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Abstract In this paper, a method to approximate the flank-
milled surface swept by a cylindrical cutter with a non-
uniform rational basis spline (NURBS) surface is presented.
The swept surface produced by the moving tool can be
calculated as a collection of points organized as a series of
grazing curves along the surface. The generated NURBS
surface closely matches the grazing surface. The deviation
between this surface and the grazing surface is calculated
and is controlled by increasing the number of control points
used to represent the surface.

Keywords Curved surface design . Flank milling . Surface
numerical analysis . Surface error control

1 Flank milling

Flank milling is a widely used machining method in today’s
manufacturing industry. In flank milling, the side of the
cutter machines the surface, removing the stock in front of
it. Compared to other machining methods, flank milling can
offer higher machining efficiency, higher material removal

rate, and provide a better surface finish. Flank milling is
used in the machining of turbine blades, fan impellers, and
other engineering objects. Researchers working on improv-
ing flank milling have developed various tool positioning
techniques in the past decade. In general, these techniques
can be categorized into three classes, namely, direct tool
positioning methods, step-by-step tool positioning methods
and improved tool positioning methods.

In the direct tool positioningmethod, the cylindrical cutting
tool is used to machine a ruled surface and the tool is
positioned to be tangential to the given surface at one point on
the ruled line either in the middle or end (or near the end)
while the tool axis is parallel to the same ruled line.
Alternatively, the tool is positioned to directly touch two
points on the ruled line. The methods that belong to this class
include early methods [1, 2], Rubio et al.’s method [1], Stute
et al.’s method [3], Liu’s method [4], etc. The error defined
as the difference between the machined surface and the
desired surface in this class is higher than errors from the
classes described below, but the cutting tool is easy to
position and the computation time of tool positioning is low.

A step-by-step tool positioning method is an improve-
ment over the direct tool-positioning method. In this class,
the cutting tool is first positioned on the given surface with
one of the direct tool positioning methods and then the tool
is lifted and/or twisted to reduce the error between the
machined surface and the desired surface. Methods like
those developed by Rehsteiner et al. [5], Bohez et al. [6],
Tsay and Her [7], and Bedi et al. [8–11] belong to this class.
In comparison to the direct tool positioning methods, the
step-by-step tool positioning methods result in a machined
surface that is close to the desired surface but the
computation time of these methods is long.

An improved tool positioning method is a combination of
the techniques used in the two classes described above. In this
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method, the cutting tool is positioned on the given surface so
that it touches at three contact points. A machined surface can
be generated with many tool positions, each of which has
three contact points (two on the guiding curves and one on the
rule). Three contact points at any tool position can be obtained
directly by solving seven transcendental equations based on
the given geometrical conditions. The error between the
machined surface and the desired surface is small in this type
of tool positioning method. Redonnet et al.’s method [12] and
Monies et al.’s method [13–15] belong to this class. This
class of methods results in high accuracy machined surfaces.
However, it requires the solution of seven transcendental
equations at each tool position, which makes it computa-
tionally cumbersome.

All of the methods described above focus on ruled surfaces
and attempt to use different techniques to reduce the deviation
between the machined surface and the given surface. In spite
of it being widely recognized that flank milling produces
curved surfaces, no one has attempted to design free-form
surfaces that can be flank milled with accuracy using no
approximations. Some researchers, like Elber and Fish [16],
Bohez et al. [6], tried to use flank milling techniques to
machine free-form surfaces. In their methods, they first
divide the target surface into multiple ruled surfaces, and
then machine these ruled surfaces in pieces with one of the
above techniques. Obviously, there are spatial limitations to
this method and it results in long tool paths.

One of the key applications of flank milling is machining
of impellers. Engineers design impeller surfaces to extract
power from fluid flowing over them. Designers use
sophisticated aerodynamic analysis to improve the efficiency
and performance of impeller. However, to machine the
impellers, these surfaces are approximated with ruled
surfaces or produced at large cost with point machining
techniques. Manufacturing engineers simplify the curved
surface to a ruled surface to machine the part using flank
milling even though a curved surface is better for efficiency
and other requirements. If a curved surface that can be flank
milled directly can be designed, it will be of great benefit not
only for manufacturing but also for application engineering.
With this surface design technique, engineers would be able
to design impellers and optimize their performance without
worrying about compromises during machining. How to
achieve this goal is a big challenge in surface design and
machining. In this paper, this challenge is probed and a
solution is presented. First, the surfaces that can be machined
with the flank milling method (by a cylindrical tool) are
identified and then a method to design such surfaces is
developed and tested.

The focus of this study is to develop a method to
represent the machined surface with a non-uniform rational
basis spline (NURBS) or B-spline representation so that the
surface can be generated accurately by flank milling

technique. Such a surface-fitting method can be used by
engineers to design impellers and blades geometrically.

The key idea behind this method is to approximate the
grazing surface with an NURBS definition based on the
properties of guiding curves and the cylindrical cutter. At
each tool position, the corresponding grazing curve lies on
the cylindrical tool surface. When projected onto a plane
perpendicular to the tool axis, this grazing curve becomes
an arc and can be represented by an NURBS. The
investigation shows that this NURBS can be constructed
with three or four control points with their corresponding
weights (as shown in Fig. 1). A method of moving these
points off the plane along the tool axis direction is
developed to accurately model the 3D grazing curve. As
these control points (representing the grazing curve) are
moved along guiding curves in a manner that nearly retains
their grazing curve character, a surface is generated. This
NURBS surface closely represents the grazing or swept
surface and can be used in design.

Our method is similar to that of Yang and Abel-Malek
[17], who gave an algorithm for approximating the swept
volume of an NURBS solid. However, since we are focused
on flank milling with a cylinder, our method is significantly
simpler: we do not have to intersect a set of swept surfaces
and the computation of points on the swept surface is
simpler. Further, while they compute a volume, we only
need compute a single swept surface to use for machining.
Multiple tool passes with our method would need to
intersect multiple swept surfaces, but Yang-Abel-Malek’s
method would have to intersect multiple swept volumes in
addition to intersecting surfaces for each pass.

In the following sections, the proposed method is
investigated and studied. In Section 2, the tool positioning
method used to test the proposed solution, Bedi et al.’s

Fig. 1 The cylindrical tool and guiding curves: T(u) and B(u) are two
guiding curves. PT, P0, and PB are three control points of a grazing
curve; wT, w0, and wB are their corresponding weights. The tool moves
along feed directions
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method is given along with a method of computing the
grazing surface (the swept surface) and a surface error
measurement technique. Section 3 presents the strategy of
modeling the grazing surface with NURBS definition. The
basic theory of this method is developed. A flow chart to
describe the implementation procedure is given in Section
4. Accuracy control of the surface design for flank milling
with examples is discussed in Section 5. The proposed
method is compared to the developed least square surface
design method in Section 6. The paper is closed with the
conclusion in Section 7.

2 Tool positioning method and swept surface

Different tool positioning methods result in different tool
locations, orientations, and directions of motion for ma-
chining the same surface. Thus, a surface designed for flank
milling will apply to a specific method of tool positioning.
In this work, a surface design method is developed for
designing a surface that can be flank milled. The tool
positioning method developed by Bedi et al. [8–10] is
applied to test the proposed method, although our method is
general enough that it should be possible to use it with any
tool positioning methods. A cylindrical tool is used in this
study.

In addition to the tool positioning method, the surface
design technique also depends on the actual shape of the
surface produced by a moving tool. In previous work, the
surface that is produced by flank milling has been evaluated.
Bedi et al. [8] suggested a cross-product method to calculate
the envelop surface. Mann et al. [18] generalized this
method and applied it to tools with a general surface of
revolution. The method evaluates the grazing surface (the
swept surface) as a collection of discrete grazing points
calculated using the cross-product method. Li et al. [10] and
Menzel et al. [9] applied this method to conical and
cylindrical tools to simulate the machined surface and used
it to optimize each tool position. Li et al. [19] also used this
method to study the surface error.

Lartigue et al. [20] presented a similar method to
determine an envelop surface in their surface deformation
analysis. Senatore et al. [21] used a similar method to
define the grazing points and envelop surface. They also
geometrically proved that, at each tool position, the contact
points (between cutter and guiding curves, cutter, and rule)
are on the envelop surface. All these techniques use discrete
points to simulate the grazing surface (or the envelop
surface). Furthermore, they use the grazing surface to
approximate the machined surface. The accuracy of this
approximation can be assessed with one of the error metrics
used by different researchers [19]. The error metric used in
this study is also described below.

2.1 Positioning a cylindrical tool on the surface

Based on Bedi et al.’s technique [8], a cylindrical cutter
with radii R is positioned tangent to two curves at the same
parameter value as shown in Fig. 2. The geometry of the
tool and its relation to the guiding curves result in a set of
simultaneous equations. When these equations are solved,
the cutter position (PT and PB) at parameter value u can be
obtained [8]. As the tool moves along the curves, it
produces a swept surface.

2.2 The swept surface

A model of the swept surface is the basis of the proposed
method. The swept surface is composed of grazing curves
calculated at the various tool positions. After a tool position
is defined, the grazing curve at each tool position can be
derived using the cross-product method given in [8] and
reviewed in the next paragraph.

As shown in Fig. 2 if the velocity at point PT is VT and at
point PB is VB, then the velocity between PB and PT along
tool axis direction can be linearly interpolated and is given by

V ¼ VBð1� vÞ þ VTv; 0 � v � 1 ð1Þ

The coordinate between PB and PT along the tool axis
direction can also be linearly interpolated and is given by

P ¼ PBð1� vÞ þ PTv; 0 � v � 1 ð2Þ
The grazing curve between T and B is calculated as

G ¼ P þ V � Taxis
jV � Taxisj R ð3Þ

where, Taxis is the cutter axis direction.

Fig. 2 Cutter rolling on two rails
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Using Eq. 3, a continuous grazing curve can be obtained.
For plotting, only a series of discrete grazing points are
generated to represent the grazing curve. By connecting
consecutive grazing curves along the u direction into a
mesh, a swept surface (or a grazing surface) is generated.
This surface represents the machined surface accurately.
This surface is also composed of discrete points and does
not have an exact NURBS representation. In engineering
applications, an NURBS equation would be more helpful
and acceptable especially when the target surface needs
to be connected to other NURBS surfaces around it.
Thus, to define a surface (with NURBS) that can be flank
milled will be of significance in today’s engineering
applications.

2.3 The surface error measurement

To effectively evaluate the difference between the
grazing surface and the approximate NURBS surface,
an error metric is required. In the literature, different
error measurement methods are used. In a previous
work, these methods [19] were analyzed and compared.
Generally, there are four types of error metrics used in the
literature. These are the radial method, the parametric
method, the tangent plane method and the closest point
method. Even though these methods are designed for
comparing the machined surface and the designed surface,
they can also be used to measure the difference between
the grazing surface (or a grazing curve) and the approx-
imate NURBS surface (or an approximate NURBS curve)
in surface design and are thus relevant to the context of
this work.

If the grazing surface and the approximate surface are
close, the two surfaces will nearly coincide and the errors
from the different error measurement methods described
above should be close or the same. In this work, the
approximating NURBS surface and the grazing surface are
usually close. However, under some circumstances, the
parametric error method is not accurate enough for our
work. Therefore, a modified parametric error measurement
method will be used in this research to better reflect the
surface error variation.

Figure 3 illustrates the modified parametric error
measurement method. At each specific tool position, a
grazing curve is calculated and plotted as the dash line. An
NURBS curve is used to approximate the grazing curve. A
plane perpendicular to the tool axis can be created. The two
curves intersect the plane with two points, A and B. The
distance between the A and the B is used as the
approximating error at the grazing point A. We call this
method as the reparameterized parametric method and will
use it for error measurement in this paper.

3 NURBS approximating a swept surface

The idea behind the proposed technique for approximating a
grazing surface is to select a few representative grazing curves
and construct a surface that parametrically is close to these
grazing curves. If enough grazing curves are used and they are
close enough to one another, then the resulting surface should
be a good approximation to the swept surface.

Each grazing curve is modeled using an NURBS represen-
tation (e.g., in Fig. 9, the control points P0,0, P1,0, P2,0 are the
NURBS representation for one grazing curve). Since we are
working with a cylindrical tool, the projection of the grazing
curve into a plane perpendicular to the tool axis direction will
be a circular arc. Our approximation for the grazing curve
starts with this circular arc, and then the control points are
moved off the plane to form a good approximation to the
grazing curve. A sequence of NURBS approximations to the
grazing curves are used for several tool positions as the tool is
moved along two guiding curves (T(u) and B(u) in Fig. 9). By
increasing the number of control points along both the
guiding curve and tool axis directions, better representations
of grazing curves can be defined and a better NURBS
approximation of the grazing surface can be obtained. The
details of this method are presented below.

3.1 Approximating a grazing curve

The grazing curve is the contact between the grazing
surface and the cutting tool. Thus, it lies on the cylindrical
tool surface. This grazing curve is illustrated in Fig. 4 as a
dashed line. This grazing curve can be approximated by a
quadratic NURBS curve with control polygon P0P1P2

shown as a solid line in Fig. 4, where P0 is at the bottom
of the guiding curve at B(u) and P2 is on the top guiding
curve at T(u). For simplicity, the coordinate system is setup
at the bottom of the cylinder center with the Z axis lying
along the cylinder axis. P0 and P2 have the same parameter
value u along the guiding curves and are known;they also
lie on the grazing curve. P1 needs be determined. The

Fig. 3 A modified parametric error measurement method
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grazing curve with the end points P0 and P2 is projected
onto the x-y plane (P0

p and P2
p correspond to P0 and P2).

This projected curve, Pp
0P

p
2

\
, is a two-dimension arc and can

be represented by a quadratic NURBS curve [22] with three

weighted control points P0
p, Pp

1 and Pp
2: The X and Y

coordinates of Pp
0 and Pp

2 are known; however, Pp
1 needs to

be calculated. Pp
1 is calculated from the intersection of the

two tangent lines passing through Pp
0 and Pp

2. If α is the

angle of the arc Pp
0P

p
2

\
; then the weights w0, w1, and w2 at

points P0
p, P1

p, and P2
p are [22]:

w0 ¼ w2 ¼ 1; w1 ¼ cosða=2Þ

Figure 5 shows this relationship graphically. The arc Pp
0P

p
2

\

can be represented exactly as a 2D NURBS curve Cp(u)
with control points Pp

0; P
p
1 and Pp

2 as

CpðuÞ ¼ ð1� uÞ2w0P
p
0 þ 2uð1� uÞw1P

p
1 þ u2w2P

p
2

ð1� uÞ2w0 þ 2uð1� uÞw1 þ u2w2

: ð4Þ

3.1.1 Modeling of the grazing curve

Once the arc has been defined as a 2D NURBS curve, its
control points can be stretched along the tool axis direction
until Pp

0 moves to P0, P
p
2 moves to P2 and Pp

1 moves to P1,
where P1 needs to be decided. This changes the 2D
NURBS curve of (5) to the 3D NURBS curve

CðuÞ ¼ ð1� uÞ2w0P0 þ 2uð1� uÞw1P1 þ u2w2P2

ð1� uÞ2w0 þ 2uð1� uÞw1 þ u2w2

: ð5Þ

The X and Y coordinates of P1 are the same as Pp
1: The Z

coordinate of P1 must be properly selected to make the 3D

NURBS curve closely match the grazing curve at this tool
position.

The grazing curve is a function of the magnitude and
direction of the velocities VT and VB as shown in Eqs. 1, 2,
and 3. Since the Z coordinate of P1 must be determined by
measuring the deviation from the grazing curve, it becomes
a function of VT and VB. A convenient assumption would be
to assume jVT j ¼ jVBj: This assumption will put P1 in the
middle of P0 and P2. The impact of this assumption on the
error is studied in following section. Figure 4 shows this
relationship graphically. The Z coordinates of P0 and P2 are
0 and h and P0 and P2 pass through the contact points B(u)
and T(u), respectively.

3.1.2 Error in grazing curve ðjVT j ¼ jVBjÞ

If the Z coordinate of point P1 is set to half of the
effective contact length h (hx=h/2, with h being measured
along the tool axis direction between points P0 and P2),
then the curve generated by Eq. 5 can be used to check
the deviation of the grazing curve using the reparame-
terized parametric error measurement method described in
Section 2.3. To check that the error in our approximation
was small enough, we ran a test. For this test, the
parameters of the cylindrical cutter and control points
were

P0 R cos p=6ð Þ;R sin p=6ð Þ:0½ �;P1
R cos p=4ð Þ
cos p=12ð Þ ;

R sin p=4ð Þ
cos p=12ð Þ ; h=2

h i

P2 R cos p=3ð Þ;R sin p=3ð Þ; h½ �
VB �R sin p=6ð Þ; R cos p=6ð Þ; 0½ �;VT �R sin p=3ð Þ; R cos p=3ð Þ; 0½ �

w0 ¼ 1; w1 ¼ cos p=12ð Þ;w2 ¼ 1; R ¼ 10; h ¼ 45

where, the X and Y coordinates of point P1 are obtained
using the method described in Section 3.1.1; R is the radii

Fig. 4 Grazing curve and its control points on the cylindrical surface

Fig. 5 Arc with its control points
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of the cylindrical cutter; h is the effective contact length
along the axis of the cylindrical cutter; VB and VT are
velocities at points P0 and P2, their directions are along
tangent line directions of each circle and their magnitudes
are true velocities; w0, w1, and w2 are the weights of
points P0, P1, and P2.

Using Eqs. 1, 2, 3, and 5, the grazing curve and the
approximate NURBS curve can be obtained. The deviation
between the two curves is calculated and is shown in Fig. 6.
The errors at v=0, v=0.5, and v=1 are zero. The shape of
the error curve is symmetric and the maximum error is
smaller than 0.035 mm.

A close study of this error shows that the deviation
between the NURBS curve and the grazing curve
depends on the angle α between VB and VT which lie in
the plane perpendicular to the tool axis, the radius of the
cylindrical cutter, etc. The contact length (L) between the
cutter and machined surface, however, has little influence
on it. Different parametric combinations were considered
and the resulting maximum deviations are listed in
Tables 1, 2, and 3. From these tables, it can be seen that
the influence of the angle α measured between VB and VT

and the radii of the cutter are significant. The larger the
angle α, the larger is the deviation; the bigger the radius,
the bigger is the deviation (the deviation varies linearly to
the tool radius). To effectively control the deviation, more
control points can be used and curve tolerance require-
ment (the permitted error between the desired curve and
the grazing curve) can be satisfied. In general, three
control points satisfy most engineering applications for
α<30° and R<30 mm.

3.1.3 Modeling a grazing curve ðjVT j 6¼ jVBjÞ

In a general situation, the magnitudes of velocities VB and
VT are unlikely to be equal. The magnitude of VB (or VT)
depends on the geometry of the guiding curves and the
cutting tool. Different velocity magnitudes of VB and VT

influence the velocity distribution along tool axis, and as a
result affect the shape of the grazing curve. If the Z coordinate
(hx) of the middle control point P1 is kept as hx=h/2, the
deviation between the given grazing curve and the approx-
imate NURBS curve will increase. This is shown by
considering the same example as before but where the
magnitude of VT is bigger than VB (jVT j jVBj ¼ 1:07= ). The
maximum deviation in this case is shown in Fig. 7 and is
much bigger than the maximum deviation in Fig. 6.

To reduce the maximum deviation along the grazing curve,
wemoved the control point P1 from the middle along the tool
axis direction toward the point with the smaller velocity
magnitude. By moving P1 along the tool axis direction, we
ensure that our approximation of the grazing curve will
always lie on the surface of the cylindrical tool. The length
of movement depends on the difference of the two
magnitudes. The bigger the difference, the longer the
movement. Our study shows that if the ratio between the
two magnitudes is less than k=1.35 (k ¼ jVBj jVT j= � 1:35
or k ¼ jVT j jVBj= � 1:35Þ; then the movement is less than or
equal to (k−1)h/2. For the above example, P1 was moved
toward P0 by 1.55 mm along the tool axis. The resulting
deviation between the grazing curve and the approximation
NURBS curve is significantly reduced as shown in Fig. 8.

If the ratio k is bigger than 1.35, moving the point P1

does not reduce the maximum deviation enough to satisfy
engineering requirement. In this case, four or more control
points are needed to approximate the grazing curve. The
simplest way to increase the number of control points is to
use knot insertion [22].

If four or more control points are used, their locations
along the axis of the tool are uncertain. These points are
moved along the tool axis in a direction that reduces the
deviation between the grazing curve and the approximate
curve. Normally, four control points will satisfy require-

Fig. 6 Deviation along the grazing curve if jVBj ¼ jVT j

Table 1 Max error for varying L (α=30°, R=10 mm)

L (mm) 25 45 65 85 105 150

ɛ (mm) 0.03493 0.03493 0.03493 0.03493 0.03493 0.03493

Table 2 Max error for varying α (L=45mm, R=10 mm)

α 10° 20° 30° 40° 50° 70° 90°

ɛ (mm) 0.001281 0.0103 0.0349 0.0835 0.165 0.467 1.033
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ments of normal engineering applications and produce
surfaces that approximate the desired surface well.

3.2 Modeling of a surface

In the NURBS representation of the grazing curve, the outer
control points move along two guiding curves T(u) and B(u) as
explained in Section 2. To build an NURBS surface
representation of the swept surface, we will make T(u) and
B(u) be two of the boundaries of our NURBS surface. To do
so, the two guiding curves, T(u) and B(u), must be
constructed with the same number of control points. If the
number of control points and the knot vectors are different for
T(u) and B(u), then the method requires that additional control
points be added to either or both T(u) and B(u) to ensure they
have the same number of control points and knots.

Since T(u) and B(u) are the boundary curves of the
grazing surface, the number of control points in the
approximate NURBS surface along the generating lines
should be equal to or greater than the number of control
points in T(u) (or B(u)). As an example, let the number of
control points used to define T(u) and B(u) be three, and
consider the case when the ratio of velocity magni-
tudes (jVBj jVT j= or jVT j jVBj= ) is less than 1.35, the angle
α is less than 30° and tool radii is less than 30 mm. In the
simplest case, we can choose the number of control

points in the approximating NURBS surface along the
guiding curve direction (u) to be three. Since each
grazing curve is approximated by a three-control point
NURBS curve, we can use three control points to define
the approximating NURBS surface along the tool axis
direction (v). A 3×3 NURBS surface can be created to
approximate the grazing surface. The control points of
this surface along with their weights are calculated using
the technique given below. This new surface is com-
prised of a 3×3 grid of control point as shown in Fig. 9.

Figure 9 shows the tool rolling along the quadratic
guiding curves T(u) and B(u). The grazing curves at the
start (u=0), the end (u=1) and the interior position (u=u0)
are shown as dashed lines. Each curve is approximated by an
NURBS curve with three control points. The control points
at u=0 and u=1 form the boundary of the control polygon of
the approximate NURBS surface along the v direction;
control points of the guiding curves form the boundary control
points of the NURBS surface along the u direction. This
leaves only one control point, P1,1, undefined. The weights
of the various control points also need to be determined.

3.2.1 Definition of NURBS function

An NURBS surface is defined as [22]

Sðu; vÞ ¼

Pn
i¼0

Pm
j¼0

Ni;pðvÞNj;qðuÞwi;jPi;j

Pn
i¼0

Pm
j¼0

Ni;pðvÞNj;qðuÞwi;j

0 � u; v � 1 ð6Þ

where,m+1 and n+1 are the number of control points along
u and v directions; Ni,p and Nj,q are the basis functions; p and

Table 3 Max error for varying R (L=45 mm, α=300)

R (mm) 5 10 20 30 40 50

ɛ (mm) 0.0175 0.0349 0.0698 0.105 0.140 0.175

Fig. 7 Deviation along the grazing curve if jVT j 6¼ jVBj

Fig. 8 Deviation after P1 position shifting
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q are the degree of the surface along v and u directions; Pi,j

are the control points and wi,j are the corresponding weights.
For a biquadratic surface with 3×3control points as

shown in Fig. 9, Eq. 6 can be rewritten as

Sðu; vÞ ¼

P2
i¼0

P2
j¼0

Ni;2ðvÞNj;2ðuÞwi;jPi;j

P2
i¼0

P2
j¼0

Ni;2ðvÞNj;2ðuÞwi;j

¼
N0;2ðvÞ

P2
j¼0

Nj;2ðuÞw0;jP0;j þ N1;2ðvÞ
P2
j¼0

Nj;2ðuÞw1;jP1;j þ N2;2ðvÞ
P2
j¼0

Nj;2ðuÞw2;jP2;j

N0;2ðvÞ
P2
j¼0

Nj;2ðuÞw0;j þ N1;2ðvÞ
P2
j¼0

Nj;2ðuÞw1;j þ N2;2ðvÞ
P2
j¼0

Nj;2ðuÞw2;j

¼ ð1� vÞ2BwðuÞ þ 2vð1� vÞTBwðuÞ þ v2TwðuÞ
ð1� vÞ2wBðuÞ þ 2vð1� vÞwTBðuÞ þ v2wT ðuÞ

ð7Þ

where

TwðuÞ ¼ ð1� uÞ2w2;0P2;0 þ 2uð1� uÞw2;1P2;1 þ u2w2;2P2;2 ð8Þ

TBwðuÞ ¼ ð1� uÞ2w1;0P1;0 þ 2uð1� uÞw1;1P1;1 þ u2w1;2P1;2 ð9Þ

BwðuÞ ¼ ð1� uÞ2w0;0P0;0 þ 2uð1� uÞw0;1P0;1 þ u2w0;2P0;2 ð10Þ

wT ðuÞ ¼ ð1� uÞ2w2;0 þ 2uð1� uÞw2;1 þ u2w2;2 ð11Þ

wTBðuÞ ¼ ð1� uÞ2w1;0 þ 2uð1� uÞw1;1 þ u2w1;2 ð12Þ

wBðuÞ ¼ ð1� uÞ2w0;0 þ 2uð1� uÞw0;1 þ u2w0;2 ð13Þ
In Eq. 7, each specific u value represents a grazing curve.

This grazing curve is approximated by an NURBS curve
with three control points Tw(u), TBw(u), and Bw(u). Tw(u) is
the homogeneous coordinates of T(u). It can be written as

TwðuÞ ¼ TðuÞ � wT ðuÞ

where, wT(u) is its corresponding weight.
Similarly,

TBwðuÞ ¼ TBðuÞ � wTBðuÞ; BwðuÞ ¼ BðuÞ � wBðuÞ

Fig. 9 Control points for ap-
proximate surface
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For polynomial guiding curves, the weights of control
points w2,0, w2,1, w2,2, w0,0, w0,1, and w0,2 are equal to 1.
Equation 7 can be rewritten as

Sðu; vÞ ¼ ð1� vÞ2BðuÞ þ 2vð1� vÞTBwðuÞ þ v2TðuÞ
ð1� vÞ2 þ 2vð1� vÞwTB þ v2

ð14Þ

where

TðuÞ ¼ ð1� uÞ2P2;0 þ 2uð1� uÞP2;1 þ u2P2;2 ð15Þ

BðuÞ ¼ ð1� uÞ2P0;0 þ 2uð1� uÞP0;1 þ u2P0;2 ð16Þ

There are two unknown vectors in Eq. 14, TBw(u) and wTB.
Between TBw(u) and wTB (Eqs. 9 and 12), six unknowns,
P1,0, w1,0, w1,1, P1,1, w1,2, and P1,2, need to be determined.

At u=0, Eq. 14 simplifies to the grazing curve at the start
point of the guiding curves. Since the equation of the
grazing curve and its NURBS curve approximation (see
Section 3.1) are known, P1,0 and w1,0 can be determined.

Similarly, at u=1, Eq. 14 simplifies to the grazing curve
at the end of the grazing surface. Equating it to the
approximate NURBS surface results in P1,2 and w1,2. The
remaining two unknowns, P1,1 and w1,1, can also be
calculated correspondingly; however, in this case, the
grazing curve at u=u0 is used.

Various methods can be used to select u0; we used a
uniform step method, which in this case sets u0=0.5.
Depending on the data, another method such as chord
length [22] could be used. Once u0 is decided, wTB can be
set to wTB ¼ cos a3=2; where α3 is the angle between B(u0)
and T(u0) measured in the plane normal to the cylinder axis.
Equations 14, 12, and 9 can be solved for w1,1 and P1,1.

If the guiding curves have more than three control
points, additional grazing curves at u=ui may be required.
Each grazing curve is used to determine two unknown
coefficients.

3.2.2 Re-evaluation of weight

Even though w1,1 and P1,1 can be calculated by Eqs. 14, 12,
and 9, the weights and control points used in the equations
will not result in a good approximating NURBS surface
because w1,0, w1,2, and wTB are obtained by considering the
grazing surface shape along the tool axis direction (the v
direction) but the shape of the grazing surface along the
feed direction (the u direction) is not considered. This
results in surface error between the approximate surface and
the grazing surface. Thus, to effectively control the surface
error, the weight selection should reflect the change in
shape of the grazing surface not only along the tool axis
direction, but also along the feed direction. More control

points can be added along the feed direction to reduce this
error. With an increase in the number of the control points
along the feed direction, the error of the approximating
NURBS surface can be effectively controlled. This will be
discussed in Section 5. Another solution is to determine the
weight of the middle control point in a way that takes into
account the surface variation along the guiding curves. An
average weight can be used to roughly reflect the surface
shape variation along the feed direction. Hence, the weight
of the middle control point is set to the average weight of
all the interior control points as shown below:

w
» ¼ ðw1;0 þ wTB þ w1;2Þ=3;

w1;0 ¼ w1;1 ¼ w1;2 ¼ wTB ¼ w
»
;

ð17Þ

where, w1,0,w
TB and w1,2 are corresponding interior control

point weight of each grazing curve at three tool positions and
w1;0, w1;1 and w1;2 stand for the weights of interior control
points of the approximating NURBS surface. When an
NURBS surface is created using this method, it results in a
smaller maximum surface error as compared to the surface
with variable weights w1,0, w

TB and w1,2. We are unsure to
why averaging gives smaller error, but we mention this since
it gives better results. This will be discussed in Sections 5.2.1
and 5.2.2. Substituting the result of Eq. 17 into Eq. 9, P1,1 is
determined. Once all the unknowns are solved, Eq. 14 gives
the approximating NURBS surface.

3.2.3 Generalization of surface modeling

The guiding curves T(u) and B(u) can have more than three
control points. Suppose that the guiding curves T(u) and B
(u) are two NURBS curves of degree p, then the degree of
the approximating NURBS surface along the feed direction
can be selected to be p as well. The number of control
points along the feed direction will be n+1, where n≥p.
The control points of the NURBS surface in the tool axis
direction can still be 3. If there are n+1 control points along
the guiding curve direction, then n+1 tool positions are
used to determine the NURBS surface.

At each of these tool position, the grazing curves are
developed and the NURBS approximation to these curves
are used to calculate the weights k0; k1; k2; . . . ; kn at the
interior control points. While we could use the weights
k0; k1; k2; . . . ; kn directly, we again found that averaging
the weights gives better results. The equations to compute
these weights are given below (Fig. 10).

wi ¼
Pp
j¼0

ðkiþj þ kiÞ=ð2ðpþ 1ÞÞ; if 0 � i � p

wi ¼
Pp
j¼0

ðkiþj þ ki�pþjÞ=ð2ðpþ 1ÞÞ; if p < i < n� p

wi ¼
Pp
j¼0

ðkn�pþj þ ki�pþjÞ=ð2ðpþ 1ÞÞ; if n� p � i � n

ð18Þ
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With these weights, NURBS equations of the grazing
curves in terms of the unknown control points [22] can be
obtained as

TBðu1Þ ¼
Pn
i¼0

Ni;pðu1ÞP1;iwi

Pn
i¼0

Ni;pðu1Þwi

TBðu2Þ ¼
Pn
i¼0

Ni;pðu2ÞP1;iwi

Pn
i¼0

Ni;pðu2Þwi;

; ..
.

TBðun�1Þ ¼
Pn
i¼0

Ni;pðun�1ÞP1;iwi

Pn
i¼0

Ni;pðun�1Þwi

ð19Þ

These equations can be solved for the interior control
points (P1,i, i ¼ 1; � � � ; n� 1) of the approximate NURBS
surface. With these control points and their corresponding
weights, the approximate surface is completely defined.

After the surface is defined, the deviation between the
actual grazing surface and the approximate NURBS surface
can be evaluated using the error measurement methods
described in Section 2.3. Control points of the NURBS
surface can be increased along the u and/or the v direction if
the surface error is more than the specified tolerance. The
knot insertion method can be used to increase control points
in the u and/or the v direction. With more control points, the
surface deviation can be lowered but more unknowns need
to be calculated. The calculation procedures, however, are
the same as above.

4 Flow chart for surface design

To explain the basic concept of surface design for flank
milling, a flow chart that describes the whole design
procedure is given in Fig. 11. This chart can also be used
to implement the surface design process.

The design starts with two user-specified guiding curves
and their control points. The cutting tool is also selected by
the user at the onset of design. Depending on the
relationship among the grazing surface, the cutting tool

and the guiding curves, the number of control points and
the knot vector of the approximate NURBS surface can
initially be determined. Consequently, the average weight
of interior control points can be calculated.

In the proposed method, the position of the interior
control point is initially set to the middle of each effective
tool contact length at all specified tool positions. The
positions of these interior control points are then optimized
to reduce the error over the whole design surface. After
optimization, all control points of the flank millable surface
are known and this flank millable surface can be built. The

Fig. 10 Weight distribution
along TB(u)

User specifies two guiding curves and their control
points. User selects cutting tool.

Determine the number of control points and knot
vector of the approximate surface

Calculate and average the weight of the middle control
points

Calculate the middle control points; position them in 
the middle of each effective tool contact length at each 
specific tool position 

Compose a NURBS surface

Optimize each middle control points by moving
middle control point along tool axis direction to 
maximally reduce the surface error

Check the maximum surf-
ace error. Is it less than the
specified tolerance?

Construct the approximating NURBS surface

Yes

No

Increasing the 
number of 
control points

1

2

3

4

5

6

7

Fig. 11 The flow chart of implementation
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error that would result when this surface is machined is
checked next. If the maximum surface error exceeds the
specified tolerance, more control points can be added to the
control polygon of the surface and this process is iterated
until the surface error reaches the required tolerance.

5 Accuracy control for surface design

In this section, the technique of designing a surface for
flank milling is demonstrated with examples and the
method to control the surface error in the design of the
flank millable surface is also studied. The results are
explained by referring to the flow chart shown in Fig. 11.

In the flow chart, the step to optimize the middle control
points along the tool axis direction is performed as part of
generation of the approximating NURBS surface. This is
different from the method given in Section 3. In Section 3,
the optimization of the middle control point is performed
before the flank millable surface is constructed in step 5. As
the middle control point for each tool position is optimized
separately, the influence from other grazing curves is not
considered. A study of the effect of optimizing the location
of the middle control points on the overall surface error was
done. The study shows that reducing the maximum error
between the grazing curve and the approximating NURBS
curve does not necessarily reduce the maximum surface
error between the flank millable surface and the grazing
surface.

As illustrated in Fig. 12, as the middle control point of
the first approximating curve changes, the maximum error
between the approximating NURBS curve and the grazing
curve can reduce while the maximum error between the
flank millable surface and the grazing surface increases. To
avoid this, a new method to optimize the middle control
point is employed. In this new method, the middle control
points of all selected grazing curves are moved together as
the surface error is optimized. The middle control points are
thus located to optimize for minimal surface error.

5.1 Surface design for flank milling

The design of a surface that can be flank milled begins with
two guiding curves, T(u) and B(u). In our example, the two
quadratic curves represent the top and the bottom curves of an
impeller or a blade surface. The control points for the curves
are tabulated in Table 4. The degree of both the curves is 2.
The knot vector of the two curves is [0, 0, 0, 1, 1, 1].

An NURBS surface that can be accurately flank milled is
designed. A cylindrical cutter of radius R=5 is used and
Bedi et al.’s tool positioning method is adopted to position
the cutter and consequently to generate the tool path. The
resulting machined surface is calculated using the swept
surface method. The grazing surface and the guiding curves
are plotted in Fig. 13.

The first step in designing the NURBS surface is to
select the number of control points of the surface and its
knot vector. The control points and knot vector are selected
by the user. Since the guiding curves lie on the machined
surface and the numbers of control points defining the
guiding curves in this example are three, the numbers of
control point of the design surface along the guiding curve
direction can initially be selected to be three. The knot
vector of the surface along the guiding curve direction is
the same as the guiding curve, i.e., [0, 0, 0, 1, 1, 1]. These
parameters can be corrected based on the surface error
analysis later. If the maximum surface error is larger than
the specific tolerance, more control points can be added
with a corresponding change in the knot.

In the second step, the tangent vectors of T(u) and B(u),
that represent the direction of motion of the tool at these
points, are investigated by plotting the angle α, which is the
angle between the tangent vectors of T(u) and B(u)
measured in the plane perpendicular to the cutting tool
axis. The angle α and the ratio of the magnitudes of these
tangents “k” are plotted as shown in Figs. 14 and 15. The
angle α varies from 24° to 28.1°, the ratio k changes from
0.89 to 1.12. Since the magnitude does not change
radically, three control points will be used to model the
approximating surface along the tool axis direction. Experi-
ments with different surfaces have shown that if the ratio k
is bigger than 1.35 (or smaller than 0.74) or the angle α is
bigger than 30°, then more control points should be used in
the tool axis direction.

The maximum error of the surface

The maximum error 
of an approximating 
curve

v

(mm)

0.5 0.56

0.0034

0.012

0.072

Fig. 12 The maximum error of the grazing curve and the grazing
surface as middle control point moved along tool axis direction to
reduce the grazing curve error

Table 4 Control points for guiding curves [mm]

T0 T1 T2 B0 B1 B2

x 75 30 0 60 30 15

y 15 30 60 0 30 75

Z −5 −5 −5 −45 −45 −45
w (weight) 1 1 1 1 1 1
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In the third step, a 3×3 biquadratic NURBS surface is
constructed using the proposed surface design method. The
procedure to build this surface is demonstrated in the next
section.

5.2 Three by three approximate NURBS surface

Blocks 3–6 in Fig. 11 are used in this section. The control
points and weights of the generating curves are directly
assigned to the corresponding control points of the surface.
This leaves three of the middle control points, namely P1,0,
P1,1, and P1,2, and their corresponding weights undeter-
mined (see Fig. 9). The middle control points and weights

are defined with the method discussed in Section 3. Three
tool positions, u=0, u=0.5, and u=1, are used to decide these
parameters. At each specified tool position, a grazing curve
is calculated, then an NURBS curve is used to approximate
this grazing curve. The middle control points of the NURBS
curves are optimized together by moving their locations
simultaneously to reduce the approximate NURBS surface
error as explained in Section 4. The middle control points of
the NURBS curve at tool positions u=0 and u=1 are directly
added to the control polygon of the surface. The remaining
control point P1,1 is calculated as described in Section 3. The
weights of these middle control points were determined
when the grazing curves were calculated. These weights are
averaged and re-assigned to the middle control points. After
all control points and weights are obtained, a 3×3 NURBS
surface is generated. The reparameterized parametric error
measurement method is used to measure the deviation
between the grazing surface and the designed NURBS
surface. The result is shown in Fig. 16.

The deviation between the grazing surface and the
approximate surface is in the range [0, 0.022]. The maximum
error is less than 0.022. In generating this surface, the velocity
at the top and the bottom were assumed to be given by the
derivatives of T(u) and B(u). Similarly, the weights of the
middle control points were averaged. The effect of these
assumption (or steps) is explored next before the method of
improving surface error is presented.

5.2.1 Surface model for fixed middle control point (v=0.5)

The selection of the middle control points is based on the
ratio of the velocity magnitudes at T(u) and B(u). For

Fig. 13 The grazing surface and guiding curves

Fig. 14 The variation of angle α along the feed direction

Fig. 15 The variation of the ratio k along the feed direction
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simplification, this ratio can be neglected and the middle
control point (along TB(u), see Fig. 9) is forced to lie at v=
0.5, the middle of the effective contact length along the tool
axis. This will simplify the procedure and speed up the
computations. But this changes the NURBS surface.
Following the flow chart steps 1–5 (Fig. 11), the flank
millable surface is reconstructed and the deviation is again
measured and the result is plotted in Fig. 17.

The deviation between the grazing surface and the
approximate surface using the fixed middle control point
is in the range [0, 0.045]. The maximum deviation is
close to 0.045. Compared to Fig. 16, the maximum

deviation has increased, but the surface design procedure
is simpler. The middle control points are obtained easily.
This deviation may be acceptable in some engineering
situation especially when the ratio of velocity magnitudes
(between two contact points on T(u) and B(u)) is close to 1
and further improvement can be achieved by insertion of
knots or degree elevation as described later. If the ratio of
magnitudes is equal to 1, Figs. 16 and 17 will give similar
results.

5.2.2 Effect of varying weight on surface model

The results obtained above use the average weight for
each middle control point of the NURBS surface. If
separate weights are used for each middle control point
as described in Section 3, our algorithm follows the path
1, 2, 4, 5, and 6 in the flow chart in Fig. 11 resulting a
different surface. The error of this surface is plotted in
Fig. 18.

The deviation between the grazing surface and the
approximate surface is in the range [0, 0.088]. The
maximum deviation is close to 0.088. Compared to
Fig. 16, this gives a larger deviation. The separate weight
of each middle control point results in a highest surface
error in all the cases tried by authors. Thus, we recommend
using weights that are the average of the weights from the
NURBS grazing curves are used.

Fig. 16 Deviation between the grazing surface and the NURBS
surface

Fig. 17 Deviation between the grazing surface and the NURBS
surface with a fixed middle control point

Fig. 18 Deviation between the grazing surface and the NURBS
surface with separate weight of each middle control point

Table 5 Errors for different NURBS surface (CPs control points)

CPs (v×u) 3×3 3×4 3×5 4×3 4×4 4×5

εmax 0.022 0.0195 0.0165 0.0152 0.0087 0.0065
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5.3 Flank millable surface with more control points

As discussed before, the deviation between the grazing
surface and the flank millable surface will decrease if the
control points along the generating curve direction (u) and/
or along the tool axis direction (v) are increased. To
illustrate this, additional control points are added to the
surface generated in the example above.

5.3.1 Increasing control points in the u and/or v direction

In this case study, the numbers of control points along v or
the tool axis are kept the same. The control points in u
direction or along the guiding curves are increased from
three to four and then to five. Knot insertion [22] is used to
increase the number of control points. The degree of the
NURBS surface is kept the same, i.e., two. The control
points of the two guiding curves (T(u) and B(u)) are first
increased, then, the remaining control points and weights
along the middle are decided. For four control points, the
knot vector becomes ½0; 0; 0; 12 ; 1; 1; 1� and four tool

positions, at u=0, u=0.33, u=0.66 and u=1, are used to
calculate the middle control points and weights. For the
case of five control points, the knot vector becomes
½0; 0; 0; 0; 13 ; 23 ; 1; 1; 1� and five tool positions, u=0, u=
0.25, u=0.5, u=0.75, and u=1, are used to calculated the
middle control points and weights. Using the technique
developed above, the approximating NURBS surfaces are
created and the surface deviations are calculated and listed
in Table 5.

Similarly, one can increase control points in v direction
and keep the number of control points in u direction the
same. A quadratic NURBS surface is created for several
sets of control points and the surface error is calculated and
also tabulated in Table 5.

In general, the maximum surface error decreases with the
number of control points increased in the v direction. The
control points can also be simultaneously increased in both
u and v directions to further reduce the deviation between
the grazing surface and the NURBS surface. From Table 5,
it can also be seen that the maximum surface errors are
reduced insignificantly as the numbers of control points are

Fig. 19 The surface designed
using the proposed method and
its surface error. a The designed
surface and its guiding curves. b
The surface error distribution

Fig. 20 The surface designed
using the proposed method and
its surface error. a The designed
surface and its guiding curves. b
The surface error distribution
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only increased in the u direction from 3×3 to 3×4 and 3×5.
However, the maximum surface errors are reduced drasti-
cally when the numbers of control points are increased in
both of u and v directions. It suggests that both of u and v
directions need to be considered when the control points are
added to the control net of the surface. Sometimes, adding
control points in only one direction does not significantly
reduce the maximum surface error.

5.4 Additional examples

The proposed method was also tried on two more examples
of different surfaces as demonstrated below. The deviation
of the surface in both examples can be effectively
controlled by changing the number of control points and
the knot vector. The guiding curves used in surface design
are shown in Figs. 19a and 20a as bold lines. The error
distribution calculated with the method described earlier is
given in Figs. 19b and 20b for the respective surfaces. The
desired of the approximating surface can be achieved in
each case with increase in control points.

We have also used one of our methods to design an
impeller as detailed in [23]. In our examples, we move the
tool along the guiding curves so that the tool is tangent to
one point on each guiding curve at the same parameter
value u and we consider the resulting swept surface. Our
method is a better approximation to this swept surface than
a ruled surface is. However, if we wanted to machine a
ruled surface, we could optimize the tool position so that
the resulting swept surface minimized the error to a ruled
surface.

Table 6 gives a comparison of the errors for different
methods. Column 1 gives the error in approximating the
swept surface with a ruled surface, where the swept surface
is the surface swept by keeping the tool tangent to T(u) and
B(u); from the table, we can see that a ruled surface is a
poor approximation to the swept surface. Column 2 gives
the error between our method and the swept surface, which
is an order of magnitude improvement over ruled surface;
the numbers in parentheses in this column indicate the
number of control points used by our method.

Column 4 gives the error between a ruled surface and a
method optimized to minimize the error between the swept
surface and a ruled surface. We first note that the errors are

similar in magnitude in columns 2 and 4. However, it
should also be noted that the method for minimizing the
error to the ruled surface can not be improved for a single pass
of the tool: there are limits in how accurately the swept surface
can approximate a ruled surface. On the other hand, with our
method for approximating the swept surface, if the error is too
high, then a better NURBS approximation to the swept surface
can be constructed. Column 3 of this table shows the error
resulting when using a 6×9 NURBS surface to approximate
the swept surface. As can be seen from the table, the error has
been reduced by one order of magnitude in all the examples.
Further reductions in error can be obtained by further
increasing the number of control points.

6 Comparison with the least square method

This paper presents a method for design of a flank millable
surface that approximates the grazing surface. Although the
accuracy of the approximation can be improved by knot
insertion, we would like to compares its accuracy with the
established least square technique, which guarantees the best
fit. In the least square method, an approximate curve or
surface can be obtained for a given set of sample points based
on the degree and the knots vector specified by the user.
Sample points should be spread out over the entire surface and
the method requires matrix inversion in its computation.

The example given in Section 5.1 is used to design a
flank millable surface with the least square method.
Grazing points are used as sample points. Different
quadratic NURBS approximating surfaces are obtained
based on the number of user specified control points used
in the computation. The resulting flank millable surfaces
are compared with the grazing surface using the parametric
error measurement method and the final results are shown

Table 6 Error comparisons [mm]

Reference name Ruled surface 1
(original tool position)

NURBS surface
(original tool position)

NURBS surface
(original tool position) (6×9)

Ruled surface 2
(optimizing tool position)

Example 1 (Fig. 16) −0.15, 0 0.022 (3×3) 0.00156 −0.01, 0.0063
Example 2 Fig. 19 −0.32, 0 0.053 (4×5) 0.0097 −0.025, 0.02
Example 3 Fig. 20 −0.32, 0 0.026 (4×5) 0.0091 −0.022, 0.012

Table 7 The maximum error (mm) in the flank millable surfaces
generated using different number of control points

CPs methods 3×3 3×4 3×5 4×3 4×4 4×5

LS 0.016 0.013 0.0134 0.0108 0.0045 0.0025

PM 0.022 0.0195 0.0165 0.0152 0.0087 0.0065

CPs Control points, LS least square, PM proposed method
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in Table 7 below. The results from the proposed method are
also listed in this table.

From this table, it can be seen that the maximum errors
from different surface fitting methods are in the same range.
The least square method offers a higher accuracy surface
for the same number of control points, etc., but the error is
dependent on the selection of knot vector, the parametric
value of each sample point, the number of sample points
and their distribution. Furthermore, the computation pro-
cess is complex and time consuming. On the other hand,
the surface error from the proposed method is not
influenced by the variation of the number of sample points.
The knot vector of the surface is the same as the knot vector
of the guiding curves. The parametric value of each sample
points is known. Only a few tool positions are used to
define the approximating surface. The computation process
is simple and computation time is short and the flank
millable surface error can be controlled by increasing the
number of control points of the surface.

7 Conclusion

In this paper, a method to design a surface for flank milling
is developed. The discrete grazing points on the grazing
surface at a few tool positions are used to decide the control
points (and their weights) and to determine the approximate
NURBS surface. This NURBS surface is desirable for flank
milling as it can be machined precisely. The simulation
results show that the error between the grazing surface (the
simulated machined surface) and the approximate NURBS
surface are small and satisfy the requirement of most
engineering applications. If higher accuracy is required, the
method allows additional control points to be added. The
parameters affect the surface design are also studied.

The proposed method was tested with polynomial
guiding curves. It can also be applied to the rational B-
spline guiding curves. More control points need to be added
along the guiding curve direction to control the error
between the designed surface and the machined surface.
Alternatively, the rational guiding curves can first be
approximated with polynomial curves and then be used to
design the surface for flank milling.

In addition, the proposed method can also be applied to
other developed flank milling tool positioning methods for
flank millable surface design. This surface design method
opens the door for engineer to integrate doubly curved
surfaces in design of impellers and other performance
critical objects.

To model a surface that meets the design requirements,
multiple passes of the tool may be required. Previous work
[6, 16] used piecewise ruled surfaces to meet the design
requirements. Each ruled surface was an approximation to

the surface swept by a tool pass. Rather than approximate
with a ruled surface, one could instead use our technique and
create an NURBS surface in place of each ruled surface. This
piecewise NURBS surface would then be an exact represen-
tation of the final machined surface. While there are still
issues with using these piecewise surfaces for flank milling,
these issues occur whether you use piecewise ruled surface
or if you use our piecewise NURBS surface. The point is
that using our method instead of the ruled surfaces gives an
exact model of the machined part that enables the design
engineer to construct a tool path for a surface that more
accurately matches the design specifications.
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