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Abstract This paper presents a multiobjective formulation
of the buffer allocation problem in unreliable production
lines. Majority of the solution methods for buffer allocation
problems assume that the process times, time between failures,
and repair times are deterministic or exponentially distributed.
This paper relaxes these restrictions by proposing a simulation-
based methodology which can consider general function dis-
tributions for all parameters of production lines. Factorial
design has been used to build a meta-model for estimating
production rate based on a detailed, discrete event simulation
model. We use genetic algorithm combined to line search
method to solve the multiobjective model and determining
the optimal (or near optimal) size of each buffer storage.

Keywords Buffer storage . Queuing network . Simulation .
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decision making . Line search

1 Introduction

A production line consists of machines connected in series
and separated by buffers (Fig. 1). Each part is required to be
processed on each machine during a fixed amount of time
called process time. A production line for which the process
times are equal at all machines be called a homogeneous (or
balanced) line. In a nonhomogeneous (or nonbalanced) line,
machines may take different lengths of time performing
operations on parts [1]. Also it is obvious that in each

station, there might be a number of parallel machines that
help production and manufacturing system (Fig. 2).

The main aim in such problems is to optimize the pro-
duction rate, throughput, or the profit of the line. However
material flow may be disrupted by machines failure [4] or by
differences among the service time of the stations. The
inclusion of buffers increases the average production rate
of the line by limiting the propagation of distributions, but at
the cost of additional capital investments, floor space of the
line, and inventory. Therefore appropriate buffer storage
size must be determined in order to reduce manufacturing
cost while maintaining a desirable production rate [5].

Determining buffer sizes and their appropriate positions is
still a challenging problem. Substantial researches have been
conducted on production line evaluation and optimization [6].
Buzacott derives an analytic formula for the production rate
of two-machine, one-buffer lines in a deterministic process
time model [7]. Chow discusses two factors that cause
difficulties in solving the buffer allocation problem (BAP)
[8]. Firstly it has not been possible to derive an analytical
relation between performance of the transfer line and the
storage capacities distribution in the line. Secondly, buffer
sizing is a combinatorial optimization problem. Searching
for an optimal solution by experimenting with a real line or a
simulation model is time consuming. The invention of de-
composition methods with unreliable machines and finite
buffers [9] and its corresponding DDX algorithm [10] ena-
bles the numerical evaluation of the production rate of lines
having more than two machines.

More recently, Huang et al. consider a flow shop-type
production system and use a dynamic programming ap-
proach to maximize its production rate or minimize its work
in process under a certain buffer allocation strategy [11].
Diamantidis and Papadopoulos [12] present a dynamic
programming algorithm for optimizing buffer allocation
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based on the aggregation method given by Lim et al. [13].
Smith and Cruz solve the BAP for general finite buffer
queuing networks in which they minimize buffer space cost
under the production rate constraint [14]. Manitz proposes a
queuing model-based analysis of assembly lines with finite
buffers and general service times, and he uses decomposi-
tion approach to analyze and allocate buffer storages [15].
Diamantidis and Papadopoulos analyze a two-workstation
one-buffer flow line with parallel unreliable machines [16].
They assume that the process time, time between failures,
and repair time of the parallel machines at each workstation
are exponentially distributed. They employ a recursive al-
gorithm that generates the transition matrix for any value of
the intermediate buffer capacity, and through this, they
encounter with the problem and solve it. Radhoui et al.
develop a joint quality control and preventive maintenance
policy for a randomly failing production system producing
conforming and nonconforming units. The considered sys-
tem consists of one machine designed to fulfill a constant
demand. In order to palliate perturbations caused by the
stopping of the machine to undergo preventive maintenance
or an overhaul, a buffer stock is built up to ensure the
continuous supply of the subsequent production line [17].
Sabuncuoglu and Gocgun develop a heuristic procedure to
allocate buffers in serial production lines to analyze
throughput [18]. Their procedure assumes that failure and
repair times are exponentially distributed, and process times
are deterministic. Vergara and Kim present a buffer placement
method for serial production line in order to analyze through-
put [19]. They assume that the process times are exponen-
tially distributes, and the time between failures and the
repair times are deterministic. Romulo et al. present a model
to determine the optimal length of continuous production

periods between maintenance actions and the optimal buffer
inventory to satisfy demand during preventive maintenance
or repair of a manufacturing facility [20]. Colledani and
Tolio present an analytical method for evaluating the per-
formance of production system, jointly considering in a
unique framework quality and production logistic perfor-
mance measures [21]. They assume that the stations process
components by the same deterministic process time, scaled
to time units. Abdul-Kader and Gharbi address the problem
of capacity estimation of a multi-product production line
composed of m unreliable workstations and (m−1) interme-
diate buffers [22]. They propose a simulation-based experi-
mental designmethodology to improve the performance of the
production line not to determine the exact amount of each
intermediate buffer. In other words, their methodology deter-
mines just the effects of buffers with comparing to each other,
on the cycle time of production line.

The aim of this paper is to propose a mathematical model
(formulation) and also a methodology as a solution to maxi-
mize production rate (throughput of the line in a time range)
and to minimize intermediate buffer storages under some con-
straints for unreliable production lines. Many of the previous
works on this subject are limited because of considering some
assumptions which could not be applied to all the problems in
real cases. Process times and (or) time between failures are
considered deterministic or exponentially distributed in many
researches (e.g., [7, 11, 12, 15, 16, 18, 19, 21]). Also main-
tenance and repairing of machines and the nondeterministic
nature of repair times are ignored as a fact in some researches.

According to previous researches, considering determinis-
tic and (or) exponential distribution functions of parameters,
some methods like queuing networks and decomposition can
be used for buffer allocation, but in production systems, if we

Fig. 1 A production line with
K stations and k−1 buffer
storages [2]
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assume some parameters as general distribution functions,
these methods cannot be applicable. This paper relaxes these
restrictions by proposing a simulation-based methodology
which can considers general function distributions (e.g., nor-
mal, gamma, Weibull, uniform) for all parameters of produc-
tion lines to solve the buffer allocation problem.

Recently, new approaches in the area of optimization
research are presented to further improve the solution of
optimization problems with complex nature. Over the past
few years, the studies on evolutionary algorithms have
shown that these methods can be efficiently used to elimi-
nate most of the difficulties of classical methods. Evolutionary
algorithms are widely used to solve engineering optimization
problems with complex nature. Various research works are
carried out to enhance the performance of evolutionary algo-
rithms [23–27]. Yildiz proposes a new design optimization
framework based on immune algorithm and Taguchi’s method.
He describes an innovative optimization approach that offers
significant improvements in performance over existing methods
to solve shape optimization problems [28]. Yildiz in another
work proposes an effective hybrid immune-hill climbing
optimization approach for solving design and manufacturing
optimization problems in industry [29]. He proposes a novel
optimization approach that is a new hybrid optimization
approach based on the particle swarm optimization algo-
rithm and receptor editing property of the immune system
[30]. He introduces an improved harmony search algorithm
to solve engineering optimization problems. To demonstrate
the effectiveness and robustness of the proposed approach,
he applies the approach to an engineering design and manu-
facturing optimization problem taken from the literature [31].
He introduces a new hybrid optimization approach by com-
bining immune algorithm and simulated annealing algorithm.
The main aim of his paper is to develop a novel optimization
approach for the solution of engineering optimization prob-
lems [32]. He presents a new hybrid optimization approach
based on immune algorithm and hill climbing local search
algorithm. He claims that this research is the first application
of immune algorithm to the optimization of machining
parameters in the literature [33]. Yildiz et al. propose hybrid
multiobjective shape design optimization using Taguchi’s
method and genetic algorithm. The objective is to contribute
to the development of more efficient shape optimization
approaches in an integrated optimal topology and shape
optimization area with the help of genetic algorithms and
robustness issues [34]. Yildiz and Saitou present a new
method for synthesizing structural assemblies directly from
the design specifications, without going through the two-
step process. They present a new formulation in a continu-
um design domain, which enhances the ability to present
complex structural geometry observed in real-world products
[35]. This paper is organized as follows: Section 2 describes
the basic assumptions, Section 3 presents the proposed

methodology, in Section 4 numerical results are provided,
and Section 5 concludes the paper.

2 Basic assumptions

The basic assumptions regarded in this research are listed
below:

& The production system is considered as a queuing network;
& The entrances to the system may be from different nodes

and time between entrances are generally distributed;
& The system consists of M stations, mi, i01,…, M, and

M−1 buffers bi, i01,…, M−1, separating each consecu-
tive pair of machines.

& Machine mi is said to be starved during a time slot if bi−1
is empty; machine mi is said to be blocked during a time
slot if bi is full and machine mi+1 is either under repair or
blocked.

& Buffer bi is characterized by its size, ni, i01,…, M−1.
One part is inserted into the buffer if upstream machine
is up and neither starved nor blocked. One part is re-
moved from the buffer if the downstream machine is up
and neither starved nor blocked.

& Process time of the stations are generally distributed;
& The probability of machines failure is noted, and time

between failures is generally distributed;
& Repairing time is considered, and it is generally

distributed;

3 The proposed methodology

In this section we propose a methodology to design buffer
storage capacity through following steps.

3.1 Simulation

This methodology employs simulation for a more realistic
representation of the dynamic behavior of a system. Discrete
event simulation is a very effective way of estimating almost
any system performance given that the input data are accu-
rate [36]. Computer simulation offers the advantage of trac-
ing complex system processes (considering any distribution
functions and complex relationship among the stations, ele-
ments, components, and sections), providing timely infor-
mation on operating characteristics, and for these reasons, it
has been adopted in this research.

3.2 Building meta-model using design of experiments

A simulation model is a representation of a real word sys-
tem, whereas the term meta-model referred to herein is a
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mathematical approximation of a simulation model [37, 38].
Meta-models are developed to obtain a better understanding
of the nature of the true relationship between the input
variables and the output variables of the system under study
[39]. A number of mathematical functions have been used to
develop meta-models [40]. The type of meta-models most
commonly used in simulation studies have been polynomial
regression models [38, 41–46]. In this study, two-level
factorial design has been used to build a meta-model based
on a detailed, discrete event simulation model. Factorial
designs are widely used in experiments involving several fac-
tors where it is necessary to study the joint of the factors on a
response [47]. The factorial design method is a statistical
technique that evaluates at the same time all process (or any
focus of study) variables in order to determine which ones
really exert significant influence on the final response,
which gives a better analysis of the response [48]. All
variables are called factors, and different values chosen to
study the factors are called levels [49, 50]. Important trends
may be observed with these factorial designs, and the effect of
each independent variable on the dependent one is estimated
[51].

A complete replicate of a two-level factorial design
requires 2×2×…×202k observations and is called a 2k

factorial design (k denotes the number of factors). If we
choose some designs with higher levels like a three-level
factorial design (3k), such a design requires 3×3×…×303k

observations. For example if we consider 20 buffer storages,
the full 2k design requires 22001,048,576 observations and
the full 3k design requires 32003,486,784,401 observations.
Therefore with respect to 20 buffer storages, the 3k design
requires 3,485,735,825 observations more than 2k (about
3,325 times more) that is too time consuming. These results
indicate that the 2k design is more efficient in this problem.
But if the 2k regression results are not satisfactory, other
designs like 3k design can be an alternative.

When a relatively large number of factors are evaluated,
the total number of combinations may be too large. Further-
more, the high-order interactions (third, fourth, or superior)
are small and may be mixed with the standard deviation of
the effects. In this case, it is advisable and convenient to use
a fractional factorial design (2k−p case). The number of
combinations is diminished, and the most important effects
are determined but at the cost of decreasing the accuracy of
the meta-model [49]. For example if we consider 20 buffer
storages, the full 2k design requires 22001,048,576 observa-
tions, whereas considering a fractional factorial design like
220−12 needs just 256 observations indeed at the cost of
decreasing the accuracy of the meta-model. In the interpre-
tation of the results generated by a complete or fractional
factorial design, it is necessary to decide which calculated
effects are significantly different from zero. The usual prac-
tice is using the concept of statistical significance (generally

95% of confidence). When analyzing the results of a facto-
rial design, two statistic parameters are of relevance. The t
statistics of a factor is obtained by the division of its effect
by its error. This statistic parameter is dependent on the
freedom degree, which is calculated by the subtraction of
the number of calculated effects from the total number of
experiments/trials available. The higher the t statistics, the
higher is the significance of the corresponding factor. On the
other hand, the p level, which represents the probability of
error that is involved in accepting the effect as valid, is a
decreasing index of the reliability of a result. The higher the
p level, the less one can believe that the observed relation
between factor and effect is reliable. The common practice
is to consider 95% of confidence in a result, so that for an
effect to be considered statistically significant, its p level
must be less than 0.05. The two levels evaluated in a
factorial design are coded by (+) and (−), representing the
upper and lower levels, respectively [48]. In this paper we use
design of experiments (DOE) and simulation to fit a meta-
model to the production rate as response (y), considering the
buffers as factors (Xi). In most factorial design problems, a
low-order polynomial in some region of the independent
variables is employed. If the response is well modeled by
a linear function of the independent variables, then the
approximating function is the first-order model (Eq. 1).

y ¼ b0 þ b1x1 þ b2x2 þ ::: þ bnxn þ e ð1Þ
If the statistics tests on the first-order meta-model are not

acceptable or satisfactory, a second-order meta-model
should be chosen consecutively (Eq. 2).

y ¼ b0 þ
Xn
i¼1

bixi þ
Xn
i¼1

biix
2
i þ

X
i < j

X
bijxixj þ e ð2Þ

where β0 denotes regression intercept, βi denotes main or
first-order effect of factor i, Xi denotes value of the factor i,
βii denotes quadratic effect of factor i, βij denotes interaction
between the factor i and j (i≠ j), e denotes fitting error of the
regression model, and n denotes the number of factors.

Meta-model validation is determined based on the model’s
purpose [37, 52]. In this study, the validity of the meta-
model with respect to the simulation model is determined
by examining the model fit diagnostics. A lack-of-fit test is
used to ascertain if the model adequately fits the data. A
check of the distribution of the residuals leads to the deter-
mination of the validity of some of the model assumptions
[53]. Comparing the meta-model output and simulation output
is another way to evaluate the validity of the meta-model [41].

The methodology to build a regression meta-model (for
production rate) we use the following:

Step 1: Define the problem. The problem to be solved and
its boundaries need to be identified. Its limitations
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and the factors to be considered should be defined
(in this problem, the factors are buffer storages).

Step 2: Define the range of the factors (upper and lower
limit of buffer storages).

Step 3: Specify the form of the meta-model.
Step 4: Develop the experimental design so that informa-

tion on the response variable at a variety of input
factors can be collected in an efficient way.

Step 5: Build a simulation model of production line and
use the experimental design to generate the out-
puts (responses).

Step 6: Develop the regression meta-model. The regres-
sion meta-model to predict the dependent variable
(production rate) can be developed using the out-
put generated for the dependent variable (using
simulation) and the input values obtained through
the experimental design.

Step 7: If the meta-model is satisfactory, then stop; else, go
to step 3.

3.3 Problem formulation

The first objective of the mathematical model is to maxi-
mize production rate:

Max Z1 ¼ f ðxiÞ i ¼ 1; 2; :::; n ð3Þ

Equation 3 is a regression meta-model, where Xi (deci-
sion variable) denotes the buffer size of station i, n denotes
the number of buffer storages, and f(Xi) estimates the pro-
duction rate of the production line based on Xi. This regres-
sion meta-model is obtained using DOE and simulation
(according to Section 3.2) with considering production rate
as the response variable and Xi as the independent variables.
This regression meta-model can be a first-order or higher
order polynomial based on the validation tests (Section 3.2).

More buffer storages lead to higher production rate, yet at
the cost of increasing, the holding cost of intermediate
inventories. Therefore the second objective is to minimize
the total buffer storages of the line.

Min Z2 ¼ Total buffer size ¼
Xn
i¼1

Xi ð4Þ

In this model there are some constraints that are in
relation with buffer size of each station. For environmental
reasons (layout limitations), each buffer storage of the sta-
tions varies from a lower value to an upper value.

Li � Xi � Ui 8i ¼ 1 to n ð5Þ

Xi � 0 and integer 8i ¼ 1 to n ð6Þ

where Ui denotes the upper and Li denotes the lower limit of
buffer storages, Xi (decision variable) is the nonnegative and
integer variable.

3.4 Solving the model

The mentioned problem is a multiobjective model (production
rate objective and total buffer size objective) and should be
solved to obtain the decision variables amount. A powerful
method for multiobjective problem solving that generates
different nondominated solutions based on the objective’s
weights is LP metric method. Equation 7 indicates the LP
metric method for multiobjective problem solving [54, 55].

min ¼
Xm
j¼1

Wp
j

f �j � fj
f �j � f �i

�����
�����
p" #1

p

ð7Þ

where Wj denotes the weight of the objective j, m denotes
the number of objectives, fj

* denotes optimum value (ideal)
of objective j, fj

− denotes antioptimum value (anti-ideal) of
objective j. Equation 7 combines the model objectives and
finds the minimum of combined function. It seeks the opti-
mum amount of decision variables in feasible region of the
main formulated model as following:

x 2 s ð8Þ

where “X” denotes the solution vector and “S” denotes the
feasible region of the main formulated model.

The LP metric objective function is nonlinear for p>1 and
also the first objective function (Eq. 3) may be nonlinear,
thus genetic algorithm (GA) in this methodology is an
appropriate optimization method and can be employed to
find the near optimal solutions. Genetic algorithm is a
powerful algorithmic approach that has been applied with
great success to many difficult combinatorial problems.
Genetic algorithm is a probabilistic search method stimulated
by genetic evolution [56]. Genetic algorithms have proven to
be very adaptable to a great variety of different optimization
tasks [57]. The algorithms work with a population of possible
solutions, which suffers evolution during the generations, an
analogy borrowed from the Darwin’s evolutionary theory.
Each solution is coded as a collection (chromosome) of binary
or real strings; each string represents a variable in the solution.
The evolution is achieved by some genetic operators as repro-
duction, crossover, and mutation. The survival of the fittest is
achieved by the assignment of a fitness function, usually
defined as the objective function for the unconstrained opti-
mization problem, or a combination of the objective function
and a penalty function for constrained optimization [58, 59].
The set of solutions (i.e., the population) per iteration (genera-
tion) is fixed. At each iteration, pairs of individuals are selected
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randomly and are recombined into new solutions (crossover
operator). A random change on the offspring generation
is optionally applied (mutation operator). The newly created
solutions are evaluated according to the fitness function [57].
Genetic algorithm can also borrow the idea from nature of
coexistence of multiple niches in order to deal with multi-
modal optimization. A sharing concept (in an analogy to the
sharing, in nature, of available resources, such as land and
food) may be introduced artificially in GA population. This
allows coexistence of multiple optimal solutions (both local
and global). More details about the niching in GA may be
found in [59].

GA often performs well in global search, but they are
relatively slow and trapped in converging to local optimal
[60]. On the other hand, the local improvement methods,
such as gradient-based (line search, LS) procedures, can find
the local optimum in a small region of the search space, but
they are typically poor in a global search. Therefore, various
strategies of hybridization have been suggested to improve
performance of simple GAs [60, 61]. These hybridizations
usually involve incorporating a neighborhood search heu-
ristic as a local improver into a basic GA loop of recombi-
nation and selection. That is, local improver is applied to
each newly generated offspring to move it to a local opti-
mum one before inserting it into the enlarged population
[62]. In this manner, GA is used to perform global explora-
tion among a population (i.e., as a diversification tool),
while the local improver is used to perform local exploita-
tion around chromosomes (i.e., as an intensification tool).
The general structure of the proposed hybrid genetic algo-
rithm (HGA) for the problem is described as follows:

Step 1. Initialization: create an initial population of popu-
lation size solutions using constructive heuristics
and randomly generated solutions.

Step 2. Recombination: recombine the solutions in the
current population using genetic operators to cre-
ate new individuals.

Step 3. Improvement: apply the local improvement method
(LS) to replace each offspring with a local optimum
one, and insert the improved offspring into the en-
larged population.

Step 4. Selection: select population size solutions from the
chromosomes in the enlarged population to form
the next generation, and determine the best solu-
tion in the new population.

Step 5. Iteration: repeat steps 2–4 until the termination
condition is reached.

Setting GA parameters are mostly based on empirical
observations with respect to the problem variability [63].
The GA parameters used in this study are retrieved from the
available design literature [61, 64–67]. The GA parameters
are set as listed in Table 1.

4 Numerical example

Consider a production line with 18 stations (A to R) and one
operating machine for each station. Figure 3 demonstrates
the mentioned production line. In this production line,
circles indicate the stations and triangles indicate buffer
storages. In this demonstration, raw materials enter to the
production line from different nodes and pass among the
stations to get process. Station M assembles the outputs of
the station I and J; station O assembles the outputs of station
M and N; station Q assembles the outputs of station P and L;
and station R performs some complementary operations,
and the output of the station R is the final product of the
production line. We now want to determine the optimum

Table 1 GA parameters
Population size Crossover rate Mutation rate Selection function Crossover Mutation

100 0.9 0.01 Tournament Uniform Uniform

Fig. 3 A production line
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capacity of buffer storages of each station. Table 2 presents
the process time, time between failures, and repair time of
each station. Table 3 presents the lower limit and upper limit
of the buffer storages (decision variables). According to the
first step of the proposed methodology, the queuing network
of Fig. 3 is simulated by MATLAB software product based
on the data in Table 2.

At this step we should choose an appropriate design of
experiments which can be two level full factorial design
(2k). However considering the large number of stations

and buffer storages, the full factorial design (2k) is too time
consuming. As the number of factors in a 2k factorial design
increase, the number of runs required for a complete repli-
cate of the design rapidly outgrows the resources of most
experiments [47]. In spite of the better results of performing
full factorial design or even response surface designs, we
use two-level fractional factorial design (2k−p) with low
resolution to illustrate the performance of numerical example
of the proposed methodology. Although it is still recommen-
ded if the 2k−p design regression results are not satisfactory,
researchers use full factorial or response surface designs for
problem solving in real cases. The term “resolution” is used
in DOE literature to express what can be estimated from a
particular fractional design. For example a resolution V
fractional factorial design would give main effects and
two-way interactions unconfounded with each other. Con-
sequently, a 99.8% reduction in data collection can be
achieved by using a 2v

14−9 fractional design (14 factor),
which represents only 32 combinations of factors (e.g.,
320 simulations, if 10 replications are performed) in com-
parison with two-level full factorial design. These 32 com-
binations are generated in DOE++ software product.

2v
14−9 fractional design generates 32 case, based on

upper and lower limits of factors coded by +1 (upper limit)
and −1 (lower limit). Each case of these combinations is
simulated in MATLAB software product to analyze the
results on the response (production rate). The simulation
runs are performed for 5,000,000 time unit on a PC with
Core 2 Duo CPU (2.00 GHz) and 1.99 GB of RAM
and each run takes long about 5 to 6 min. For example

Table 2 Process time, time
between failures, and repair time
of each station

Station Process time Time between failures Repair time

A Weibull (20, 10, 2) Weibull (1,000, 70, 20) Gamma (1,000, 250, 80)

B Weibull (25, 11, 4) Weibull (9,000, 200, 18) Gamma (1,200, 250, 80)

C Weibull (30, 11 4) Weibull (9,500, 200, 18) Gamma (200, 250, 80)

D Weibull (20, 10, 6) Weibull (9,000, 200 18) Gamma (1,250, 250, 80)

E Weibull (35, 4, 3) Weibull (15,000, 130, 20) Gamma (400, 300, 52)

F Weibull (37, 9, 6) Weibull (17,000, 240, 90) Gamma (2,354, 300, 52)

G Weibull (36, 10, 6) Weibull (18,000, 240, 90) Gamma (2,000, 325, 52)

H Weibull (40, 9, 6) Weibull (1,700, 240, 90) Gamma (2,000, 300, 52)

I Weibull (30, 11, 9) Weibull (11,000, 350, 18) Gamma (500, 300, 52)

J Weibull (45, 16, 9) Weibull (9,000, 180, 40) Gamma (700, 300, 52)

K Weibull (46, 12, 9) Weibull (9,000, 180, 40) Gamma (756, 300, 52)

L Weibull (48, 11, 12) Weibull (9,400, 140, 70) Gamma (730, 300, 52)

M Exponential (40) Weibull (12,000, 200, 80) Gamma (1,500, 300, 52)

N Weibull (44, 17, 9) Weibull (8,650, 180, 40) Gamma (700, 300, 52)

O Weibull (27, 12, 10) Weibull (8,100, 300, 25) Gamma (2,659, 140, 60)

P Exponential (43) Weibull (8,230, 250, 30) Gamma (2,768, 160, 65)

Q Weibull (26, 12, 10) Weibull (7,700, 324, 25) Gamma (2,546, 140, 60)

R Weibull (33, 14, 10) Weibull (7,900, 400, 25) Gamma (2,434, 143, 60)

Buffer Lower
limit

Upper
limit

1 0 200

2 0 180

3 0 250

4 0 170

5 0 200

6 0 240

7 0 160

8 0 210

9 0 150

10 0 220

11 0 140

12 0 230

13 0 200

14 0 150

Table 3 Lower limit and upper
limit of buffer storages
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case “1, −1, −1, 1, 1, 1, −1, −1, 1, −1, −1, 1, 1, −1”
that is one of the 32 cases in two-level fractional
factorial design for 14 factor indicates a run with upper
limit of X1, X4, X5, X6, X9, X12, X13 and lower limit of X2,
X3, X7, X8, X10, X11, X14. Simulation of this case leads to
produce 430 final products.

In accordance with the methodology presented in Sec-
tion 3.2, a regression meta-model considering only the main
effects of the factors is developed. Analysis of variance for
response is presented in Table 4.

Fisher’s F test in Table 4 for regression does not demon-
strate a high significance for the regression model and the
obtained meta-model explains only 56.96% of the output
(production rate) variability. Thus, regarding our objectives,
the results of the used meta-model are not satisfactory.
Consequently, a new regression meta-model is evaluated
considering now both the main effects of the factors and
their two-way interactions. Analysis of variance for response
of the new meta-model is presented in Table 5. Fisher’s F test
in Table 5 for regression demonstrates a high significance
for the regression model (F017.7984 and P00.0545). The
larger the F value, the more important it is that the factor
influenced the response variable. The meta-model obtained
explains now more than 95% of the output variability
(R square099.61%). The normality test for residual has been
performed using one-sample Kolmogorov–Smirnov test,
and results are shown in Table 6. The amount of p value
(0.361) approves the residual normality as another model fit
diagnostics. Therefore we have considered that it is satis-
factory regarding our objectives. Results of the regression
analysis are presented in Table 7.

Considering Table 7 data, the regression meta-model is as
follows:

Production rate ¼ 931:25þ 55:8125�X1 þ 24�X2 þ 313:6875�X3

þ87:6875�X4 þ 325:1875�X5 þ 329:25�X6

þ97:375�X7 þ 372:8125�X8 þ 464:375�X9

þ411:375�X10 þ 202:1875�X11 þ 300:0625�X12

þ135�X13 þ 258:25�X14 þ 387:3125�X1�X2

þ76:5�X1�X3 þ 296:75�X1�X4 þ 45:75�X1�X5

þ125:4375�X1�X6 þ 325:3125�X1�X7

þ7:25�X1�X8 þ 15:6875�X1�X9

þ110:0625�X1�X10 þ 284:875�X1�X11

þ125:5�X1�X12 þ 278:3125�X1�X13

þ143:3125�X1�X14 þ 360:625�X3�X12

þ314:0625�X3�X14

ð9Þ
This meta-model (Eq. 9) estimates the production rate (first
objective of the model), based on the different amounts of
the buffer storages (x1 to x14) and the aim is to maximize this
objective.

In order to test the validity of the meta-model, we use the
approach suggested by Durieux and Pierreval [41]. Ten
combinations of input values of the design factors are ran-
domly selected. The simulation output is then compared to
the predicted values for these combinations using Eq. 9.
These results are given in Table 8. The absolute error is
given by the following formula:

Absolute error ¼ 100 � meta model output � simulation outputj j
Simulation output

ð10Þ
The average absolute error between the simulation model

and regression meta-model in the ten experimental runs is

Table 4 Analysis of variance
for response (considering the
main effects)

Source of variation Degrees of freedom Sum of squares Mean squares F ratio p value

Model 14 3.43E+07 2.45E+06 1.607 0.1752

Main effects 14 3.43E+07 2.45E+06 1.607 0.1752

Residual 17 2.59E+07 1.53E+06

Lack of fit 17 2.59E+07 1.53E+06

Total 31 6.03E+07

R square 56.96%

Table 5 Analysis of variance
for response (considering the
main effects and the interaction
between factors)

Source of variation Degrees of freedom Sum of squares Mean squares F ratio p value

Model 29 6.01E+07 2.07E+06 17.7984 0.0545

Main effects 14 3.43E+07 2.45E+06 21.0816 0.0462

2-way interaction 15 2.57E+07 1.71E+06 14.7341 0.0653

Residual 2 2.33E+05 1.16E+05

Lack of fit 2 2.33E+05 1.16E+05

Total 31 6.03E+07

R square 99.61%
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3.65%. Thus, we consider this meta-model to be accurate
enough. The second objective of the model is to minimize
the total buffer size (Eq. 11).

Min ¼ X1 þ X2 þ X3 þ X4 þ X5 þ X6 þ X7 þ X8

þ X9 þ X10 þ X11 þ X12 þ X13 þ X14 ð11Þ

The combined objective function of production rate maxi-
mization and total buffer size minimization using LP metric is
shown in Eq. 12.

Min ¼ W1
p �7205:0625� ð � Eq:9Þ

�6754:125

����
����
p

þWp
2

�14� ðEq:10Þ
�28

����
����
p� �1

p

ð12Þ

The optimum value (ideal) of Eq. 9 is f1
*07,205.0625

(considering all decision variables equal to 1). 7,205.0625 is a
negative number in Eq. 12 because of converting the pro-
duction rate maximization to minimization function. The
antioptimum value (anti-ideal) of Eq. 9 is f1

−0450.9375
(considering all decision variables equal to −1). Considering
negative number as −450.9375 in Eq. 12 (because of con-
verting the production rate maximization to minimization
function), therefore, it can be concluded that f1

*− f1−0

Table 6 One-sample Kolmogorov–Smirnov test

N 32

Normal parameters Mean 0.0000

Standard deviation 86.63995

Most extreme differences Absolute 0.163

Positive 0.163

Negative −0.163

Kolmogorov–Smirnov Z 0.924

p value 0.361

Table 7 Regression analysis
considering the main effects and
the interaction between factors

Term Effect Coefficient Standard error T value p value

Intercept 931.25 60.2986 15.444 0.0042

X1 111.625 55.8125 60.2986 0.9256 0.4524

X2 48 24 60.2986 0.398 0.7291

X3 627.375 313.6875 60.2986 5.2022 0.035

X4 175.375 87.6875 60.2986 1.4542 0.2831

X5 650.375 325.1875 60.2986 5.393 0.0327

X6 658.5 329.25 60.2986 5.4603 0.0319

X7 194.75 97.375 60.2986 1.6149 0.2477

X8 745.625 372.8125 60.2986 6.1828 0.0252

X9 928.75 464.375 60.2986 7.7013 0.0164

X10 822.75 411.375 60.2986 6.8223 0.0208

X11 404.375 202.1875 60.2986 3.3531 0.0786

X12 600.125 300.0625 60.2986 4.9763 0.0381

X13 270 135 60.2986 2.2389 0.1545

X14 516.5 258.25 60.2986 4.2829 0.0504

X1X2 774.625 387.3125 60.2986 6.4232 0.0234

X1X3 153 76.5 60.2986 1.2687 0.3322

X1X4 593.5 296.75 60.2986 4.9213 0.0389

X1X5 91.5 45.75 60.2986 0.7587 0.5272

X1X6 250.875 125.4375 60.2986 2.0803 0.173

X1X7 650.625 325.3125 60.2986 5.395 0.0327

X1X8 14.5 7.25 60.2986 0.1202 0.9153

X1X9 31.375 15.6875 60.2986 0.2602 0.8191

X1X10 220.125 110.0625 60.2986 1.8253 0.2095

X1X11 569.75 284.875 60.2986 4.7244 0.042

X1X12 251 125.5 60.2986 2.0813 0.1729

X1X13 556.625 278.3125 60.2986 4.6156 0.0439

X1X14 286.625 143.3125 60.2986 2.3767 0.1406

X3X12 721.25 360.625 60.2986 5.9807 0.0268

X3X14 628.125 314.0625 60.2986 5.2085 0.0349
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(−7,205.0625)−(−450.9375)0−6,754.125. As the same, the
optimum value (ideal) of Eq. 11 is f2

*0−14, and the anti-
optimum value (anti-ideal) of Eq. 11 is f2

−014, therefore it
can be concluded that f2

*− f2−0(−14)−(14)0−28. Buffer
storages are bounded to an upper limit and lower limit as
follows:

� 1 � Xi � 1 8i ¼ 1 to 14 ð13Þ

Considering Eq. 12 as objective function and constraints
of the model, the problem has been solved by HGAwith the
line search method which has been coded in MATLAB
software product given in the GA parameters in Table 1.
GA can do global search in entire space, but there is no way
for exploring the search space within the convergence area
of generated GA. Therefore, it is sometimes impossible or
insufficient for GA to locate an optimal solution in the
optimization problems with complex search spaces and con-
straints. To overcome this weakness, hybridization of GA
with conventional search techniques of line search is adop-
ted in this section.

The results of problem solving for different objective’s
weights considering p01 are not satisfactory regarding our
objectives, therefore we solve the model again considering
p02. These results are shown in Table 9.

Each Xi (i01 to 14) row is divided into two parts, the
upper row indicates the coded values (CV) that is the output
of the optimization model and the lower row indicates the
noncoded values (NCV) that are the problem solutions.

The CV and NCV can be converted to each other by
Eq. 14 [47].

CV ¼ Xi � UiþLi
2

Ui�Li
2

ð14Þ

where Ui denotes the upper limit of Xi (noncoded value) and
Li denotes the lower limit of Xi. For example, considering
X3, the upper limit is equal to 250 and the lower limit is
equal to 0 (Table 2), so for any noncoded value of X3

between [0, 250], the coded value may be calculated by
Eq. 14. For example:

X3 ¼ 0; CV ¼ 0�250þ0
2

250�0
2

¼ �1

X3 ¼ 250; CV ¼ 250�250þ0
2

250�0
2

¼ 1

Therefore the coded values (output of the model) have been
converted to noncoded values by Eq. 14.

Each column in this table indicates a solution and deci-
sion maker (or decision makers) may choose one of them.
For example, considering 60% for production rate objec-
tive’s weight and 40% for total buffer size objective’s
weight, we have “X10199, X20150, X30250, X4046, X50
15, X60239, X70155, X80181, X90149, X100215, X110

140, X120229, X130198, X140149.”
This solution results in production rate of 5,617 and total

buffer size of 2,315. If the decision maker wants to increase
the weight of minimizing buffer storages objective (e.g.,

Table 8 Validation of the meta-model

Run 1 2 3 4 5 6 7 8 9 10 Average
absolute
error

X1 200 0 200 200 0 0 0 3 200 200

X2 0 180 0 0 180 180 0 8 170 180

X3 0 0 250 0 250 0 250 243 250 250

X4 0 0 0 170 170 0 0 6 170 170

X5 0 0 0 0 0 200 200 200 198 200

X6 240 240 0 240 0 240 240 240 239 240

X7 160 160 160 0 0 160 0 4 159 160

X8 210 0 0 0 0 0 210 199 208 210

X9 0 150 150 150 150 150 150 143 150 150

X10 220 220 220 220 220 0 220 216 219 220

X11 140 0 0 140 140 140 0 0 140 140

X12 230 0 230 0 230 230 230 219 222 230

X13 0 200 200 0 0 0 0 0 200 200

X14 0 150 0 150 0 0 150 143 149 150

Simulation 755 466 822 974 811 620 4,584 4,388 7,323 7,323

Meta-model 780 491 796 948 836 594 4,701 4,588 7,057 7,205

Absolute error (%) 3.311 5.365 3.163 2.669 3.083 4.194 2.552 4.558 3.632 1.611 3.414
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W1050%; W2050%), the solutions are “X104, X201, X30

250, X4018, X50195, X606, X7021, X80209, X90149,
X100202, X1102, X120226, X13019, X140139.” This solu-
tion results in production rate of 3,965 and total buffer size of
1,441. As it can be seen, increasing the weight of total buffer
size minimization objective, results in decrease of total buffer
size but at the cost of decrease of production rate to.

5 Conclusion

This paper proposes a multiobjective formulation of the
buffer allocation problem in unreliable production lines.

Maximization of production rate and also minimization of
total buffer size are two main objectives of this research. We
present a methodology as a solution to overcome some
limitations of the previous works. In many of the previous
works, the solution methods have been proposed with
assumptions of deterministic and (or) exponential distribu-
tion function of process times, time between failures, and
repair times. However in practice these parameters may be
nondeterministic and even generally distributed (e.g., normal,
gamma, Weibull, uniform, etc.). Thus, this study employs a
simulation-based approach to consider general distribution
functions for all parameters of a production line like process
times, time between failures, and repair times. The proposed

Table 9 Results of problem solving (P02)

W1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

W2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x1 Coded 0.996 0.990 0.998 0.990 −0.960 −0.888 −0.999 −0.831 −0.842

Noncoded 200 199 200 199 4 11 0 17 16

x2 Coded 0.884 0.970 0.899 0.669 −0.993 −0.934 −0.980 −1.000 −0.502

Noncoded 170 177 171 150 1 6 2 0 45

x3 Coded 0.999 1.000 0.975 0.998 1.000 0.972 −0.664 −0.657 −0.796

Noncoded 250 250 247 250 250 247 42 43 26

x4 Coded 0.997 0.994 0.838 −0.456 −0.791 −0.949 −0.995 −0.864 −0.809

Noncoded 170 169 156 46 18 4 0 12 16

x5 Coded 0.982 0.987 0.040 −0.852 0.945 −0.765 −0.849 0.271 −0.681

Noncoded 198 199 104 15 195 24 15 127 32

x6 Coded 0.995 0.976 0.962 0.994 −0.950 −0.973 0.063 −0.860 −1.000

Noncoded 239 237 235 239 6 3 128 17 0

x7 Coded 0.992 0.997 0.863 0.944 −0.731 −0.999 −0.784 −0.840 −0.986

Noncoded 159 160 149 155 21 0 17 13 1

x8 Coded 0.985 0.756 0.963 0.729 0.991 0.382 0.902 −0.778 −0.711

Noncoded 208 184 206 181 209 145 200 23 30

x9 Coded 0.995 0.965 0.995 0.992 0.980 0.907 0.944 0.472 −0.582

Noncoded 150 147 150 149 149 143 146 110 31

x10 Coded 0.988 0.977 0.988 0.958 0.832 −0.406 −1.000 −0.906 −0.569

Noncoded 219 217 219 215 202 65 0 10 47

x11 Coded 0.999 0.987 0.988 0.995 −0.968 −0.932 −0.552 −0.946 −0.719

Noncoded 140 139 139 140 2 5 31 4 20

x12 Coded 0.934 0.996 0.994 0.987 0.962 0.976 −0.953 −0.944 −0.925

Noncoded 222 229 229 229 226 227 5 6 9

x13 Coded 1.000 0.908 0.841 0.980 −0.805 −0.925 −1.000 −0.288 −0.316

Noncoded 200 191 184 198 19 7 0 71 68

x14 Coded 0.984 0.989 0.995 0.986 0.847 0.996 −0.902 −0.808 −0.443

Noncoded 149 149 150 149 139 150 7 14 42

Objective function
of LP metric

0.10097 0.19827 0.29056 0.36958 0.35113 0.34039 0.27803 0.23369 0.16806

Objective function
of throughput

7,057 6,974 6,538 5,617 3,965 2,880 2,021 976 213

Objective function
of buffer size

2,674 2,647 2,539 2,315 1,441 1,037 593 467 383
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methodology employs 2k fractional factorial design and simu-
lation to build a meta-model to estimate the production rate of
production line based on the buffer storages of the stations.
Also it employs hybrid genetic algorithm with the line search
method to solve the nonlinear problem and to determine some
near optimal nondominated solutions for buffer allocation. The
use of genetic algorithm for buffer allocation problem is not
new, but the main contribution of this paper is to propose a
methodology which is not confined to describing the parame-
ters of production lines only by deterministic or exponential
distribution functions and can overcome this limitation.
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