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Abstract This paper focuses on the design and development
of an expert system for on-line detection of various control
chart patterns so as to enable the quality control practitioners
to initiate prompt corrective actions for an out-of-control
manufacturing process. Using this expert system developed
in Visual BASIC 6, all the nine most commonly observed
control chart patterns, e.g., normal, stratification, systematic,
increasing trend, decreasing trend, upward shift, downward
shift, cyclic, and mixture can be recognized well, employing
an optimal set of seven shape features. Based on an observa-
tion window of 32 data points, it can plot the control chart,
compute the control limits, identify the control chart pattern,
calculate the process capability index, determine the maxi-
mum run length, and identify the starting point of the maxi-
mum run length. After pattern recognition, it can also inform
the users about various root assignable causes associated with
a particular pattern along with the necessary pre-emptive
actions. It opens up wide opportunities for quality improve-
ment and real-time applications in diverse manufacturing
processes. This developed expert system is built for a vertical

drilling process and its recognition performance is tested using
simulated process data.
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1 Introduction

In order to achieve global competitive advantage, every
organization is trying to improve its product quality at each
stage of the manufacturing process. Statistical process con-
trol (SPC) is one of the most effective tools of total quality
management, which is used to monitor process variations
and improve the quality of production. Control charts, most-

ly in the form of X chart, are widely used as aids in
maintaining quality and achieving the objective of detecting
trends in quality variation before defective parts/products
are actually produced. In any continuous manufacturing
process, variations from the established standards are
mainly of two types. One is assignable cause variation,
such as those due to faulty manufacturing equipment or
irresponsible personnel or defective material or a broken
tool. The other one is normal chance variation, resulting
from the inherent non-uniformities that exist in machines

or operators or materials or processes. The X chart usu-
ally exhibits various types of patterns [1, 2], e.g., normal
(NOR), stratification (STA), systematic (SYS), increasing
trend (UT), decreasing trend (DT), upward shift (US),
downward shift (DS), cyclic (CYC), and mixture (MIX),
as shown in Fig. 1. Generation of these patterns for a normal
manufacturing process can be simulated using the equations,
as given in Appendix.
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Only the normal pattern is indicative that the process is
operating under random chance causes, i.e., in statistical
control. The remaining patterns are unnatural and are asso-
ciated with impending problems requiring pre-emptive
actions. The task of control chart pattern (CCP) recognition
is basically associated to accurately identify the unnatural
CCPs so that prompt corrective actions can be initiated by
the operators. Identification and analysis of the unnatural
patterns require considerable experience and skill from the
part of the quality control practitioners. However, usually,
they are lacking the skill and expertise needed for interpre-
tation of the control chart patterns. Therefore, the

development of a knowledge-based expert system can help
the operators and quality control practitioners to identify the
possible sources of variation and take necessary decisive
actions.

2 Past researches on expert system for CCP recognition

Evans and Lindsay [3] proposed a framework for develop-
ing expert systems for SPC applications. Its knowledge base
was partitioned into three sets, i.e., (a) domain-independent,
analysis rules for determining whether or not the sample
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observations indicate a lack-of-control, (b) interpretive rules
for analyzing the control chart patterns in terms of process
changes, and (c) domain-dependent diagnostic rules for
assisting to determine assignable causes and corrective
actions. Cheng and Hubele [4] designed an expert system
for all the problem-solving aspects of SPC, and addressed
all the issues concerning integration of monitoring, interpret-
ing, diagnosing, planning, and statistical consulting for SPC.
Kuo and Mital [5] reviewed the existing quality control
expert systems and recommended a set of quality engineer-
ing techniques that should be used to form the knowledge
base. It was pointed out that many organizations had been
faced with a shortage of experienced quality controllers and
individuals who could train and educate others on SPC
techniques. The authors also mentioned that the present
trend had been to develop a quality control system and apply
it throughout the company (company-wide quality control—
CWQC or total quality control—TQC). Pham and Oztemel
[6] integrated an expert system and a neural network-based
pattern recognizer for analyzing and interpreting control
charts. The expert system had an on-line process monitoring
package to detect general out-of-control situations and a
diagnosis module to suggest corrective actions. The pattern
recognizer was an on-line system comprising two neural
networks and a heuristics module designed to identify in-
cipient process abnormalities from control chart patterns.
Swift and Mize [7] developed an expert system to detect
and analyze various patterns of variation (trend, cycle, mix-
ture, shift, stratification, and systematic) that could occur in
manufacturing quality control charts. Statistical significance
tests as interpretive rules were also used to determine the
patterns of variation. Once the pattern was identified, the
expert system could provide the user with possible causes
for the out-of-control process, magnitude of the out-of-
control condition, and starting and stopping points of the
recognized pattern. Hooks et al. [8] presented a model of an
expert system to enhance dimensional tolerancing and data
analysis in quality control. It would also serve a dual role as
a technological link to a CIM environment through the use
of IGES-CAD data. Tsacle and Aly [9] designed and devel-
oped an expert system to advise the hospital personnel how
to measure and control their processes effectively using

different types of control charts, such as X and R-charts,
P-charts, IC-charts and Individual-X, and Moving range
charts. A complete step-by-step interactive session with
the expert system was also shown. Finally, its effectiveness
was evaluated and the feasibility of linking it directly to
other SPC software packages was explored. Vosniakos and
Wang [10] proposed a quality information system frame-
work for mechanical component manufacturing industries to
support both the planning and operation activities. Guh et al.
[11] developed a hybrid intelligent tool (IntelliSPC) in

which a neural network-based control chart pattern recogni-
tion system, an expert system-based control chart alarm
interpretation system and a quality cost simulation system
were integrated for on-line process control. It was designed
to provide the quality control practitioners with the status of
the process (in-control or out-of-control), plausible causes for
the out-of-control situation, and cost-effective actions against
the out-of-control situation. Paladini [12] presented the
guidelines for structuring a decision supporting expert sys-
tem to help with those decisions related to determine the
need or convenience of carrying out inspection. Once the
opportunity to carry it out was defined, the expert system
could help the user to select the type of inspection to adopt
from amongst (a) automatic or sensorial inspection, (b) in-
spection by samples or complete, (c) acceptance or rectifying,
and (d) inspection by attributes or by variables. Although the
past researchers have proposed different frameworks for de-
veloping expert systems for quality control and process mon-
itoring, the development of a real time and user interactive
expert system for effective control chart pattern recognition
has been first accredited to Guh et al. [11]. That neural
network-based CCP recognition system has the drawbacks
of complicated network architecture, incomprehensible and
unchangeable decision rules which compel to the develop-
ment and augmentation of a simple, easily understandable,
and more dynamic expert system for CCP recognition.

This paper focuses on the design and development of an
expert system for on-line application which can detect all
the nine most commonly observed control chart patterns, i.e.,
NOR, STA, SYS, UT, DT, US, DS, CYC, and MIX to enable
the quality control practitioners to initiate prompt corrective
actions for an out-of-control process. All these nine types of
CCPs are simulated and the values of an optimal set of seven
shape features are extracted which are then analyzed using the
classification and regression tree (CART) algorithm to formu-
late the related decision rules for the expert system for CCP
recognition. This expert system is built for a vertical milling
process and its recognition performance is validated using
simulated process data.

3 Determination of the decision rules for expert system

Decision rules are required for detection of the abnormal
process conditions. Most of the past researchers [3, 6, 7]
used statistical properties as the decision rules. On the other
hand, Guh et al. [11] adopted neural network-based algo-
rithms for detection of the abnormal control chart patterns.
The use of rules based on statistical properties in the expert
system has the difficulty that similar statistical properties
may be derived for some patterns of different classes, which
may create problems of incorrect recognition. The
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advantage with neural network is that it is capable of han-
dling noisy measurements requiring no assumption about
the statistical distribution of the monitored data. However,
the major disadvantage with neural network is the difficulty
in understanding how a particular classification decision has
been reached and also in determining the details of how a
given pattern resembles with a particular class. Pham and
Wani [13] and Gauri and Chakraborty [14, 15] highlighted
that each control chart pattern has its own geometric shape
and various related features can represent this shape. Differ-
ent patterns can, therefore, be efficiently discriminated
based on these shape features extracted from the control
chart plot. The advantage of shape features is that those
can be extracted from lesser number of observations without
losing order of the data. Gauri and Chakraborty [16] later
carried out an extensive research work on the feature-based
approach for CCP recognition. They extracted 30 shape
features from an observation window of 32 data points in
such a way that the feature values are independent of the
process mean and standard deviation. Then, they selected an
optimal set of seven shape features using a CARTalgorithm-
based [17] systematic approach. Based on those seven shape
features, they developed the related heuristic rules by which
eight types of CCPs, e.g., NOR, STA, SYS, UT, DT, US,
DS, and CYC can be discriminated efficiently.

Since the extracted shape features represent the main
characteristics of the original data in a condensed form, the
feature-based heuristic rules facilitate efficient pattern rec-
ognition. Moreover, the feature-based heuristic approach
has a distinct advantage that the quality control practitioners
can clearly understand how a particular pattern has been
identified while using the relevant shape features. Therefore,
it is decided to use the feature-based heuristics as the deci-
sion rules for the developed expert system. However, since
this expert system aims at recognizing the MIX pattern too,
the heuristic rules, as proposed by Gauri and Chakrabory
[16], cannot be used here. Therefore, the feature-based
heuristic rules are developed afresh.

3.1 Selection of the important shape features

All the 30 shape features, as considered by Gauri and
Chakraborty [16], are first critically examined to evaluate

if some of those features are at all capable of discriminating
the MIX pattern or it is necessary to define new features for
recognizing the MIX pattern. It is observed that some of the
features, as proposed by Gauri and Chakraborty [16], can
well discriminate the MIX pattern from all other patterns.
Therefore, it is decided to select the most appropriate set of
features from those 30 shape features.

The CART-based systematic approach, as adopted by
Gauri and Chakraborty [16], is applied here for the purpose
of selecting the most appropriate set of shape features that
can recognize all the nine CCPs, including the MIX pattern.
Interestingly, it is found that a different set of seven shape
features can well discriminate all the nine CCPs. Out of
these seven features, four features are extracted without
segmentation of the observation window, two features are
extracted with pre-defined segmentation of the observation
window into four segments of equal size, and one feature is
extracted with criterion-based segmentation of the ob-
servation window. These shape features are described as
below:

(a) Sign of slope of the least square (LS) line representing
the overall pattern (SB):

The slope (B) of the LS line fitted to the data points in an
observation window is given by the following equation:

B ¼
XN

i¼1
yi ti � tð Þ=

XN

i¼1
ti � tð Þ2 ð1Þ

where ti0 ic (i01,2,3,…,N) is the distance of ith time point
of observation from the origin, c is a constant linear distance
used to represent a given sampling interval on the control
chart plot, yi is the observed value of a quality characteristics
at ith time point, N is the size of the observation window and

t ¼ PN
i¼1 ti=N . Then, the feature SB can be defined as

follows: SB01 if B≥0, and SB00 if B<0. This feature
can better discriminate UT versus DT and US versus DS
patterns.

(b) Ratio between variance of the data points in the observa-
tion window (SD2) and mean sum of squares of errors
(MSE) of the LS line representing the overall pattern
(RVE):
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The magnitude of RVE for NOR, STA, SYS, CYC, and
MIX patterns is approximately 1, while for trend and shift
patterns, it is greater than 1.

(c) Area between the overall pattern and the LS line per
interval in terms of SD2 (ALSPI):

ALSPI ¼ ALS= N � 1ð Þ½ �=SD2; SD2 ¼
XN

i¼1
yi � yð Þ2= N � 1ð Þ

ð3Þ
where ALS is the area between the pattern and fitted LS line.
The value of ALS can be easily computed by summing the
areas of the triangles and trapeziums that are formed by the
LS line and overall pattern. The magnitude of ALSPI is the
highest for STA pattern, lowest for SYS pattern, and inter-
mediate for all other patterns.

(d) Proportion of the sum of number of crossovers to mean
line and the LS line (PSMLSC):

PSMLSC ¼
XN�1

i¼1
Oi þ O

0
i

� �
=2N ð4Þ

where Oi01 if yi � yð Þ yiþ1 � yð Þ < 0; otherwise, Oi00, and
y is the mean value of N data points; O

0
i ¼ 1 if yi � y

0
i

� ��
yiþ1 � y

0
iþ1

� �
< 0 , otherwise, O

0
i ¼ 0 , and y

0
i is the least

square estimate of ith data point. The PSMLSC value is
maximum for SYS pattern, intermediate for NOR, STA, UT,
DT, and MIX patterns, and lesser for CYC, US, and DS
patterns.

The following two features are extracted with segmenta-
tion of the observation window into four segments of equal
size. The behavior of the process within a segment can be
represented by the midpoint of the segment, which is given
as:

Xkþ N=4ð Þ�1

i¼k
ti= N=4ð Þ

n o
;

Xkþ N=4ð Þ�1

i¼k
yi= N=4ð Þ

n oh i

where k01, (N/4+1), (2 N/4+1), (3 N/4+1) for the first,
second, third, and fourth segments, respectively. A combi-

nation of two midpoints can be obtained in C4
2 ¼ 6 ways

implying that six straight lines can be drawn passing
through the midpoints of these four segments. Similarly,
six subsets of N/2 data points can be formed taking a
combination of two segments in six ways. So, six LS lines
can also be fitted to six subsets of N/2 data points.

(e) Range of slopes of straight lines passing through six
pairwise combinations of midpoints of four equal seg-
ments (SRANGE):

SRANGE ¼ maximum sjk
� �

�minimum sjk
� �

; j ¼ 1; 2; 3; k ¼ 2; 3; 4; j < kð Þ
ð5Þ

where sjk represents the slope of the straight line passing
through the midpoints of jth and kth segments. The magni-
tude of SRANGE will be higher for shift patterns than trend
patterns. The value of SRANGE will also be higher for CYC
pattern than NOR, STA, SYS, and MIX patterns, unless
each segment of CYC pattern consists of a complete cycle.

(f) Ratio of mean sum of squares of errors (MSE) of the LS
line fitted to overall data and average MSE of the LS
lines fitted to six subsets of N/2 data points (REAE):

REAE ¼ MSE=
X

j;k
MSEjk=6

h i
; j ¼ 1; 2; 3; k ¼ 2; 3; 4; j < kð Þ

ð6Þ
where MSEjk is the mean sum of squares of errors of the LS
line fitted to the observations in jth and kth segments. The
magnitude of REAE is greater than 1 for CYC and shift
patterns, and about 1 for NOR, STA, SYS, and trend pat-
terns. In case of MIX pattern, the value of REAE is less than
1. Thus, REAE value can differentiate MIX pattern from all
other patterns.

The last feature is extracted using a criterion-based seg-
mentation of the observation window into two segments,
where the defined criterion is minimization of the pooled
MSE (PMSE) of the two LS lines fitted to the two segments.
In this segmentation approach, sizes of the two segments
may vary in order to satisfy the desired criterion. Assuming
that at least 10 data points are required for fitting an LS line,
the least square lines are fitted to all possible two segments
and the segmentation which leads to the minimum PMSE is
selected and then the following feature is extracted.

(g) Sum of absolute slope difference between the LS line
representing the overall pattern and the individual line
segment (SASDPE):

SASDPE ¼
X2

j¼1
B� Bj

�� �� j ¼ 1; 2ð Þ ð7Þ

where B is the slope of the LS line representing the overall
pattern and Bj is the slope of the LS line fitted to jth
segment. The magnitude of SASDPE is higher for shift
patterns than trend patterns. On the other hand, the value
of SASDPE will be higher for MIX, CYC, and SYS patterns
than NOR and STA patterns.

For the purpose of assessing the degree of association
between the selected features, a set of 9,000 sample patterns
consisting of all the nine types of patterns is simulated.
From each sample pattern in this set, all the selected seven
features are extracted. So 9,000 values for each of the seven
features are obtained and then the correlation coefficients
between all the pairs of the selected features are estimated.
Table 1 shows the values of pairwise correlation coefficients
between the selected seven features. The table reveals that
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the degree of association between these seven shape features
is considerably low. Therefore, these seven shape features
are considered to be appropriate for developing the decision
rules of the expert system for CCP recognition.

3.2 Derivation of the decision rules for CCP recognition

Ideally, sample patterns should be collected from a real
manufacturing process. However, a large number of patterns
is required for deriving and validating the decision rules for
CCP recognition. Since those are not economically available
from the manufacturing processes, simulated data are often
used. This is a common approach adopted by the other
researchers also.

A set of 1,000 series of standard normal variate of length
32 is generated first. These standard normal data are then
transformed to 1,000 series of NOR, STA, SYS, UT, DT,
US, DS, CYC, and MIX patterns using the equations given
in Appendix. Thus, a set of 9,000 (1,000×9) sample patterns
is generated from 1,000 series of standard normal variate.
Similarly, nine more sets of sample patterns of size 9,000 in
each are generated for developing the decision rules of the
expert system. The only difference between these 10 sets of
patterns is in the random generation of standard normal
variate and values of different pattern parameters within
their respective limits. From each set of the sample patterns,
values of the selected shape features are extracted, which are
then subjected to CART analysis (available in STATISTICA
package). The CART analysis results in a binary decision
tree, which is nothing but a set of heuristics based on the
values of the selected features for CCP classification. The
specifications for the CART analysis are the same as taken
by Gauri and Chakraborty [16]. Similarly, the values of the
selected seven features are extracted from the other nine sets
of sample patterns and subjected to CART analysis. These
result in 10 different decision trees, i.e., 10 sets of decision
rules for CCP recognition. The percentage of correct classi-
fication given by the decision trees is shown in Table 2. It is
observed that the set of decision rules represented by the
decision tree number 4 (shown in Fig. 2) results in the
maximum percentage of correct classification, and so this

set of decision rules is selected for deployment in the expert
system.

4 The developed expert system

An expert system is a computer program with the capability
to emulate the decision making and reasoning ability of a
human expert. Unlike conventional programs, expert sys-
tems are designed and developed to solve complex problems
by reasoning about knowledge. An expert system has a
unique structure, different from the traditional programs. It
has three main components, i.e., user interface, knowledge
base, and inference engine. The user interface acts like a
dialog box to interact and communicate with the users. The
knowledge base (static or dynamic) stores the valuable
knowledge of the human experts in the form of a database
and the inference engine reasons about the knowledge base.
The inference engine is a computer program designed to
produce a reasoning based on simple if…then rules. In
simple expert systems, the user provides the data and
receives the desired results immediately, and the reasoning
is invisible.

The main advantage of expert system is its ability to
interact with the user as it asks the user step-by-step about
the problem and identify the solution gradually. In expert

Table 1 Pairwise correlation
coefficients between seven
shape features

Shape feature SB RVE ALSPI PSMLSC SRANGE REAE SASDPE

SB 1.00 0.01 −0.01 0.23 −0.16 −0.09 −0.05

RVE 1.00 −0.26 −0.34 0.03 0.18 0.01

ALSPI 1.00 −0.04 −0.34 −0.05 −0.41

PSMLSC 1.00 −0.43 −0.36 −0.19

SRANGE 1.00 0.58 0.36

REAE 1.00 0.13

SASDPE 1.00

Table 2 Performance of 10 different decision trees

Decision
tree number

Number of
terminal nodes

Percentage of correct
classification

1 22 94.69

2 20 93.27

3 23 94.43

4 18 95.27

5 22 94.94

6 19 94.20

7 21 95.10

8 23 94.69

9 21 95.12

10 20 94.74
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system, the knowledge base can be written much faster than
a conventional program. The reliability of an expert system
is the same as the reliability of a knowledge base and is
much higher than a classical program. It has also high
scalability; as the rules are written in plain language, those
can be easily modified, added, or deleted. As it is run by a
true logic, it can explain to the user why a question has been
asked and how a final deduction has been arrived at. Lastly,
valuable knowledge may disappear with the death, resigna-
tion, or retirement of an expert. But when stored in the
database of an expert system, it becomes eternal.

The expert system has a major drawback. Accumulation
of knowledge and converting this into meaningful rules are
often quite difficult. The expert knowledge is not well
understood; there is a lack of rules, rules are contradictory,
and some are poorly written and unusable.

With the aim to effectively recognize all the nine control
chart patterns, an expert system is developed in Visual
BASIC 6 and it is made platform-independent. The expert
system can plot the related control chart, compute the con-
trol limits, identify the concerned pattern, calculate the
process capability index, estimate the maximum run length
value, and identify the starting point of maximum run
length. It can also detect an out-of-control situation and
identify the probable root causes behind that situation while
guiding the quality control practitioners with the possible
remedial/corrective actions. This expert system is designed
to monitor and diagnose the occurrence of different CCPs
for a vertical drilling process. The root assignable causes
[18] behind the generation of these CCPs are stored in the

knowledge base and the valuable opinions of the experts are
used to make a link between the type of the identified
pattern and associated assignable causes with the necessary
pre-emptive actions. Its data input section consists of 32
boxes where an operator or quality control practitioner can
easily enter the X values from a particular manufacturing

process. In this paper, 32 X values (with a subgroup size 4)
are taken with a process mean of 80 mm. It means that in
each time interval, the operator collects four products, meas-
ures the corresponding dimensions, and enters the mean
dimensional value for that interval in the data input box.
The expert system consists of some functional buttons along

with a picture box. After entering all the X values in the data
input box, pressing the “Plot” functional bottom automati-
cally draws the relevant control chart in the picture box. The
“Control Limit” key computes the values of the central,
lower control, and upper control limits.

This expert system has also the option where the user can
set the lower and upper specification limits as required for
the concerned manufacturing process. Based on these spec-
ification and control limits, it can compute the process
capability index (Cp) when the user presses the “Cp” button.
When “Max RL” and “Starting Point of Max RL” functional
bottoms are clicked, the maximum run length and the start-
ing pint of that maximum run length in the control chart plot
are respectively displayed. These help the user to detect the
occurrence of an unnatural pattern with its starting point.
After pressing the “Feature Value” key, the expert system
calculates the considered seven shape feature values and
subsequently displays those values. Based on the computed

Fig. 2 Selected decision rules
for the expert system in the form
of a tree
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values of these seven shape features and the in-built decision
rules, it can now recognize the exact control chart pattern,
when the user clicks the “Identified Pattern” button. Accord-
ing to the decision rules, if the pattern has ALSPI value
greater than 1.0557, it would be a stratification pattern.
Similarly, if the pattern has ALSPI value less than or equal
to 0.42636, REAE value less than or equal to 0.76944, RVE
value less than or equal to 1.1126, and PSMLSC value less
than or equal to 0.74167, then it would identify the pattern
as a mixture. The hard copy of the control chart pattern can
be made available after clicking the “Print” button within
the picture box. The “RESET” button allows the user to
enter a new set of pattern data in the input box and the
“EXIT” button closes the expert system. After clicking the
‘Pattern Details’ bottom, another pop-down window would
appear containing four functional keys, i.e., “Parameter
Value/s,” “Possible Cause/s,” “Remedial Action”, and
“Print.” The Parameter Value/s button displays the values
of different parameter(s) associated with an identified con-
trol chart pattern. Pressing of the Possible Cause/s key
identifies various assignable causes as present behind the
generation of that abnormal pattern for the vertical drilling
process and similarly, the Remedial Action button guides
the user to take various pre-emptive actions to avoid man-
ufacturing of defective drilled components. The hard copy
of these details can be obtained after clicking the Print
button.

Figure 3 shows the output of the expert system where
based on the input data and decision rules, the control chart
is identified having a decreasing trend pattern. The Pattern
Details screen display for that identified decreasing trend
pattern is exhibited in Fig. 4. The gradient (g) for that
pattern is calculated as 1.8229. Figure 5 gives the screen

display for an identified mixture pattern. The process mean
is determined as 84.1756 mm which has been shifted from
the set process mean of 80 mm because of the occurrence of
the mixture pattern. In Fig. 5, by double clicking on the
displayed control chart, the user can highlight various data
points on the identified pattern. Figure 6 displays the expert
system output where the pattern is identified as cyclic,
having period (T)011 and amplitude (a)06.615. Although,
this expert system is developed for monitoring and diagnos-
ing various root assignable causes behind generation of
different control chart patterns for a vertical drilling process,
it can also be applicable to other manufacturing processes
only by changing the knowledge base.

Traditionally, control chart patterns are interpreted visu-
ally and the subjectivity associated with the visual analysis

Fig. 3 Screen display for a
decreasing trend pattern

Fig. 4 Pattern details for a decreasing trend pattern
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of the patterns usually leads to a large amount of error.
Wrong classification of patterns often costs heavily. This is
because the potential causes for different types of patterns
are different. For example, the cyclic pattern is likely to be
observed when some process variables are present at first,
and then absent on a more or less regular basis. The causes
behind cyclic pattern include temperature and humidity
changes, operator fatigue, rotation of operators, electrical
fluctuations, etc. On the other hand, the upward or down-
ward shift pattern may result from the introduction of new
materials, machines or any other new processing variable, a
change in the inspection method or standard, or a change in
the skill, attentiveness or motivation of the operators, or
change in the level of any existing variable.

The basic purpose of the developed expert system is to
minimize the error by eliminating the subjectivity in the
interpretation of control chart patterns. It is, therefore, im-
portant to assess the performance of the developed expert
system rigorously before its actual deployment in real-time
process monitoring applications. Ideally, the performance of
the expert system should be evaluated by testing with a large
number of datasets collected from real-time manufacturing
processes. Again, these datasets should be collected from
normal as well as various abnormal process conditions. But
collection of a large number of real-time process data rep-
resenting various process conditions is extremely difficult.
So it is planned to assess the performance of the expert
system using simulated process data.

Fig. 5 Screen display for a
mixture pattern

Fig. 6 Expert system output for
a cyclic pattern
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For the purpose of evaluating the CCP recognition per-
formance of the expert system, a set of 1,000 series of
standard normal data of 32 observations in each is simulated
first. Using the same 1,000 series of standard normal data,
sample data for NOR, STA, SYS, UT, DT, US, DS CYC,
and MIX patterns are generated using the equations shown
in Appendix. Thus, the set of sample pattern data for eval-
uating the performance of the expert system contains 9,000
(1,000×9) series of data. Each series of pattern data is
separately fed into the expert system and the outcome in
terms of recognition of the control chart pattern is then
observed. The overall results are summarized in Table 3 as
a confusion matrix. The confusion matrix depicts the ten-
dency of the expert system to classify a known pattern into a
correct class or into any of the other eight possible (wrong)
classes. Each entry in the confusion matrix is expressed in
percentage. Examination of the results in Table 3 indicates
that the developed expert system is well capable in recog-
nizing NOR, STA, SYS, UT, DT, and MIX patterns. How-
ever, substantial amount of confusion occurs while
recognizing shift and MIX patterns. The shift patterns are
confused with trend patterns, and CYC patterns are con-
fused with MIX patterns. Upward shift patterns (5.6%) are
incorrectly recognized as increasing trend patterns and 5.3%
of downward shift pattern are incorrectly recognized as
decreasing trend patterns. On the other hand, 3.1% of
CYC patterns are incorrectly recognized as MIX patterns
and 2.9% of MIX patterns are wrongly classified as CYC
patterns.

The results in Table 3 suggest that further improvements
are required for reduction of confusion between the shift and
trend patterns. Attempts should also be made to reduce the
confusion between CYC and MIX patterns. One possible
way can be the identification of some new features that
would be more powerful in discriminating shift patterns
from trend patterns and CYC patterns from MIX patterns,
and then developing the decision rules. Another possible
approach may be the development of a hybrid intelligent

system, which can integrate two or more artificial intelli-
gence tools (e.g., ANN and heuristics) together for the
purpose of CCP recognition.

Montgomery [1] considered two sets of data on inside
diameter of piston rings for an automotive engine produced
by a forging process and observed that for the first case, the
forging process was under statistical control, and for the
second case, the process was out-of-control having a shift
in the process mean. These same datasets are tested using
the developed expert system and it is observed that for the
first dataset, the identified control chart pattern is normal
with central, lower, and upper control limits as 74.0014,
73.8662, and 74.0149 mm, respectively. On the other hand,
the identified pattern for the second dataset is upward shift
with central limit074.0040 mm, lower control limit0
73.9998 mm, upper control limit074.0081 mm, shift mag-
nitude (s)00.01371, maximum run length07, and starting
point of maximum run length033. These exactly corrobo-
rate with the findings of Montgomery [1].

5 Conclusions

An expert system is developed in Visual BASIC 6 which is
capable to plot the control chart, compute the control limits,
identify the control chart pattern, calculate the process ca-
pability index, determine the maximum run length, and
identify the starting point of the maximum run length. It
employs an optimal set of only seven shape features to
identify the nine most commonly observed control chart
patterns. The major advantage of this expert system is that
it cannot only recognize a particular control chart pattern,
but also display various assignable causes behind that pat-
tern along with the necessary remedial actions to help the
quality control practitioners for effective decision making. It
would be widely acceptable to any manufacturing process to
prevent production of defective products while improving
the overall quality level. It would also act as a poka-yoke

Table 3 Confusion matrix for
the expert system Known pattern class Identified pattern class

NOR STA SYS CYC UT US DT DS MIX

NOR 95.5 0.1 0.2 1.6 0.6 0.6 0.4 0.4 0.6

STA 0.3 99.6 0 0.1 0 0 0 0 0

SYS 0.2 0 98.5 0.2 0 0 0 0 1.1

CYC 1.1 0 1.3 93.3 0 1 0 0.2 3.1

UT 1.0 0 0 0.4 96.2 2.4 0 0 0

US 0.6 0 0 1.3 5.6 92.1 0 0 0.4

DT 1.3 0 0 0.7 0 0 94.7 3.3 0

DS 0.4 0 0.6 2.0 0 0 5.3 91.6 0.1

MIX 0.2 0 1.2 2.9 0 0.1 0 0.2 95.4
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device for the manufacturing industry to achieve the goal of
zero defect and total quality management. Future research
may make improvements in several directions. Develop-
ment of an expert system based on identified statistical
features, and making a comparative performance study be-
tween the statistical feature-based and shape feature-based
expert systems may be the scope of this paper. Future
research may address the inclusion of concurrent patterns
where two or more unnatural patterns exist simultaneously
(e.g., a systematic pattern with a cyclic behavior).

Appendix

Equations for generation of various patterns in a given
normal process

Suppose, the value of a standard normal variate at ith
(i01,2,…,32) time point is ri, and the observed value at ith
time point is yi. Then, various patterns of length 32 for a
normal process with mean μ and standard deviation σ can be
generated using the following equations:

að Þ Normal pattern yi ¼ μþ riσ ð8Þ
bð Þ Stratification pattern yi ¼ μþ riσ

0 ð9Þ
cð Þ Systematic pattern yi ¼ μþ riσþ d � �1ð Þi ð10Þ
dð Þ Increasing trend pattern yi ¼ μþ riσþ ig ð11Þ
eð Þ Decreasing trend pattern yi ¼ μþ riσ� ig ð12Þ
dð Þ Upward shift pattern yi ¼ μþ riσþ ks ð13Þ
eð Þ Downward shift pattern yi ¼ μþ riσ� ks ð14Þ
fð Þ Cyclic pattern yi ¼ μþ riσþ a sin 2pi=Tð Þ ð15Þ
gð Þ Mixture pattern yi ¼ μþ riσþ �1ð Þwm ð16Þ
where,

σ′ random noise for stratification pattern
a amplitude of cyclic variation
g magnitude of gradient for the trend pattern
d magnitude of the systematic pattern
k parameter determining the shift position
s magnitude of the shift
i discrete time point at which the pattern is sampled
T period of a cycle
m magnitude of the mixture pattern
w a binary integer value dependent on a random number

p (0<p<1) and a pre-specified probability value b0mp,
which determines the shifting between distributions.
The value of b is fixed as 0.4, and thus, w00 if p<0.4
and w01 if p≥0.4.

In this paper, for simulation of various patterns, the
values of different process parameters are chosen as follows:
μ080, σ05, 0.2σ≤σ′≤0.4σ, 1σ≤d≤3σ, 0.05σ≤g≤0.1σ (for
UT), −0.1σ≤g≤−0.05σ (for DT), 1.5σ≤s≤2.5σ (for US),
−2.5σ≤s≤−1.5σ (for DS), P09, 17 or 25, 1.5σ≤a≤2.5σ, T0
8 or 16, 1.5σ≤m≤2.5σ, and 0≤p≤1.
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