proach is referred to as the TC combination method.

5.4.1 The PR combination method

The PR has been suggested as an approach to integrate
intensification and diversification strategies [34]. This ap-
proach generates new solutions by exploring trajectories
connecting high-quality solutions. In the PR combination
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method, a movement is started from one of these solutions
called initiating solution (ωin 0 (λin, qin)), and a path is
generate in the neighborhood space which leads toward
another solution called guiding solution (ωgu 0 (λgu,
qgu)). Then, the role of initiating and the guiding solutions
are exchanged to generate a new path in the opposite direc-
tion. In each direction, the path is constructed based on the
moves that introduce attributes contained in the guiding
solution. In each path, a set of solutions will be generated
that one of them will be selected randomly as the child
solution. After applying the TO condition to the child solu-
tion, it will be added to the new population.

In order to combine two arbitrary solutions ωin and ωgu,
λin is changed gradually based upon an iterative changing
method including two steps. At the first step of the changing
method, the first position i (from the left) in λin where λin(i)
≠ λgu(i) should be found, where for every j < i, λin(j) 0

λgu(j). Then, the first position j in λin, where j > i, such that
λin(j) 0 λgu(i) should be detected. Now, two elements λin(i)
and λin(j) are exchanged. This process is repeat until we λin

and λgu are the same (λin 0 λgu). Each change in λin gen-
erates a new λ− list, and all changes over λin result in a set
of new lists of λ. From this set, one list is selected randomly
as a part of the child solution and shown by λc. Similarly,
the changing method is applied over qin to reach qc− list as
the other part of the child solution. After that, the TO
condition is applied to ωc 0 (λc, qc) and then its output is
added to the new population. It should be considered that
the generated λc may not be precedence feasible but it does
not matter because the SSGS considers both the priorities
and dependencies among operations concurrently.

5.4.2 The TC combination method

In the TC combination method, we deal with the parent
solutions, ωf 0 (λf, qf) (father) and ωm 0 (λm, qm)(mother),
corresponding to the initiating and guiding solutions in the
PR combination method. In this method, ωf and ωm are
combined to generate two new solutions referred to as son
solution (ωs 0 (λs, qs)) and daughter solution (ωd 0 (λd,
qd)). For this purpose, the integer crossing points in lists λ
and q are selected randomly. After this, the elements of λs

located between crossing points are copied directly from λf,
and the rest are copied from λm. By swapping the role of λf

and λm and following the same rule, λd is generated. Sim-
ilarly, qs and qd are generated from qf and qm.

5.5 Modification of the SS algorithm for the JSP

Although we have designed our procedure for the CLSPJE,
it can be modified to tackle the JSP. Since the CLSPJE is a
generalization of the JSP, it is sufficient to consider fixed
assignment for sites and machines with zero transportation

times. Thus, the λ− list is enough for representation of a JSP
solution. Also, we need to modify the formula (13) as the

following where definition of D lai ; l
b
i

� �
is not changed:

D la; lb
� � ¼

Pnm
i¼1

D lai ; l
b
i

� �
nm

: ð14Þ

Furthermore, a local search procedure is developed for
the JSP as follows. This procedure gets a λ− list as an input
and, for a direct schedule, it finds the operation having
maximum distance with its predecessor in the list. Then, it
puts this operation beside its predecessor and shifts all
operations located between the selected operation and its
predecessor to the right by one time unit. Next, the new
obtained list (λnew) is evaluated by applying the SSGS. If
the makespan is improved, the procedure is repeated; other-
wise it is stopped. At the best case, the improvement is
repeated until each operation is located besides its predeces-
sor in the λ− list. For a reverse schedule, the successor of
each operation is considered instead of its predecessor in the
above-mentioned procedure.

6 Computational results

6.1 Benchmark problem sets

The procedure is coded in Visual C++ 6 and all computa-
tional experiments are performed on a personal computer
Pentium IV 3 GHz processor with single core CPU and with
1,024 MB of internal memory. Since the CLSPJE is pro-
posed for the first time and there was no test set in the
literature for that, we consider 43 benchmark instances of
the JSP belonging to two classical sets known as LA from
Lawrence [35] and FT from Fisher and Thompson [36].
Each benchmark instance of the JSP is modified for the
CLSPJE by adding the distance between each pair of sites,
a stochastic variable with discrete uniform distribution U
[1,100]. The problem size varies between 6 and 30 jobs and
between 5 and 15 machines. It is well-known that some
problems are more difficult than others. Usually, JSP prob-
lems become harder to solve as the problem size increases or
the number of jobs gets closer to the number of machines.
The modified benchmark instances of Lawrence are referred
to as LAC, and the modified benchmark instances of Fisher
and Thompson are referred to as FTC.

6.2 Parameters setting

Using a full factorial design, the values of parameters are
adjusted for the CLSPJE and the JSP. We consider five
levels for each parameter shown in Table 1.
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In order to evaluate the impact of the termination criteri-
on on the quality of solutions, three values 5,000, 50,000
and 500,000 schedules are considered for parameter ns.
Henceforth, the SS procedure with ns 0 5,000, 50,000 and
500,000 schedules is referred to as SSL, SSM and SSH,
respectively. Since there are numerous (5503,125) different
designs, we run only SSL for adjusting the parameters. The
best values of parameters are shown in Table 2 for the
CLSPJE. For the JSP, the identical results are obtained for
best values of parameters except the parameter t2 where its
best value is 0.7.

6.3 Comparative computational results

6.3.1 Impact of the scatter search components

Since the CLSPJE is proposed for the first time, we
could not compare the efficiency of our algorithm with
any previous work. Thus, in this section, we analyze the
effect of different components of the SS. For each
component of algorithm, superiority of a scenario
against other scenarios is investigated. These compo-
nents include the type of population, the local search
and the combination method.

The results shown in Table 3 are obtained based on
the default SS procedure including the setting men-
tioned above and the PR combination method. In this
table, the first column indicates the problem name, the
second column shows the number of jobs, the third
column displays the number of machines and the forth
column represents the best-known solutions (BKS)
obtained based upon the all runs. The next nine col-
umns, categorized to three sets, report three items for
SSL, SSM and SSH including the best found solutions

(BFS), the corresponding percentage deviation (PD) rel-
ative to the BKS values and the time consumed to reach
the BFS (in seconds). All test problems of the CLSPJE
and the best found solutions can be downloaded from
https://sites.google.com/site/clspje.

Impact of the population type In this section, the results of
two versions of our developed SS procedure, bpop (SSbpop)
and spop (SSspop) are compared. The difference between
these two types of procedures emanates from the rule of
TO condition where in the SSbpop, the TO condition is
applied based on the finish times of operations while in
the SSspop, the TO condition is applied based on the start
times of operations. Table 4 is the summary of Table 3
related to the SSbpop, and Table 5 has a similar structure
but obtained from running of the SSspop procedure. In these
tables, we have grouped the LAC benchmark instances to
eight groups based on the number of jobs and the number of
machines. Also, for each value of ns, we have reported the
number of BKS founded by the procedure (#BKS), average
PD (APD) and the time consumed to reach the BFS (in
seconds).

Overall, the results reveal that the SSbpop has better

performance than SSspop. The SSbpopL , SSbpopM and SSbpopH

procedures have found 8, 15 and 35 out of the 43 best-
known solutions, respectively, while SSspopL , SSspopM and
SSspopH procedures have found 4, 8 and 12 out of the 43
best-known solutions, respectively. In addition, the APD of
the SSbpop approach is noticeably smaller than the SSspop

approach, while their average CPU times (to reach the BSF)
are almost equal. Since the SSspop has better performance
than the SSspop, the results of the next sections are obtained
by applying the SSbpop approach.

Impact of the local search In order to evaluate the impact
of the local search, we compare the results of the SS
procedure with and without local search, i.e., Pls00.03
and Pls00. The results for the case that the local search
is incorporated were shown in Table 4. Also, when the
local search procedure is removed from the algorithm,
we obtained the results presented in Table 6. For all
SSL, SSM and SSH, the #BKS and the APD of the SS
procedure with local search are better than the SS
procedure without local search, while their CPU times
do not have evident difference. For the results of the
other sections, we consider the SS with the local search.

Impact of the combination method The performance of the
PR and the TC combination methods can be evaluated based
on the data reported in Table 7 and comparing them with
Table 4. Table 7 shows the results of running the SS proce-
dure with the TC combination method. Obviously, it can be

Table 1 Levels of parameters

Parameters Levels

t1 0.3 0.4 0.5 0.6 0.7

t2 0.5 0.6 0.7 0.8 0.9

pls 0.00 0.01 0.02 0.03 0.04

b (ns)0.2 (ns)0.3 (ns)0.4 (ns)0.5 (ns)0.6

b1 0.3×b 0.4×b 0.5×b 0.6×b 0.7×b

Table 2 Best values of parameters for the CLSPJE

Parameters t1 t2 pls b b1

Best value 0.6 0.8 0.03 (ns)0.3 0.4×b
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concluded that the TC combination method is dominated by
the PR combination method especially in terms of the
#BKS. Of course, the CPU time for the TC in all groups is

smaller than the PR but this happens due to the quick
convergence of the procedure. Also, in terms of the total
consumed CPU time, not reported in the Tables 4 and 7, the

Table 3 Detailed results of the
default scatter search procedure Problem SSL SSM SSH

Name n m BKS BSF PD Time BSF PD Time BSF PD Time

LAC1 10 5 773 779 0.776 0.2 773 0.000 0.9 773 0.000 1.8

LAC2 10 5 750 751 0.133 0.2 751 0.133 0.8 750 0.000 1.9

LAC3 10 5 781 792 1.408 0.4 781 0.000 0.7 781 0.000 4.4

LAC4 10 5 741 741 0.000 0.2 741 0.000 0.9 741 0.000 5.4

LAC5 10 5 635 643 1.260 0.3 640 0.787 0.5 635 0.000 3.7

LAC6 15 5 936 936 0.000 0.8 936 0.000 1.2 936 0.000 6.0

LAC7 15 5 966 980 1.449 0.7 973 0.725 1.7 966 0.000 8.6

LAC8 15 5 891 929 4.265 0.9 899 0.898 1.3 891 0.000 9.5

LAC9 15 5 978 981 0.307 1.0 978 0.000 2.1 978 0.000 7.6

LAC10 15 5 968 968 0.000 0.2 968 0.000 1.4 968 0.000 3.2

LAC11 20 5 1,241 1,241 0.000 0.6 1,241 0.000 1.0 1,241 0.000 5.5

LAC12 20 5 1,049 1,049 0.000 0.7 1,049 0.000 1.8 1,049 0.000 9.4

LAC13 20 5 1,151 1,151 0.000 0.7 1,151 0.000 1.9 1,151 0.000 8.3

LAC14 20 5 1,299 1,299 0.000 0.2 1,299 0.000 0.6 1,299 0.000 1.2

LAC15 20 5 1,224 1,262 3.105 1.5 1,237 1.062 3.6 1,224 0.000 21.8

LAC16 10 10 1,241 1,256 1.209 1.1 1,243 0.161 7.7 1,241 0.000 28.1

LAC17 10 10 1,074 1,091 1.583 1.0 1,074 0.000 3.4 1,074 0.000 33.7

LAC18 10 10 1,073 1,113 3.728 0.4 1,081 0.745 5.5 1,073 0.000 34.8

LAC19 10 10 1,116 1,139 2.061 1.3 1,125 0.806 5.3 1,119 0.269 27.7

LAC20 10 10 1,115 1,155 3.587 1.4 1,128 1.166 7.2 1,115 0.000 27.4

LAC21 15 10 1,317 1,385 5.163 2.7 1,353 2.733 13.1 1,317 0.000 46.3

LAC22 15 10 1,181 1,221 3.387 2.0 1,189 0.677 15.2 1,193 1.016 43.6

LAC23 15 10 1,250 1,285 2.800 2.1 1,253 0.240 10.8 1,250 0.000 39.3

LAC24 15 10 1,243 1,303 4.827 1.3 1,263 1.609 16.5 1,243 0.000 45.8

LAC25 15 10 1,230 1,238 0.650 2.6 1,247 1.382 22.5 1,230 0.000 52.4

LAC26 20 10 1,427 1,472 3.153 3.7 1,427 0.000 27.1 1,431 0.280 89.7

LAC27 20 10 1,475 1,533 3.932 3.4 1,514 2.644 24.1 1,475 0.000 101.7

LAC28 20 10 1,445 1,505 4.152 3.9 1,453 0.554 31.6 1,445 0.000 110.6

LAC29 20 10 1,407 1,472 4.620 4.0 1,435 1.990 36.4 1,423 1.137 94.7

LAC30 20 10 1,548 1,571 1.486 3.2 1,556 0.517 19.2 1,548 0.000 103

LAC31 30 10 1,808 1,871 3.485 5.6 1,822 0.774 25.6 1,808 0.000 117.6

LAC32 30 10 1,890 1,946 2.963 6.2 1,890 0.000 38.9 1,897 0.370 125.3

LAC33 30 10 1,749 1,814 3.716 7.1 1,770 1.201 43.2 1,749 0.000 138.9

LAC34 30 10 1,776 1,842 3.716 7.2 1,801 1.408 47.6 1,776 0.000 143.4

LAC35 30 10 1,933 1,989 2.897 6.5 1,942 0.465 38.8 1,933 0.000 154.6

LAC36 15 15 1,667 1,736 4.139 2.3 1,712 2.699 46.7 1,679 0.720 204.1

LAC37 15 15 1,777 1,858 4.558 2.8 1,819 2.363 31.5 1,799 1.238 227.6

LAC38 15 15 1,692 1,740 2.837 4.6 1,703 0.650 27.8 1,692 0.000 229

LAC39 15 15 1,665 1,719 3.243 3.8 1,679 0.841 16.2 1,674 0.540 231.1

LAC40 15 15 1,690 1,735 2.663 4.0 1,700 0.592 25.6 1,690 0.000 256.5

FTC1 6 6 368 368 0.000 0.0 368 0.000 0.0 368 0.000 0.1

FTC2 10 10 1,187 1,227 3.370 1.1 1,216 2.443 17.2 1,187 0.000 73.2

FTC3 10 5 1,298 1,385 6.703 1.7 1,298 0.000 15.3 1,298 0.000 17.2
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TC is a bit faster than the PR because in the PR method, we
generate a set of solutions in each path and select one of
them, while in the TC method, each generated solution is
selected. It should be noticed that the computational results
reported in other sections are obtained by applying the PR
combination method.

6.3.2 Comparative results for the JSP

Although our developed SS procedure is devoted to the
CLSPJE, we modified and applied it to the JSP to show its
relative efficiency. Table 8 indicates the results of our devel-
oped SS procedure based on 40 instances of Lawrence [35].

Table 4 Summary results of the
SSbpop Problem SSL

bpop SSM
bpop SSH

bpop

Name n m #BKS APD Time #BKS APD Time #BKS APD Time

LAC1–5 10 5 1 0.716 0.3 3 0.184 0.8 5 0.000 3.4

LAC6–10 15 5 2 1.204 0.7 3 0.324 1.5 5 0.000 7.0

LAC11–15 20 5 4 0.621 0.7 4 0.212 1.8 5 0.000 9.2

LAC16–20 10 10 0 2.433 1.0 1 0.576 5.8 4 0.054 30.3

LAC21–25 15 10 0 3.365 2.1 0 1.328 15.6 4 0.203 45.5

LAC26–30 20 10 0 3.469 3.6 1 1.141 27.7 3 0.283 99.9

LAC31–35 30 10 0 3.355 6.5 1 0.770 38.8 4 0.074 135.9

LAC36–40 15 15 0 3.488 3.5 0 1.429 29.6 2 0.500 229.7

All LAC 7 2.331 2.3 13 0.745 15.2 32 0.139 70.1

FTC1 6 6 1 0.000 0.0 1 0.000 0.1 1 0.000 0.1

FTC2 10 10 0 3.370 1.1 0 2.443 17.1 1 0.000 73.2

FTC3 10 5 0 6.703 1.7 1 0.000 15.3 1 0.000 17.2

All FTC 1 3.357 0.9 3 0.814 10.8 3 0.000 30.2

All 8 2.403 2.2 15 0.750 14.9 35 0.130 67.3

Best 0.000 0.0 0.000 0.0 0.000 0.1

Worst 6.703 7.2 2.733 47.6 1.238 256.5

Table 5 Summary results of the
SSspop Problem SSH

spop SSM
spop SSL

spop

Name n m #BKS APD Time #BKS APD Time #BKS APD Time

LAC1–5 10 5 0 2.731 0.4 1 1.600 1.0 1 0.600 4.8

LAC6–10 15 5 1 2.752 0.8 2 1.567 1.9 3 0.640 8.2

LAC11–15 20 5 3 1.892 0.8 4 0.882 2.2 4 0.376 9.9

LAC16–20 10 10 0 5.313 1.1 0 2.442 6.7 2 0.573 34.4

LAC21–25 15 10 0 7.241 2.0 0 3.635 16.1 0 2.394 45.8

LAC26–30 20 10 0 8.973 3.0 0 5.308 26.4 0 2.679 105.9

LAC31–35 30 10 0 9.233 6.7 0 4.979 35.3 0 2.880 134.9

LAC36–40 15 15 0 8.035 4.1 0 4.948 34.6 0 2.426 231.2

All LAC 4 5.771 2.4 7 3.170 15.5 10 1.571 71.9

FTC1 6 6 0 0.543 0.2 1 0.000 0.3 1 0.000 0.2

FTC2 10 10 0 6.318 1.2 0 2.275 13.5 1 0.000 77.3

FTC3 10 5 0 9.014 1.4 0 4.700 15.7 0 1.156 12.7

All FTC 0 5.292 0.9 1 2.325 9.8 2 0.385 30.1

All 4 5.738 2.3 8 3.111 15.1 12 1.488 69.0

Best 0.000 0.2 0.000 0.3 0.000 0.2

Worst 12.225 7.4 7.605 48.9 5.544 251.5
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To our knowledge, the four best metaheuristic developed
for the JSP are tabu search algorithm of Grabowski and
Wodecki (TSGW) [12], tabu search approach of Nowichi
and Smutnicki (TSAB) [13], hybrid TS/SA algorithm
(TSSA) of Zhang et al. [15] and the algorithm of Pardalos
and Shylo [21] (GES1), designed based on the global equi-
librium search techniques. Table 9 shows the available
results of these algorithms on the test set of Lawrence.

The inclusion of the our SS algorithm in the analysis
gives an average relative deviation from the best-known
solutions of 0.68% for the SSL approach, 0.40% for the
SSM approach and 0.18% for the SSH approach. Also, the
average relative deviation from the best-known solutions is
0.05% for the TSGW approach, 0.07% for the TSAB ap-
proach, 0.05% for the TSSA approach and 0.010% for the
GES1 approach.

Table 6 Summary results of the
scatter search without local
search

Problem SSH SSM SSL

Name n m #BKS APD Time #BKS APD Time #BKS APD Time

LAC1–5 10 5 0 1.702 0.4 2 1.006 0.9 3 0.232 4.5

LAC6–10 15 5 1 1.690 0.8 3 0.583 2.1 3 0.066 8.5

LAC11–15 20 5 3 0.588 1.0 4 0.229 2.0 5 0.000 10.6

LAC16–20 10 10 0 3.788 1.4 2 1.314 6.1 3 0.124 30.1

LAC21–25 15 10 0 4.651 2.1 0 2.075 14.1 1 1.028 44.3

LAC26–30 20 10 0 6.029 3.7 0 2.134 25.8 1 0.452 83.7

LAC31–35 30 10 0 4.322 5.8 0 2.083 37.8 0 0.792 133.9

LAC36–40 15 15 0 4.790 4.2 0 2.268 33.7 4 0.319 218.4

All LAC 4 3.445 2.4 11 1.462 15.3 20 0.376 66.7

FTC1 6 6 1 0.000 0.1 1 0.000 0.1 1 0.000 0.2

FTC2 10 10 0 4.212 1.3 0 3.033 16.1 0 1.516 91.4

FTC3 10 5 0 6.163 1.6 0 5.008 13.3 0 1.233 68.7

All FTC 1 3.459 1.0 1 2.680 9.8 1 0.916 53.4

All 5 3.446 2.3 12 1.547 14.9 21 0.414 65.8

Best 0.000 0.1 0.000 0.1 0.000 0.2

Worst 7.249 7.0 5.008 48.9 2.885 236.7

Table 7 Summary results of the scatter search with the TC combination method

Problem SSH SSM SSL

Name n m #BKS APD Time #BKS APD Time #BKS APD Time

LAC1–5 10 5 0 6.847 0.3 0 5.613 0.7 0 3.046 4.3

LAC6–10 15 5 0 9.652 0.5 0 5.854 1.8 0 3.951 8.8

LAC11–15 20 5 0 7.138 0.5 0 6.174 2.2 0 3.980 17.2

LAC16–20 10 10 0 15.375 0.9 0 8.367 6.9 0 6.698 26.1

LAC21–25 15 10 0 20.984 0.7 0 16.219 11.2 0 10.459 39.3

LAC26–30 20 10 0 20.484 0.7 0 17.604 19.6 0 15.886 71.2

LAC31–35 30 10 0 18.682 1.9 0 16.380 25.5 0 16.501 45.1

LAC36–40 15 15 0 16.359 1.8 0 13.753 23.1 0 9.877 196.1

All LAC 0 14.440 0.9 0 11.245 11.4 0 8.800 51.0

FTC1 6 6 1 0.000 0.0 1 0.000 0.0 1 0.000 0.1

FTC2 10 10 0 18.703 0.7 0 10.194 6.7 0 9.183 89.7

FTC3 10 5 0 13.867 0.4 0 11.787 8.0 0 6.548 15.2

All FTC 1 10.857 0.37 1 7.327 4.9 1 5.244 35.0

All 1 14.190 0.9 1 10.972 10.9 1 8.552 49.9

Best 0.000 0.0 0.000 0.0 0.000 0.1

Worst 24.176 3.7 19.629 39.1 18.363 241.6

1258 Int J Adv Manuf Technol (2012) 62:1249–1260



The average computation times for the TSGW, the
TSAB, the TSSA and the GES1 are almost 1 s (on a
333-MHz CPU), 82.5 s (on a 386DX CPU), 13 s (on a
330 Sparc CPU) and 17.7 s (on a 2.8-GHz CPU),
respectively.

In terms of solution quality and computational time,
we conclude that the GES1 is the best available meta-
heuristic for the JSP but its average computational time
is relatively high for larger test instances. After that, the
TSGW has the best solution quality. Although the com-
parison of the results reveals that four other efficient
approaches are better than SSH in terms of solution
quality, but the difference is not noticeable and our
developed SS procedure is efficient as well. On the
other hand, it should be noticed that these four
approaches are the best ones in the literature and our
developed metaheuristic is better than almost all other
approaches presented in a recently published paper [18].

In order to compare our algorithm with very efficient
algorithms of Refs. [14] and [22], we tested our developed
SS on the test set of Taillard [37] for test instances Ta01–

Ta10. We consider RE i½ � ¼ 100% C i½ �
Max � C� i½ �

Max

� �
=C� i½ �

Max as

the comparison criterion where C i½ �
Max is the best makespan

value obtained by the SS for the ith test instance, and C� i½ �
Max is

the optimal makespan value for the ith problem. For the test
instance Ta01–Ta10, the algorithm presented in Refs. [20]
and [14] provide an average of RE[i] equal to 0.08% and
0.11%, respectively. Also, the average time to the best
solution is equal to 24.6 s (on a 2.8-GHz CPU) and 26 s
(on a 900-MHz CPU) for the results presented in Refs. [22]
and [14], respectively. For a fair comparison, we changed
our termination criterion to a time limit equal to 25 s. In this
case, our algorithm provides an average of 0.53%.

7 Conclusion

In this study, we proposed the concurrent layout and sched-
uling problem in a job shop environment as a generalization
of the job shop scheduling problem in which the locations of
machines are not predetermined. It is assumed that each
machine can be assigned to each possible site, and the
transportation times between each pair of machines are only
dependent to their distances. The problem is formulated as
an integer programming model and is solved using a scatter
search metaheuristic. We extended our procedure to the
classic job shop scheduling problem, and the computational
results reveal the efficiency of our developed procedure.

As a future research opportunity, we suggest to consider
open shop scheduling problems while the locations of
machines are not fixed. If the QAP assumption in which
each machine can be placed in each location is removed, the
problem will be more interesting. As another suggestion,
this problem can be solved by other single objective func-
tions or multiobjective functions. In addition, developing
other efficient metaheuristic or even exact algorithms for
the proposed problem can be an interesting research topic.

Table 8 Summary results of the scatter search for the JSP

Problem SSL SSM SSH

Name n M APD Time APD Time APD Time

LA1–5 10 5 0.000 0.3 0.000 0.4 0.000 0.7

LA6–10 15 5 0.000 0.1 0.000 0.3 0.000 0.6

LA11–15 20 5 0.000 0.3 0.000 0.5 0.000 0.9

LA16–20 10 10 0.132 0.9 0.000 3.5 0.000 8.0

LA21–25 15 10 1.676 1.9 0.653 11.0 0.316 31.8

LA26–30 20 10 1.855 3.4 1.179 21.3 0.444 102.6

LA31–35 30 10 0.000 3.8 0.000 6.6 0.000 12.0

LA36–40 15 15 1.816 3.7 1.398 29.7 0.683 119.9

Average 0.685 1.8 0.404 9.2 0.180 34.6

Table 9 Summary results of
other metaheuristics for the JSP Problem TSGW TSAB TSSA GES1

Name n m APD Time APD Time APD Time APD Time

LA1–5 10 5 0.000 0.0 0.000 3.8 0.000 0.000 0.000 0.000

LA6–10 15 5 0.000 0.0 0.000 0.0 – – 0.000 0.000

LA11–15 20 5 0.000 0.0 0.000 0.0 – – 0.000 0.000

LA16–20 10 10 0.000 1.3 0.020 68.6 0.000 0.200 0.000 0.000

LA21–25 15 10 0.042 2.2 0.105 74.0 0.030 13.600 0.000 17.2

LA26–30 20 10 0.052 2.1 0.160 136.4 0.020 15.200 0.020 15.4

LA31–35 30 10 0.000 0.0 0.000 1.6 – – 0.000 0.000

LA36–40 15 15 0.283 2.6 0.280 375.6 0.190 36.100 0.070 109.2

Average 0.047 1.0 0.071 82.5 0.048 13.0 0.011 17.7
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