Int J Adv Manuf Technol (2012) 62:687-704
DOI 10.1007/s00170-011-3817-1

ORIGINAL ARTICLE

A general technique for the PLC-Based implementation
of RW supervisors with time delay functions

Murat Uzam

Received: 13 October 2011 /Accepted: 28 November 2011 /Published online: 11 December 2011

© Springer-Verlag London Limited 2011

Abstract The Supervisory Control Theory (SCT) intro-
duced by Ramadge—Wonham (RW) is a general theory to
design supervisors (controllers) for discrete event systems.
Although over the two decades SCT has received wide
attention in academia, industrial applications are very few,
due to the fact that there is a discrepancy between the
abstract RW supervisor and its physical implementation. In
this paper, an easy to use, general and practical technique is
proposed for the PLC-based implementation of RW super-
visors with time delay functions. The applicability of the
proposed method is demonstrated by means of a PLC-based
real-time control of an experimental manufacturing system.

Keywords Supervisory control theory - Discrete event
systems - RW supervisor - Automata - PLC - Real-time
control - Ladder logic diagram

1 Introduction

The Supervisory Control Theory (SCT) introduced by
Ramadge—Wonham (RW) is a general theory to design
supervisors (controllers) for discrete event systems (DES)
[1, 2]. Although over the two decades SCT has received
wide attention in academia, industrial applications are very
few [3]. This is mainly due to the fact that there is a
discrepancy between the abstract RW supervisor and its
physical implementation. Nowadays, programmable logic

M. Uzam (D<)

Meliksah Universitesi,

Miihendislik Mimarlik Fakiiltesi,
Elektrik-Elektronik Miihendisligi Boliimii,
Talas 38280 Kayseri, Turkey

e-mail: murat uzam@meliksah.edu.tr

controllers (PLC) with a popular programming language,
namely ladder logic diagram (LLD; or ladder logic code),
are widely used as an implementation tool to carry out
control tasks in all modern industrial systems. The problem
of physical implementation of a RW supervisor with PLC is
specifically noticeable [3] as the step towards the physical
implementation is not straightforward. To address the prob-
lem a number of efforts have been carried out. In [4-8], the
application of SCT to flexible manufacturing cells and PLC-
based implementations are studied. In [9, 10], local modular
supervisors and their PLC-based implementations are con-
sidered. LLD [9] and sequential function charts [10] imple-
mentations of RW supervisors are proposed. The main
feature of these works is that the control system is used as
an interface between the real input—output signals and the-
oretical RW supervisors [9—11]. In [12, 13], the conversion
of finite state machines to LLD is proposed. The LLD
implementation of finite state machines represented as state
diagram is studied in [14]. The problems and possible sol-
utions for PLC implementation for SCT are discussed in [3].
One of such problems is called avalanche effect, which
makes the program skip over an arbitrary number of states
during the same PLC scan cycle. An approach to eliminate
avalanche effect problem is proposed in [15]. These results
are mainly concerned with the implementation of a given
untimed finite state machine as LLD on a PLC.

On the other hand, today’s manufacturing systems can be
classified as DES with timing requirements. Timing may be
associated with the duration of an operation with an
expected time before some event occurrence such as a
failure [16]. As an automaton framework, timed automata
(TA) were introduced in [17], and have been extensively
studied [18-21]. These models are extension of finite au-
tomata with clocks, guards, resets, and enable one to specify
real-time systems. A transition in the TA would be labeled
with an event and its associated time intervals. This time

@ Springer

688

Int J Adv Manuf Technol (2012) 62:687-704

interval would be with respect to a specific clock and reset.
The transitions between states are performed by evaluation
of clocks and guards. A fundamental framework about
control of timed discrete event systems was introduced in
[22]. Supervisory control methods have been developed
based on this framework for various situations [23, 24].
Timed automata models can be used for analysis, verifica-
tion, or controller synthesis. Although it is possible to ana-
lyze and control these timed discrete event systems formally,
general methods applied in the industry are heuristic rather
than formal. For controlling small size systems, a simple
time delay function may yield practical solution. If the
systems to be controlled become more complex, then intu-
itive methods will become insufficient. On the other hand, in
this case, the timed SCT based solution would not be prac-
tical due to computational complexity and state explosion
problem. To date, there is no general and practical technique
for the PLC-based implementation of RW supervisors with
time delay functions. Our recent research project has fo-
cused on this problem. In this respect, three contributions
are provided. A new approach for LLD implementation of
RW supervisors is proposed in [25]. This method mainly
deals with the assignment of actions (output signals) to the
states of the supervisor in a systematic way. A simplified
version of timed automata, called timed transition automata
(TTA), is proposed to be used for the control of discrete
event systems [26]. In TTA models, time delay values are
associated with respective events. The proposed TTA model
is very similar to T-Timed Petri nets described in [16,
Chapter 3.4]. In TTA, a transition is labeled with an event
and it is associated with a time delay such as (e, 7). The
automaton changes its state from one state to another, after
occurrence and presence of event e and 7 time has elapsed.
TTA is based on the assumption that e be present during the
7 time. Unfortunately, due to this assumption, TTA is not
general. As a general method, in [27] the concept of post-
poned event is proposed for introducing the time delay
functions within untimed automata. Postponed event pe is
defined as the shifted version of an event e on the time axis
by a deterministic time delay value 7. Postponed event is a
general, easy to use, and practical method for PLC imple-
mentation of supervisory controllers with time delay func-
tions. Supervisory controllers are obtained as in untimed
systems by using the SCT framework [25] with the assump-
tion that postponed events are taken into account as if they
are normal (untimed) events. Then they are refined at the
implementation stage by the assignment of deterministic
time delay values to respective events. The implementation
of postponed events is realized by using on delay timers,
off-delay timers or pulse timers of PLCs [27]. By their
definition, RW supervisors allow events to happen but they
do not force them. On the other hand PLC-based controllers
force all the enabled output events at any scan time. This is

@ Springer

one of the most problematic conceptual barriers between
RW supervisors and their PLC-based controllers. To over-
come this problem, automaton models of actuators are de-
fined in a simple structure within this paper.

The main objective of this paper is to propose an easy to
use, general, and practical technique for the PLC-based
implementation of RW supervisors with time delay func-
tions. To accomplish this task, the action assignment to the
states of a RW supervisor method of [25] and the concept of
postponed event proposed in [27] are both integrated within
the design steps of SCT. TCT tool [28] is used to carry out
the necessary computations to obtain RW type supervisors.
The method proposed in this paper can be applied to both
high-level control, where the role of the supervisor is to
coordinate control of, in the manufacturing sense, machines,
robots, fixtures, conveyors etc., and to low-level control,
where the role of the supervisor is to arrange low-level
interaction between the control devices, such as motors,
actuators, etc. In [25] and [26], the applicability of the
proposed method to high-level control was shown by means
of a simple manufacturing system including two machines
and one buffer. The applicability of the proposed method to
low-level control is shown by means of a PLC-based real-
time control of an experimental manufacturing system.

The remainder of this paper is organized as follows:
Section 2 provides preliminary information about SCT; the
assignment of actions to the related states of RW super-
visors; the conversion of an untimed RW supervisor into
LLD code; the concept of postponed event; and the imple-
mentation of postponed event. The proposed approach is
presented in Section 3. The applicability of the proposed
approach is demonstrated by means of the PLC-based real-
time control of an experimental manufacturing system in
Section 4. Finally, conclusions are given in Section 5.

2 Preliminaries
2.1 Supervisory control theory

Supervisory control theory (SCT) was introduced to extend
control theory concepts for continuous systems to the dis-
crete event environment [1, 2]. In SCT, a forbidden state
problem [2] specifies conditions that must be avoided, typ-
ically the simultaneous utilization of some resource by two
or more users; in addition SCT generally requires the con-
trolled system to be nonblocking (namely that specified
target states, often just the initial state, be maintained reach-
able), and to be maximally permissive, i.e., to permit the
occurrence of all events not leading to violation of the
foregoing requirements. Discrete event systems evolve on
spontaneously occurring events. Let) be finite set of
events. The set of all finite concatenations of events in)

Int J Adv Manuf Technol (2012) 62:687-704

689

is denoted by Y. An element of this set is called a string.
The number of events gives the length of the string. The
string with no element is denoted by ¢ and is called empty
string. A subset L € Y is called a language over Y. For a
string s € Y, 5 denotes the prefixes of s and is defined as
5= {s, € X*|3t € X*(spt = s)}. Extension of this defini-
tion to language prefix closure of a language L is denoted by
L. A language L satisfying the condition L = L is said to be
prefix closed [29].

An automaton, denoted by G, is a sextuple G=(Q, >, f, T,
q0, Om) Where, Q is the set of states, Y is the finite event set,
f OxY—Q is the partial transition function. I': g—2% is
the active event function. I'(g) is the set defined for every
state of G and represents the feasible events of ¢. g is the
initial state and Q,, € Q is the set of marked states represent-
ing the completion of a given task or operation. A simple
automaton model with two states is shown in Fig. 1. This
automaton has two states labeled with ¢0 and ¢g1. g0 with a
double arrow is the initial (and marked) state, while g1 with
an exiting arrow is the marked state of the automaton. A
directed arrow represents the transition functions of the
automaton. Labels of transitions (el, €2) correspond to
events.

The language generated by G is denoted by L(G) and is
defined as L(G) = {s € Y. flgo.s) is defined}. The language
marked by G is denoted by L,,,(G) and is defined as L,,,(G) =
{se Z*:‘f(qo,s) € Om}. The DES modeled as automaton G is

said to be nonblocking if L(G) = L,,(G). DESs named as A
and B can be composed with synchronous product (Parallel
Composition) operation. Synchronous product of two au-
tomata is denoted by A||B and it represents the synchronous
behavior of two automata. In the resulting automaton, com-
mon events occur synchronously, while the other events
occur asynchronously [29].

SCT makes use of formal languages to model the uncon-
trolled behavior of discrete event systems (plant) and spec-
ifications for the controlled behavior. The objective is to
restrict the behavior of the system to a desired behavior,
which is represented by the specifications. This is done by
disabling some events to prevent the occurrence of some
undesired strings in the system. The disabling action is
accomplished by another simultaneously executing autom-
aton called the supervisor. The system cannot be forced by
supervisor to generate new events. In SCT, events are di-
vided into two disjoint sets, the controllable events and

el
q0 ql

e2

Fig. 1 A simple automaton model

uncontrollable events. These sets are denoted by Y. and
> ue respectively. The supervisor has no effect on uncontrol-
lable events, which means that the supervisor cannot disable
uncontrollable events. The existence of a supervisor is guar-
anteed if the desired language satisfies controllability con-
ditions. This condition is defined as K ¥, N M C K, where
K is the language that will be generated under the control of
supervisor and M is the language generated by the uncon-
trolled system.

2.2 The assignment of actions (Output Signals) to the related
states of RW supervisors

PLC-based implementation of RW type supervisors require
some actions (output signals) to be assigned to some states
of the supervisor. To automate this process a general meth-
odology is proposed in [25]. This section briefly recalls this
method. The following describes the implementation phi-
losophy of an action assigned to a supervisor state: if an
action(s) assigned state is active then the assigned action
(output signal) is used to activate the actuator(s) within the
system. The implementation is very simple but it was not
clear how to assign an action to a state and to keep record of
the action assigned state when carrying out the necessary
computations of SCT. This problem is solved in [25] as
follows: firstly actions to be assigned and the respective
states are defined at the beginning of the design steps. Then,
in order to represent an action assignment, an uncontrollable
event is added as a selfloop to a corresponding state (note
that selfloop in an automaton is a transition whose source
and target state is the same). This is really important because
when using the TCT or other computation means for SCT it
is necessary to track the information about the action
assigned states all along. Therefore, a selfloop is added to
a state to represent the assignment of an action. At the end of
the design steps the corresponding selfloops are replaced
with their related actions on supervisor states. The role of
selfloops for representing actions in the computation of RW
supervisors may be considered to be similar to the role of a
catalyst in a chemical reaction. A catalyst is something that
makes a chemical reaction happen faster and in the end of
the chemical reaction it remains as it is. Similarly, the use of
selfloops for representing actions in the computation of RW
supervisors helps one to track the information about the
action assigned states and in the end these selfloops are
replaced with the corresponding actions.

2.3 Conversion of a RW supervisor into LLD code
The conversion of an untimed RW supervisor assigned with

actions into LLD for PLC implementation is a straight
forward process. From the literature one can find some

@ Springer

690

Int J Adv Manuf Technol (2012) 62:687-704

well-established methods. The following briefly explains
the method utilized in this paper: a Boolean variable (a
memory bit) is assigned to each state of the RW supervisor.
Initially, the Boolean variable representing the active (ini-
tial) state is SET and all other Boolean variables represent-
ing the rest of the RW supervisor states are RESET. Then,
each transition between states of the RW supervisor is
implemented as a separate PLC ladder rung by using SET
and RESET commands. The actions are implemented at the
end of the LLD program. If an action(s) assigned state is
active then the assigned action (output signal) is used to
activate the actuator(s) within the system. In PLC imple-
mentation, an event can be defined as a rising or a falling
edge of a Boolean variable. For such definition —|P|- and
—|N|- contacts can be used respectively. Then, the straight-
forward PLC implementation of a transition say [¢0,el,q1]
with an event el shown in Fig. 2a is obtained in LLD
language as shown in Fig. 2c. This code simply implements
the following statement: “if state g0 is active and the event
el occurs then set state g1 and reset state g0”.

2.4 The concept of postponed event

Based on the automaton definition given above the post-
poned event concept is proposed in [27] for introducing the
time delay functions within untimed automata. The concept
of postponed event is defined as follows:

pe=e+71

Where e is an event, pe is the postponed event related to
event e, 7 is a deterministic time delay value and “+” is the
shift (postponement) operator applied to event e on the time
axis. In this framework, the instantaneous occurrence of
event e starts off the deterministic time delay function.
When the elapsed time reaches the time specified by 7, the
postponed event pe occurs instantaneously. In other words
the postponed event pe is the shifted version of the event e
on the time axis by 7. For the sake of simplicity, it is
assumed that once the time delay function starts off for an
event e, no more occurrence of e will take place until the
elapsed time reaches the time specified by 7. With this easy
to use structure, timed discrete event systems can be defined
based on the untimed versions. It can easily be seen that if

7=0 then postponed event pe is the same as event e. It is not
difficult to see that pe is a deterministic time-dependent
version of e.

The difference between an event and a postponed event
can be seen by considering the timing diagrams of both.
Fig. 2a depicts a simple automaton with two states (¢0 and
ql) and a transition [¢0, el, ¢g1] with an event el. Fig. 2b is
the timing diagram of this automaton. When ¢0 is active and
the instantaneous occurrence of event e takes place, the
automaton transits from ¢0 to ¢g1. Fig. 3a shows an autom-
aton with two states (¢1 and ¢2) and a transition [¢1, pe2,
¢2] with a postponed event pe2. When ¢1 is active and the
instantaneous occurrence of postponed event pe2 takes
place, the automaton transits from g1 to g2. As can be seen
from the timing diagram of this automaton in Fig. 3b the
occurrence of pe2 (#2) depends upon the occurrence of e2
(#1) and the deterministic time delay value 72. It is interest-
ing to observe that the occurrence of pe2 at time #4 does not
cause any state change because at time 4 the active state is
g2. Another important observation is that if €2 is removed
from the timing diagram of Fig. 3b the timing diagram then
becomes very similar to that of given in Fig. 2b. In this case
pe2 of Fig. 3b plays the same role of el in Fig. 2a. There-
fore, when one would like to design a DES with timing
requirements in the automata framework it is possible to
design the system as if it is an untimed DES. This is
especially useful when designing DES controllers with tim-
ing requirements. In fact this idea has already been applied
by using untimed RW framework as shown in this paper. A
DES control problem with time delay requirements is de-
fined by using the postponed event concept and it is solved
in untimed RW framework. Then, the postponed events are
refined and the related DES controller is implemented
successfully.

2.5 Implementation of the postponed event

The implementation of a postponed event with a PLC can be
performed by using the standard timer functions, namely the
on delay timer, the off-delay timer (TOF), the pulse timer
(TP), defined by the IEC 61131-3 standard [30]. These three
implementations are proposed in [27]. In this paper the
implementation of the postponed event with the TOF is

q0 o
_ q0 el ql
el al > {P} (S
q0
: X —
a) ~ b c)

Fig. 2 a An event el in the transition [¢0,el,q1], b the timing diagram, ¢ straight forward LLD implementation of transition [q0,e1,q1].

@ Springer

Int J Adv Manuf Technol (2012) 62:687-704

Fig. 3 a postponed event pe2 in
the transition [q1,pe2,q2], b its
timing diagram

a) b)

recalled from [27]. Some symbols of IEC 61131-3 LD
language used in this paper are provided in Table 1. Before
establishing the implementation of the postponed event, the
off-delay timer defined by the IEC 61131-3 standard is
considered in the following: Off Delay Timer: the off-delay
timer can be used to delay setting an output false (OFF—0),

Table 1 Some symbols of IEC 61131-3 LD language

691
ql .
q2 : e
| r
| |

=1 I
I T I T Ll

K T)
pe2 I I t

for a fixed (deterministic) period of time after an input signal
goes false (OFF—O0), i.e., the output is held ON for a given
period longer than the input. The generic symbol and the
timing diagram of the TOF, defined by the IEC 61131-3
standard, are both shown in Fig. 4. As the input signal IN
goes true (ON—1), the output Q (status bit) follows and

Symbol

Description

Input location

Output location

Memory location

Normally open contact
The state of the left link is copied to the right link if the state of the associated
Boolean variable (indicated by ***) is ON. Otherwise, the state of the right link
is OFF.

Normally closed contact
The state of the left link is copied to the right link if the state of the associated
Boolean variable (indicated by ***) is OFF. Otherwise, the state of the right
link is OFF.

kK

—r—

Positive transition-sensing contact
The state of the right link is ON from one evaluation of this element to the next
when a transition of the associated Boolean variable (indicated by ***) from
OFF to ON is sensed at the same time that the state of the left link is ON. The
state of the right link shall be OFF at all other times.

skeskok

—IN=

Negative transition-sensing contact
The state of the right link is ON from one evaluation of this element to the next
when a transition of the associated Boolean variable (indicated by ***) from
ON to OFF is sensed at the same time that the state of the left link is ON. The
state of the right link shall be OFF at all other times.

k3kok

—()—

Coil
The state of the left link is copied to the associated Boolean variable (indicated
by ***) and to the right link.

skkok

—(S)—

SET (latch) coil
The associated Boolean variable (indicated by ***) is set to the ON state when
the left link is in the ON state, and remains set until reset by a RESET coil.

sk

—(R)—

RESET (unlatch) coil
The associated Boolean variable (indicated by ***) is reset to the OFF state
when the left link is in the ON state, and remains reset until set by a SET coil.

@ Springer

692

Int J Adv Manuf Technol (2012) 62:687-704

Fig. 4 The symbol and the
timing diagram of the off-delay
timer (TOF) defined by the IEC
61131-3 standard

1

IN
0

TOF IN: INput

Q: Output
PT:Preset Time
ET: Elapsed Time

BOOL — IN QF— BOOL

TIME — PT ETf[— TIME

Q 1
status bit
0

PT

0 t1+PT t2

t5+PT

ET

remains true (ON—1), until the input signal IN is false
(OFF—0) for the period specified in preset time input PT. As
the input signal IN goes false (OFF—0), the elapsed time ET
starts to increase. It continues to increase until it reaches the
preset time input PT, at which point the output QO (status bit) is
set false (OFF—0) and the elapsed time is held. If the input
signal IN is false (OFF—O0) only for a period shorter than the
input PT, the output Q remains true (ON—1).

Now, the implementation of a postponed event by using a
TOF is considered. The example implementation explained
here is for the automaton shown in Fig. 3a. The LLD
implementation of the automaton shown in Fig. 3a by using
a TOF is provided in Fig. 5 together with its timing diagram.
Due to the characteristics of TOF shown in Fig. 4, with the
occurrence of e2, the coil of TOF is energized (rung 1)
instantaneously and at the same time the status bit T2 is
set (rung 1-time ¢1). As e2 goes OFF, the timing value
(elapsed time) starts to increase (between f1 and £2). It
continues to increase until it reaches 72, at which point the

Fig. 5 a LLD implementation
of pe2 by using an off-delay
timer (TOF), b its timing
diagram

t1 2 t3 t4 tS

status bit 72 is set false. pe2 is equal to the falling edge of 72
(rung 2—time £2). If state g1 is active and pe2 is ON then state
q2 is set and ¢l is reset (rung 3—time #2). This imple-
mentation requires three LLD rungs and one additional —|N]—
contact.

3 The proposed approach for the PLC-based
implementation of RW Supervisors with time delay
functions

The supervisory control of a discrete event system (DES) is
illustrated in Fig. 6. The architecture consists of four parts:
(a) the discrete event system (Plant) to be controlled, (b) the
control system (RW supervisor), as the controller (¢) sensor
readings, regarded as outputs from the DES and as inputs to
the RW supervisor, and (d) control actions, regarded as
output signals from the RW supervisor and as inputs to the
Plant. The RW supervisor must guarantee that no forbidden

e2
1 —r}

T2
2 —INp—
pe2
ql pe2
£l o L |
[ql, pe2, q2]

@ Springer

o]

92 | | !

T2:Tss Lo DRI

{TOF)— 2| | i ! i

T2 ' | I |

pez {TOF) ! : | :

| | |

()_ statuz%)il | | | |

l ! \ T

2 | | |

q2 L2 513(1131: bit) ! I i I

(5} AR
{(g)_ limi;fgzvalue E/l /l t

a) t0 tl 2 3 4 b)

Int J Adv Manuf Technol (2012) 62:687-704

693

control system

(RW supervisor)

outputs signals sensor readings
(control actions) (events)

discrete event system
(Plant)

Fig. 6 Supervisory control of a DES

state will be reached, that specified target states remain
reachable (nonblocking) and that controlled behavior is
maximally permissive, i.e., the supervisor does not unnec-
essarily constrain system operation and is in this sense
“optimal”.

The plant and the supervisor are assumed to run concur-
rently, as follows. The occurrence of an event in the plant is
transmitted to the supervisor as a plant output through
sensory feedback, resulting in a supervisor state change. In
other words, when an event occurs in the plant, the super-
visor changes its state synchronously, in accordance with the
active state and the event in question. The supervisor func-
tions as a state-feedback controller, whose control actions
are output signals from the control system and inputs to the
plant, closing the feedback loop. The controlled behavior of
the plant will be the subset of uncontrolled behavior (i.e.,
sublanguage of uncontrolled event strings) that survives
under supervision.

As the supervisory control theory is used to obtain the
supervisor, the proposed approach offers the following
advantages: the supervisor and control policy obtained are
correct by construction, i.e., controlled behavior of the sys-
tem is nonblocking and does not contradict with the forbid-
den state specifications. All events that do not contradict the
forbidden state specifications are allowed to happen, i.e., the
controlled behavior of the system is maximally permissive
within the specifications.

There are a number of software tools to compute RW
supervisors. In this paper, TCT [28] is utilized to carry out
necessary computations to obtain RW supervisors. The
proposed general methodology includes the action assign-
ment procedure, handling of timed events as if they are
normal events within the untimed SCT framework using
the concept of postponed events, and finally the implemen-
tation of the resulting RW supervisor by using a PLC. As a
result, the following provides the proposed design and
implementation methodology for the supervisory control
of DES:

1. Model each system (plant) component as an au-
tomaton (G1, G2,, GN) and define these

automata models within TCT by using the Create
(.) procedure:

G1 = Create(G1)
G2 = Create(G2)

GN = Create(GN)

Plant components may include system parts such
as machines, robots, conveyors, motors, solenoids,
etc. A proper automaton model must be con-
structed with its states and transitions. Some gen-
eral forms of automata models for different system
parts can be seen from [29]. For the implementa-
tion level it is also important to define the events
and actions. Events are assigned to transitions to
define the conditions under which the state change
occurs from one state to another. Actions are
assigned to states and they define when the actua-
tors will be switched on. Although there are dif-
ferent systems with different models it is important
to explain how to obtain actuator models. Actua-
tors include motors, solenoids, etc. This is impor-
tant because with the model type introduced here,
the PLC implementation of RW supervisors act as
if they are forcing controllers. The idea used to
obtain actuator models is as follows: normally they
have two states, namely “on” and “off”. In general,
the initial state is off and the other state is on. In
our design method going from the initial state to
the other state is automatic unless blocked by the
supervisor. This is a controllable event and the
condition for this event assigned to this transition
is “1”. Based on the specifications, the computed
RW supervisor will define under which conditions
to stop this controllable event. This mechanism
obeys the RW supervisor’s role in its original
definition. In this step, timed events are also iden-
tified and then they are considered as untimed
events.

Define actions to be assigned and the corresponding
automaton states.

Before the computation of RW supervisor actions
are assigned to the related states of the actuator
models. It is obvious that the resulting RW supervi-
sor will be a Moore-type finite state machine because
the actions (outputs) are defined as assigned on the
states. In other words, outputs are the function of
states only.

Add an uncontrollable event as a selfloop to a
corresponding state in order to represent an action
assignment.

@ Springer

694

Int J Adv Manuf Technol (2012) 62:687-704

The reason for this assignment is provided in
Section 2.2.
Obtain the plant automaton model (PLANT) with par-
allel composition (also called synchronous composi-
tion) of plant components (PLANT = G1]|G2||...||GN)
by using Sync(.) procedure:

PLANT = Sync(G1,G2)
PLANT = Sync(PLANT, G3)

PLANT = Sync(PLANT, GN)

This step is necessary to obtain all possible inter-
actions within the system components. The plant
obtained will be the state space of the modeled system.
Model each specification component as an autom-
aton (SPECI, SPEC2, ..., SPECM) by using Create(.)
procedure:

SPEC1 = Create(SPEC1)
SPEC2 = Create(SPEC2)

SPECM = Create(SPECM)

In this step, it is necessary to declare the desired

system operation by means of automata models.
Some specification automata models can be seen
from [29].
Adjoin to each state of SPECi (i=1, 2, ..., M) all
events that are possible in PLANT but not constrained
by the SPECi (i=1, 2, ..., M) by using Selfloop(.)
procedure:

SPEC1 = Selfloop(SPECI, all events that are possible in
PLANT but not constrained by the SPEC1)

SPEC2 = Selfloop(SPEC2, all events that are possible in
PLANT but not constrained by the SPEC2)

SPECM = Selfloop(SPECM, all events that are possible in
PLANT but not constrained by the SPECM)

The monolithic RW supervisor is obtained by using
a PLANT automaton model and a SPEC automaton
model. To obtain a single composed specification au-
tomaton model (SPEC) from all specification models,
firstly all events that are possible in PLANT but not
constrained by a specification must be adjoined to that
specification automaton model.

@ Springer

10.

I1.

Obtain a composed specification model (SPEC) from
all specification components (SPEC1, SPEC2, ..,
SPECM) by using Meet(.) procedure:

SPEC = Meet(SPEC1, SPEC2)
SPEC = Meet(SPEC, SPEC3)

SPEC = Meet(SPEC, SPECM)

Obtain the RW supervisor, say SUPER, by using Supcon
(.) procedure:

SUPER = Supcon(PLANT, SPEC)

The RW supervisor SUPER is of a monolithic
type. The supervisory control theory, and its TCT
implementation, provides a maximally permissive
and nonblocking controller at this step. In other
words, the obtained RW supervisor SUPER is cor-
rect by construction.

Replace the corresponding selfloops with their related
actions on supervisor states.

At this design step the corresponding selfloops are
replaced with their related actions on supervisor states.
This is just for converting the resulting RW supervisor
SUPER into a Moore-type automaton. Because the
RW supervisor SUPER contains only states and tran-
sitions. In order to implement the SUPER on a PLC
using LLD the outputs will be defined after this
process.

Declare timed events as postponed events.

Similar to the previous step now timed events are
refined before the PLC implementation. Up to this
design step they are all considered as normal events
but before the PLC implementation of the resulting
supervisor they are treated as postponed events. The
supervisor after this process is called “the RW super-
visor with postponed events and actions assigned to
places”

Convert the RW supervisor with postponed events and
actions assigned to places into LLD code for PLC
implementation. The design phase is only the first step
towards the control of DESs. After designing a con-
troller (supervisor), it is necessary to have an automatic
means for the generation of control code from the
controller. The supervisory control can be enforced
by implementing the supervisor on an industrial com-
puter. Since programmable logic controllers (PLCs)
with a graphical symbolic programming language,
called LLDs, are the most popular implementation
tools in today’s automated modern factories, in this
paper the techniques described in the previous

Int J Adv Manuf Technol (2012) 62:687-704

695

sections are used for converting the RW supervisor
(with postponed events and actions assigned to
places) into an LLD code for implementation on
a PLC.

The summary of the above explained design
steps is that the abstract RW supervisor model is
refined by the intermediate design steps included
within the original supervisory control theory in
order to obtain implementable model before the
PLC-based implementation.

4 Real-time supervisory control of an experimental
manufacturing system

In this section, an experimental manufacturing system is
considered to show the applicability of the proposed method
to low-level real-time supervisory control of discrete event
systems. Firstly, the experimental manufacturing system is
explained together with the control specifications as a DES
control problem. Then, this problem is solved by the pro-
posed method explained in the previous section.

4.1 Problem description

The experimental manufacturing system, shown in Fig. 7,
represents a component sorting and assembly processes that
can be controlled by virtually any controller such as micro-
controller or PLC. The upper conveyor and the lower con-
veyor are driven by the upper conveyor motor (Actuator 1)
and the lower conveyor motor (Actuator 2), respectively. A
random selection of metallic pegs and plastic rings are
placed on the upper conveyor. The rings and pegs need to
be identified and separated. This is done by two sensors, a
proximity sensor (Sensor 1) and an infra-red reflective sen-
sor (Sensor 2). By using these two sensors, a distinction can
be made between the peg and the ring. By means of the sort
solenoid (Actuator 3), plastic rings can be ejected down the
assembly chute, which can have up to five plastic rings.
Metallic pegs, meanwhile, continue on the upper conveyor
and are deflected down the feeder chute. The feeder chute
automatically feeds pegs onto the lower conveyor. An infra-
red emitter/detector (Sensor 3) is used to determine whether
or not the assembly area is empty. If it is, the assembly
solenoid (Actuator 4) is used to dispense a ring from the
assembly chute into the assembly area. The assembly area is
positioned just above the lower conveyor and, when a
metallic peg passes, the peg engages with the hole in the
ring and the two components are assembled. The lower
conveyor is used to carry completed components into the
collection tray. In this work, a Siemens S7-300 (CPU319)

PLC is used to control the process, and software called
“Simatic Manager” is used to program the PLC. PLC inputs
and outputs are given in Tables 2 and 3, respectively.

For the sake of simplicity, it is assumed that the assembly
chute can have only one ring at a time. It is also assumed
that when the system is switched on, both the upper con-
veyor motor and the lower conveyor motor are switched on
automatically. The control specifications are as follows:

1. Operate the sort solenoid only when there is a ring at the
sort area and there is space in the assembly chute.

2. Operate the assembly solenoid only when there is a ring
in the assembly chute and there is space at the assembly
area.

4.2 Design and implementation steps for solving the control
problem

The problem stated in the previous section is a DES control
problem and is solved by the proposed method as described
in this section. Now the design and implementation steps of
the proposed method are followed.

4.2.1 Step 1

For the stated problem, the automata models are obtained as
shown in Fig. 8 for the sort area (SA), the assembly chute
(AC), the assembly area (AA), the sort solenoid (SS), and
the assembly solenoid (AS). Event labels used in these
automata models and their descriptions together with the
related signals are provided in Table 4. Events 32, 42, and
52 are timed events with time delays 1, 0.7, and 1.5 s,
respectively. Now, a brief explanation for each of these
models is given as follows:

SA States s0 and s1 represent the absence and the presence
of a plastic ring at the sort area respectively. Initially it is
assumed that there is no plastic ring at the sort area (sO is
active). When the presence of a ring is detected at the sort
area (0.1 A 10.0 1), the event 22 occurs and the automaton
goes from s0 to s1. When there is a plastic ring at the sort
area (s1 is active) there are two possibilities for the plastic
ring. In the first possibility, if the sort solenoid is activated
(00.0=1) then the plastic ring is being pushed into the
assembly chute by the sort solenoid. It takes 1 s for the
plastic ring to move from the assembly area into the assem-
bly chute. After this time has elapsed the event 32 occurs
(00.0 A10.1 A10.0 |, 1s) and the automaton goes from s1
to s0. Secondly, if the sort solenoid is not activated (Q0.0=
0) and the absence of the plastic ring is detected
(0.1 AJ0.0 |) then the event 12 occurs and the automaton

@ Springer

696

Int J Adv Manuf Technol (2012) 62:687-704

Sort Solenoid

Upper
Conveyor Motor

Feeder Chute
Asscmly Chute

Siemens S$7-300
PLC

Fig. 7 The experimental manufacturing system

goes from s1 to s0. This means that the plastic ring has just
left the sort area towards the scrap bin for rings.

AC States s0 and sl represent the absence and the presence
of a plastic ring in the assembly chute respectively. Initially
it is assumed that there is no plastic ring in the assembly
chute (sO is active). When the event 32 occurs
(00.0 AT0.1 AT0.0 |, 1s), a plastic ring is put into the
assembly chute and the automaton goes from s0 to s1. When
there is a plastic ring in the assembly chute (s1 is active), if
the assembly solenoid is activated (Q0.1=1) then the plastic

Table 2 PLC inputs

Sort Area

RJ‘[g
<
ol
Assembled
Components

e
<=

ﬁ

F "
B ollection Tray
or Assembled
Components
N==="""" Lower Conveyor

Motor

Bytronic Associates

Industrial Control Trainer

(ICT)

M=)

. s ,wew\\.

Personal Computer

ring is being moved from the assembly chute into the
assembly area by the assembly solenoid. This process takes
0.7 s. After this time has elapsed, the event 42 occurs (/0.21,
0.7 s) and the automaton goes from sl to s0.

AA States s0 and s1 represent the absence and the presence
of a plastic ring in the assembly area respectively. Initially it
is assumed that there is no plastic ring in the assembly area
(s0 is active). When the event 42 occurs (/0.27, 0.7 s), a
plastic ring is put into the assembly area and the automaton
goes from 5O to s1. When there is a plastic ring in the

Table 3 PLC outputs

PLC Input Sensor Definition PLC Outputs Actuator numbers Definition

10.0 Sensor 1 Detects a ring or a peg at the sort area Q0.0 Actuator 1 Sort solenoid

10.1 Sensor 2 Detects a peg at the sort area Q0.1 Actuator 2 Assembly solenoid

10.2 Sensor 3 Detects a ring in the assembly area Q0.3 Actuator 3 Upper conveyor motor
Q0.4 Actuator 4 Lower conveyor motor

@ Springer

Int J Adv Manuf Technol (2012) 62:687-704

697

22
WX e
: N 49
12 0 1
32 a) 42 b
42

w o
52 &
61 71
° N Al
3 0 1
1 d) 42 C)

Fig. 8 Automata models for: a sort area (SA) b assembly chute (AC)
c¢) assembly area (AA) d) sort solenoid (SS) e) assembly solenoid (AS)

)

assembly chute (sl is active), if the absence of the plastic
ring is detected (/0.2) then the plastic ring is being leaving
the assembly area. This process takes 1.5 s. After this time
has elapsed the event 52 occurs (/0.2], 1.5 s) and the
automaton goes from s1 to s0.

SS States 50 and s1 represent off and on states of the sort
solenoid, respectively. Initially, it is assumed that the sort
solenoid is off (sO is active). When the decision is made to
activate the sort solenoid (event 61 occurs), the automaton
goes from s0 to s1. When the sort solenoid is on (s1 is active
and QO0.0=1), if the absence of a plastic ring is detected at
the sort area (10.1 A 70.0 |) then it takes 1 s for a plastic
ring to move from the assembly area into the assembly
chute. After this time has elapsed, the plastic ring is put into
the assembly chute (the event 32 occurs) and thus the
automaton goes from s1 to s0. At the sort area, in order to
distinguish a plastic ring going into the scrap bin from the
one being pushed into the assembly chute the event 12 is
adjoined to s0 as a selfloop.

Table 4 Event labels and their description together with related signals

AS States s0 and sl represent off and on states of the
assembly solenoid, respectively. Initially, it is assumed
that the assembly solenoid is off (sO is active). When
the decision is made to activate the assembly solenoid
(event 71 occurs), the automaton goes from sO to sl.
When the assembly solenoid is on (sl is active and
Q0.1=1), if the presence of a plastic ring is detected
(10.21) at the assembly area then it takes 1 s for a
plastic ring to move from the assembly chute into the
assembly area. After this time has elapsed, the plastic
ring is put into the assembly area (the event 42 occurs)
and thus the automaton goes from sl to sO.

The first three automata models are defined within TCT
by using the Create(.) procedure as follows:

SA = Create(SA, [mark0], [tran[0,22, 1], [1, 12, 0], [1, 32,0]]) (2, 3)
AA = Create(AA, [mark0], [tran[0, 42, 1], [1, 52, 0]]) (2,2)
AC = Create(AC, [mark0], [tran[0, 32, 1], [1, 42, 0]]) (2,2)

4.2.2 Step 2

The SS and the AS automata models are identified as
automata models to be assigned with actions, because they
are related to the operation of the related solenoids. When
the SS automaton model shown in Fig. 8d is considered, it
can be seen that it is appropriate to assign an action to the
state 1, because when the SS automaton model arrives to
this state with the occurrence of the event 61, the assigned
action will force the sort solenoid to work. Therefore, the
action SSa is assigned to the state 1 of the SS automaton
model as can be seen from Fig. 9a. In the same manner, to
represent the assembly solenoid operation, the action ASa is
assigned to the state 1 of the AS automaton model as can be
seen from Fig. 9b

Event labels Description Related signals

12 A plastic ring has just left the sort area towards the scrap bin for rings Q0.0 AT0.TAT0.0 |

22 The presence of a plastic ring is detected at the sort area 10.1 A10.0 7

32 A plastic ring is being put into the assembly chute Q0.0 ANI10.1 AT0.0 |, Is.
42 A plastic ring is being moved from the assembly chute to the assembly area 10.21,0.7 s

52 A plastic ring is being leaving the assembly area 102,15

60 Sort solenoid action -

61 Activate sort solenoid 1

70 Assembly solenoid action -

71 Activate assembly solenoid 1

@ Springer

698

Int J Adv Manuf Technol (2012) 62:687-704

SSa
0 61 71 ASa
! 0 i
12 32 a) 42 b)

Fig. 9 a The sort solenoid automaton model with assigned action SSa.
b The assembly solenoid automaton model with assigned action ASa

4.2.3 Step 3

Actions SSa and ASa are represented by two uncon-
trollable events, namely 60 and 70, respectively,
as shown in Fig. 10 to be included within TCT
computations.

Next, the SS and AS automata models with assigned
actions are defined within TCT by using the Create(.)
procedure as follows:

SS =Create(SS, [mark0], [tran[0, 12, 0], [0, 61, 1], [1,32, 0], [1, 60, 1]]) (2,4)

60, 1
AS =Create(AS, [mark0], [tran[0, 71, 1], 1,42, 0], 1, 70, 1]]) (2, 3)

4.2.4 Step 4

The PLANT automaton model is obtained with the parallel
composition of all system components (PLANT = SA|[AA||
AC]||SS||AS) by using Sync(.) procedure as follows and it is
shown in Fig. 11:

PLANT = Sync(SA, AA) (4, 10) Blocked_events = None
PLANT = Sync(PLANT, AC) (8, 16) Blocked_events = None
PLANT = Sync(PLANT, SS) (16,42) Blocked_events = None
PLANT = Sync(PLANT, AS) (32, 112) Blocked_events = None

4.2.5 Step 5
Now the automata models of the two control specifications
are considered. The first specification states the following:

“Operate the sort solenoid only when there is a ring at the
sort area and there is space in the assembly chute”. It may be

61 60
0 71 70
I 0
1
2 32 42
Fig. 10 Representation of actions SSa and ASa by two uncontrollable

events “60” and “70”

@ Springer

re-stated as follows: “Operate the sort solenoid when there is
a ring at the sort area AND Operate the sort solenoid when
there is space in the assembly chute”. The first part of the
first specification, namely “Operate the sort solenoid when
there is a ring at the sort area” is represented as an autom-
aton model, called SPEC1A, shown in Fig. 12a. Similarly,
the second part of the first specification, namely “Operate
the sort solenoid when there is space in the assembly chute”
is represented as an automaton model, called SPECIB,
shown in Fig. 12b. The following Create (.) TCT procedures
are carried out for defining both SPEC1A and SPEC1B:

SPEC1A = Create(SPECIA, [mark0], [tran[0, 22, 1],
[1,12,0],]1,32,0],[1,61,1]]) (2,4)

SPECIB = Create(SPEC1B, [mark0], [tran[0, 32, 1],
[0,61,0],[1,42,0]]) (2,3)

The “AND” statement of the specification is accom-
plished by applying the synchronous product procedure
Sync(.) of TCT to SPEC1A and SPEC1B and thus yielding
the SPEC1 as follows:

SPEC1 = Sync(SPEC1A, SPEC1B) (4, 8) Blocked_events = None

Now the second specification stating that “Operate the
assembly solenoid only when there is a ring in the assembly
chute and there is space at the assembly area” is considered.
The second specification may be re-stated as follows: “Op-
erate the assembly solenoid when there is a ring at the
assembly chute AND Operate the assembly solenoid when
there is space at the assembly area”. The first part of the
second specification, namely “Operate the assembly sole-
noid when there is a ring at the assembly chute” is repre-
sented as an automaton model, called SPEC2A, shown in
Fig. 13a. Similarly, the second part of the second specifica-
tion, namely “Operate the assembly solenoid when there is
space at the assembly area” is represented as an automaton
model, called SPEC2B, shown in Fig. 13b. The following
TCT procedures are carried out for defining both SPEC2A
and SPEC2B:

SPEC2A = Create(SPEC2A, [mark0], [tran[0, 32, 1],

[1,42,0],[1,71,1]]) (2,3)
SPEC2B = Create(SPEC2B, [mark0], [tran[0, 42, 1],

[0,71,0],[1,52,0]]) (2,3)

The “AND” statement of the specification is accom-
plished by applying the synchronous product procedure
Sync(.) of TCT to SPEC2A and SPEC2B and thus yielding
the SPEC2 as follows:

SPEC2 = Sync(SPEC2A, SPEC2B) (4, 6) Blocked events = None

Int J Adv Manuf Technol (2012) 62:687-704 699

Ehe

61
5

@.‘-
2
71 71 71

"

1

/ k
42 42 2 42
52 16 %

/ :
22 61
52
52 L
T 11
52 P14 O £
[71 g e 71 71
52 $esb1 7 22 &
52
A |
25 57 9
61 61
22 22

28 52

32 32

Fig. 11 PLANT automaton model

32
6@ 61 p 32 - 0 42
0 1
12 61 42 0 1 71 52 1
32 a) b) 42 a) b)

Fig. 12 Automata models for the first specification: a SPEC1A. b Fig. 13 Automata models for the second specification: a SPEC2A. b
SPECI1B SPEC2B

@ Springer

700

Int J Adv Manuf Technol (2012) 62:687-704

Fig. 14 Automata models for the two specifications: a SPECI. b
SPEC2

4.2.6 Step 6

In this step, all events that are possible in PLANT but
not constrained by the SPEC1 and SPEC2 are adjoined
to each state of these specification models. For the first
specification model SPECI, selfloops with event labels
“527, “60”, “70”, and “71” are adjoined to each state of
the SPEC1 as follows:

SPECI = Selfloop(SPEC1, [52, 60,70, 71]) (4, 24)

As a result the automaton model SPECI is obtained as
shown in Fig. 14a, satisfying the first specification.

For the second specification model SPEC2, selfloops
with event labels “12”, “22”, “60”, “61” and “70” are
adjoined to each state of the SPEC2 as follows:

SPEC2 = Selfloop(SPEC2, [12,22, 60, 61, 70]) (4,26)

As a result the automaton model SPEC2 is obtained as
shown in Fig. 14b, satisfying the second specification.

4.2.7 Step 7

To obtain a single specification, namely SPEC, from the two
specifications SPEC1 and SPEC2, the Meet(.) procedure of
TCT is applied as follows and the automaton model of
SPEC is shown in Fig. 15:

SPEC = Meet(SPEC1, SPEC2) (8, 36)

Fig. 15 SPEC automaton model

@ Springer

4.2.8 Step 8

In this step, the Supervisory Control Theory (SCT) is ap-
plied to obtain a RW supervisor (SUPER). To accomplish
this task, both the PLANT and the specification (SPEC)
automaton models are used in the Supcon(.) procedure of
TCT software as follows:

SUPER = Supcon(PLANT, SPEC) (12,27)

As a result the SUPER automaton model which repre-
sents the complete controlled behavior [29] is depicted in
Fig. 16.

4.2.9 Step 9

As the SUPER automaton model is now obtained it is time
to replace the selfloops representing the actions with the
respective actions. Since the uncontrollable event 60 repre-
sents the sort solenoid action (SSa), selfloops [2,60,2] and
[9,60,9] of the SUPER automaton model, depicted in
Fig. 16, are replaced with SSa as shown in Fig. 17. Similar-
ly, the uncontrollable event 70 represents the assembly
solenoid action (ASa). Therefore, selfloops [5,70,5] and
[6,70,6] of the SUPER automaton model, depicted in
Fig. 16, are replaced with ASa as shown in Fig. 17.

4.2.10 Step 10

Timed events are now reconsidered and declared as post-
poned events. All events are provided in Table 4. Events 32,
42 and 52 are timed events with deterministic time delay
values 1, 0.7, and 1.5 s, respectively. The postponed event
pe32 (resp. pe42, pe52) is related to the event e32 (resp. e42,
e52). The event e32 is defined by the following signals:
[00.0 AT0.1 AJ0.0 |, 1s] This time delay provides enough
time for a plastic ring to move from the sort area into the
assembly chute. The event ¢42 is defined by the following
signal: [/0.21, 0.7 s.] This time delay provides enough time
for a plastic ring to move from the assembly chute into the
assembly area. The event e52 is defined by the following

Int J Adv Manuf Technol (2012) 62:687-704

701

Fig. 16 SUPER automaton
model

signal: [/0.2], 1.5 s.] This time delay provides enough time
for a plastic ring to clear the assembly area.

4.2.11 Step 11

Finally, the implementation of the SUPER automaton model
shown in Fig. 17 is considered. In order to represent states
of SUPER, memory bits ¢1, g2, ..., g11 are assigned to the
states 1, 2, ..., 11, respectively, of the SUPER automaton
model, as shown in Fig. 17. Off-delay timers 70 with 1-s
time delay, 71 with 0.7-s time delay, and 72 with 1.5-s time
delay are used to implement postponed events pe32, ped2
and pe52 of the SUPER automaton model, respectively.
After doing these assignments by using a direct mapping,
the LLD code shown in Fig. 17, is obtained. This LLD code
is written for a Siemens S7- 300 (CPU 319) PLC. The LLD
symbols (as used in this paper) of a Siemens S7-300 PLC
are defined in Table 5.

The LLD code is structured in such a way that the
network 1 (NW1) initializes the system by means of the
initialization memory bit M0.0. In NW1, the initial state q0
is set and the rest of the states, namely ¢1, ¢2, ..., g11 are

Fig. 17 SUPER automaton 52
model with assigned actions
SSa and ASa

reset. In addition, PLC outputs Q0.3 and Q0.4 are also set in
NWI and they always stay set as long as the PLC is running,
because these outputs are used to activate both upper and
lower conveyor motors, respectively. M0.0 is set in the first
PLC scan time and this ensures that the above mentioned
initialization procedures will be done only once. Networks
NW2, NW3, ..., NWI1 implement the events el2, e22,
pe32, ped2, peS2, e61, and €71 respectively. Networks
NWI12, NW13, ..., NW34 implement 23 transitions of the
SUPER as shown in Fig. 18. Note that SUPER is computed
as having 12 states and 27 transitions but 4 of the transitions
of the SUPER are removed because they are used to repre-
sent assigned actions on the respected states. Therefore, 23
transitions are implemented. The implementation of the
transitions is straight forward. For example NW12 imple-
ments the transition [0, 22 ,1] this means that if the state 0 is
set and the event 22 occurs then the SUPER will move from
state 0 to state 1. The implementation of transition [0,22,1]
mimics this behavior as follows: If ¢0 is set and at the same
time e22 occurs then set gl and reset g0. Other tran-
sitions are implemented in the same manner. However
there is one important point to be explained in terms of

@ Springer

702

Int J Adv Manuf Technol (2012) 62:687-704

Table 5 Some symbols of Siemens S7-300 PLC

LLD Symbol Definition
--(S) Set
--(R) Reset
-() Output coil
T Timer
I Input
Q Output
M Memory bit
—A Normally open contact
—— Normally closed contact
Off Delay S5 Timer
S: Start input
1. No, Q: Status of the timer
- SS*OFFDg = TV: Preset Time Value
v BIF BI: Remaining Time Value
<R ___BCDF BCD: Remaining Time Value in BCD format

Tr. No: Number of Timer

R: Reset input

gl The rising edge of the input signal gl is

] rpos | transferred to output Q.
Q: Output
{M BIT M_BIT: Memory bit
gl The falling edge of the input signal gl is
1 NEG | transferred to output Q.
Q: Output
{m_BIT M_BIT: Memory bit

the implementation order of some transitions. These transi-
tions are the ones in which events e61 and e71 are present. It
can be seen that these events are always available. Therefore,
in the implementation of the following set of transitions, the
lowest priority must be given to the transitions including
events e61 and e71. There are four set of such transitions:
E1={[1,12,0],[1,61,2]}, E2={[7,8,12],[8,52,1],[8,61,9]},
E3={[3,4,22],[3,71,5]}, E4={[3,4,12],[4,71,6]}. It can be
seen that each set of transitions has a common source state,
which means that transitions of each set originate from the
same state. In the first set E1, the transition [1,12,0] is imple-
mented before the transition [1,61,2]. In the second set E2, the
transitions [7,8,12], and [8,52,1] are implemented before the
transition [8,61,9]. In the third set E3, the transition [3,4,22] is
implemented before the transition [3,71,5]. Finally, in the set
E4, the transition [3,4,12] is implemented before the transition
[4,71,6]. This order of LLD rungs ensures the proper opera-
tion of the PLC in controlling the system. Finally, actions SSa

@ Springer

(sort solenoid action) and ASa (assembly solenoid action) are
implemented in networks NW35 and NW36 respectively. By
using a PC software called “Simatic Manager”, this LLD code
was programmed on a Siemens S7-300 (CPU 319) PLC
in the experimental set-up shown in Fig. 7. The LLD
code implemented the control specifications as required
and it did not unnecessarily constrain the behavior of
the experimental manufacturing system.

The LLD code shown in Fig. 18 can be validated by
using timing diagrams of the inputs, outputs, and the varia-
bles used within the LLD code. In order to accomplish such
a task, a scenario can be characterized to inspect PLC inputs,
the variables used and output signals as carried out in [31].
However, as the experimental manufacturing system
worked very well as specified by the specifications the
validation is not considered. For verification purposes, it
may well be the case to use a PLC simulation software as
in [13].

Int J Adv Manuf Technol (2012) 62:687-704

703

MO0.0 q0
Nwit—4 {s)
(init. Q0.3

—(s)
Q0.4
—(s)
ql

L (R)
q2
—(R)
q3
—(R)
q4
—(R)
q5
—(R)
q6
—(R)
q7
—(R)
q8
—(R)
q9
—(R)
ql0
—{&)
(k)
MO.0
—(s)

Q00 101 L.
Nw2 —+— —()
[el2]

M]() M_BIT

10.1 00 o
w3 4 —()
[e22]

M1.14M_BIT
T0

Q0.0 10.1 LOE((,) S_OFFDT]
Nw4 -_{ I
[e32] #1sT TV BI

M1.24M_BIT -r__BCr
_To MI1.3 pe3§
NW5 N
[pe32]
102 T1
POS S_OFFDT]
NW6 —5 ©
[e42] stV Bl
M1.4qM_BIT -R__BCD
Tl MI15 pe42
NW7L L INF——
[pe42] _| N)
102 T2
NEG S_OFFDT]|
NW8 sS5T S
[e52] #lssfty BI
M1.6{M_BIT -R__BCD
T2 Ml1.7 e52
NW9 — —N)
[pe52]
_1\|/1(=.0 <61
NW10
e6t]| ' N

MO0.0 e71
Nwil | {

[e71]

q0 e22 ql

w2 —— Fr—s)
[0221] q0
—(R)

ql el2 q0
Nw13 F—(s)
[1120] ql
—(Rr)

ql e61 q2
W4 —— F—(s)
[1612] ql
—(Rr)

q2 pe32 q3

Nw1s HF—F1—(s)
[2323] Q@
—(R)

q3 €22 q4

W16 H F—f F—(5)
[3224] 93
—(R)

q e7l1 q5

w17 — s)
[3715] a3
R)

4 el2 q3
Nwist— — S)
[4123] q
R)

q4 e71 q6
Nw19— s)
[4716] q
—(R)

q5 €22 q6
Nw20f— F—s)
[5226 9
—(Rr)

q5 pe42 q7

w2l b— F—s)
[5427] q5
—(R)

q6 el2 q5

Nw22 — F——s)
[612 5] q6
—(R)

q6 pe42 q8

w23 — H— s)
[6 42 8] q6
R)

q e22 q8

Nw24 — — s)
[722 8] q7
R)

q7 pes2 q0
Nw25 s)
[7 52 0] q7
R)

q el2 q7
Nw26— F— S)
812 7] q8
R)

q8 pe52 ql

NW27 S)
[8521] q8
R)

Fig. 18 The LLD code implementation of the SUPER automaton model shown in Fig. 17

NW28
[8619]

Nw29
[93210]

NW30
[9522]

NW31
[1022 11]

NWw32
[1052 3]

NW33
[11 12 10]

NWw34
[11524]

NW35
[SSa]

NW36
[ASa]

_?8 e61 qs9)
q8
Eﬁ R)

q9 pe32 qu
— — I—‘:i 59)
qR)
q9 peS2 q2
)
)
ql0 €22 qll
()
q
—(R)
10 pe52 q3
—ci s)
ql0
R)
qll el2 ql0
S
qll
—(Rr)
qll peS2 q4
— s)
qll
R)
q2 Q0.0
H——O)
—H
f)
q6
|_

@ Springer

704

Int J Adv Manuf Technol (2012) 62:687-704

5 Conclusions

In this paper, an easy to use, general and practical technique
is proposed for the PLC-based implementation of RW
supervisors with time delay functions. This paper has par-
ticularly shown the applicability of the proposed approach
to low-level real-time control where the role of the supervi-
sor is to arrange low-level interaction between the control
devices, such as motors, actuators, etc. The RW supervisor
obtained in this study is of a monolithic type. This means
that when this method is used for complex systems, the state
space and therefore the number of the states within the RW
supervisor would get very large. This is a problem when
implementing each state by means of a memory element in a
commercial PLC, because there are a limited number of
such elements. To solve this problem, further studies will
be carried out to obtain reduced RW supervisors and mod-
ular supervisors as opposed to monolithic supervisors.

Acknowledgments This work was supported by the research grant
of The Scientific and Technological Research Council of Turkey
(Tiirkiye Bilimsel ve Teknolojik Arastirma Kurumu—TUBITAK)
under the project number TUBITAK-107E125.

References

1. Ramadge PJ, Wonham WM (1989) The control of discrete event
systems. Proc IEEE 77(1):81-98

2. Ramadge PJ, Wonham WM (1987) Supervisory control of a class
of discrete event processes. SIAM J Contr Optim 25(1):206-230

3. Fabian M, Hellegren A (1998) PLC-based implementation of
supervisory control for discrete event systems. in Proc. 37th IEEE
Conf. Dec. Contr., Tampa, Florida, USA, pp. 3305-3310

4. Brandin BA (1996) The real-time supervisory control of an exper-
imental manufacturing cell. IEEE Trans Robot Autom 12(1):1-14

5. Lauzon SC, Ma AKL, Mills JK, Benhabib B (1996) Application of
discrete-event-system theory to flexible manufacturing. /EEE
Cont. Systems Magazine, pp. 41-48

6. Lauzon SC, Mills JK, Benhabib B (1997) An implementation
methodology for the supervisory control of flexible manufacturing
workeells. J Manuf Syst 16(2):91-101

7. Ramirez-Serrano A, Zhu SC, Benhabib B (2000) Moore automata
for the supervisory control of robotic manufacturing workcells.
Auton Robot 9:59-69

8. Ramirez-Serrano A, Zhu SC, Chan SKH, Chan SSW, Ficocelli M,
Benhabib B (2002) A hybrid PC/PLC architecture for
manufacturing-system control-theory and implementation. J Intell
Manuf 13:261-281

9. De Queiroz MH, Cury JER (2002) Synthesis and implementation of
local modular supervisory control for a manufacturing cell. in Proc. 6th
Int. Workshop on Discrete Event Syst., Zaragoza, Spain, pp. 377-382

10. Vieira AD, Cury JER, De Queiroz MH (2006) A model for
implementation of supervisory control of a discrete event systems.
in Proc. IEEE Conf. on Emerging Tech. and Factory Automation,
ETFA’2006, pp. 225-232
11. Gouyon D, Petin JF, Gouin A (2004) Pragmatic approach for

modular synthesis and implementation. Int J Prod Res 42
(14):2839-2858

@ Springer

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

LiuJ , Darabi H (2002) Ladder logic implementation of Ramadge-
Wonham supervisory controller. in Proc. 6th Int. Workshop on
Discrete Event Syst., Zaragoza, Spain, pp. 383-389
Moniruzzaman M , Gohari P (2007) Implementing supervisory
control maps with PLC. in Proc. 2007 American Contr. Conf.,
New York City, USA, pp. 3594-3599

Manesis S, Akantziotis K (2005) Automated synthesis of ladder
automation circuits based on state-diagrams. Adv Eng Softw
36:225-233

Hasdemir IT, Kurtulan S, Goren L (2008) An implementation
methodology for supervisory control theory. Int J] Adv Manuf Tech
36:373-385

David R, Alla H (2005) Discrete, continuous, and hybrid Petri
nets. Springer

Alur R, Dill D (1994) A theory of timed automata. Theor Comput
Sci B 126:183-235

Fix L, Alur R, Henzinger TA (1994) A determinizable class
of timed automata. In: David L (ed) Dill, editor, sixth Inter-
national Conference on Computer-Aided Verification CAYV,
volume 818 of Lecture Notes in Computer Science. Springer,
California, pp 1-13

Larsen KG, Pettersson P, Yi W (1995) Model-checking for real-
time systems. in Proc. of Fundamentals of Computation Theory,
Lecture Notes in Computer Science, vol. 965, pp. 62—88

Bouyer P, Dufourd C, Fleury E, Petit A (2000) Are timed
automata updatable. in Proc. 12th Int. Conf. Computer Aided
Verification (CAV’2000), Chicago, IL, USA. Lecture Notes in
Computer Science, vol. 1855, pp. 464—479. Springer

Alur R, Fix L, Henzinger TA (1999) Event-clock automata: a
determinizable class of timed automata. Theor Comput Sci
211:253-273

Barandin A, Wonham WM (1994) Supervisory control of timed
discrete event systems. IEEE Trans. on Autom. Control, vol.39,
no.2

Takai S, Ushio T (2006) A new class of supervisors for timed
discrete event systems under partial observation. Discrete Event
Dyn Syst Theor Appl 16:257-278

Park S-J, Cho K-H, Lim J-T (2004) Supervisory control of real
time discrete event system under bounded time constraints. IEEE
Proc Control Theory Appl 151:347-352

Uzam M, Gelen G, Dalci R (2009) A new approach for the ladder
logic implementation of Ramadge—Wonham supervisors. in Proc.
22nd Int. Symp. on Information, Communication and Automation
Technologies, Sarajevo, Bosnia and Herzegovina, October 29-31,
pp. 113-119

Uzam M, Gelen G, Dalci R (2009) Timed transition automata and
their ladder logic implementation. in Proc. 22nd International
Symposium on Information, Communication and Automation
Technologies, Sarajevo, Bosnia and Herzegovina, October 29—
31, pp. 120-127

Gelen G, Uzam M, Dalc1 R (2010) The concept of postponed event
in timed discrete event systems and its PLC implementation. in
Proc. 2010 IEEE Int. Conf. on Syst. Man, and Cybern. (SMC
2010), istanbul, Turkey, October 10-13, pp. 27532759

TCT (2011). A software tool supporting supervisory control theo-
ry. Systems Control Group, ECE Dept., University of Toronto,
Posted at URL: www.control.utoronto.ca/DES

Wonham WM. Supervisory control of discrete event systems. ECE
dept, University of Toronto, 1997-2011, http://www.control.utoronto.
ca/DES/, Updated 2011.07.01

IEC 61131-3 (2003) Programmable controllers—part 3: program-
ming languages

Uzam M, Gelen G (2009) The real-time supervisory control of an
experimental manufacturing system based on a hybrid method.
Control Eng Pract 17(10):1174-1189

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES/
http://www.control.utoronto.ca/DES/

	A general technique for the PLC-Based implementation of RW supervisors with time delay functions
	Abstract
	Introduction
	Preliminaries
	Supervisory control theory
	The assignment of actions (Output Signals) to the related states of RW supervisors
	Conversion of a RW supervisor into LLD code
	The concept of postponed event
	Implementation of the postponed event

	The proposed approach for the PLC-based implementation of RW Supervisors with time delay functions
	Real-time supervisory control of an experimental manufacturing system
	Problem description
	Design and implementation steps for solving the control problem
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Step 11

	Conclusions
	References

