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Abstract The present work deals with modeling and
optimization of ultrasonic welding (USW) process parameters
including welding time, pressure, and vibration amplitude
influencing strength of the welded parts of acrylonitrile
butadiene styrene (ABS) and poly(methyl methacrylate)
(PMMA) using artificial intelligence (AI) methods.
Experiments performed on samples by spot welding
workpieces of ABS and PMMA. The experimental data
are used for training of artificial neural networks (ANN),
adaptive neuro-fuzzy inference systems, and hybrid
systems. It is found that ANN had better predictions
compared with the other AI methods. The best model
was a feed-forward back-propagation network, with
uniform transfer functions (TANSIG-TANSIG-TANSIG)
and 4/2 neurons in the first/second hidden layers. The
best predictor is then presented to genetic algorithm (GA)
and particle swarm optimization (PSO), as the fitness
function and for optimizing the USW machine parame-
ters. After the optimization, results of this part revealed
that GA and PSO have comparable results and the
calculated strength increased by 10%, as compared with
a non-optimized case. In order to confirm the computa-
tional results, validating experiments are performed
which their outputs demonstrates good agreement with
the optimization result.
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1 Introduction

Being used in the automobile industry, welding two dissimilar
polymers such as acrylonitrile butadiene styrene (ABS) and
poly(methyl methacrylate) (PMMA) is an important process.
For instance, front and tail lights of most cars are made up of
joining ABS to PMMA. On the other hand, stress cracking is
the most frequent cause of failure in the tail lights made from
hot tool welding of ABS to PMMA [1]. Internal tensile stress
induced by hot tool welding in the range of 230420 C°, is
the source of subsequent cracks. Thus, achieving high weld
strength for these types of polymers is significant, especially
for the automobile industry.

Ultrasonic plastic welding is one of the main techniques,
in which, by conducting ultrasonic vibrations to the upper
side of the joint, friction between the part coupled with the
sonotrode and the part on the anvil side, causes a local melt
and the subsequent pressure joins the polymer chains together.
Compared with the conventional welding techniques, ultra-
sonic welding provides a low-energy bonding technique.
Each two thin film polymers having compatibility in joining
together can be welded by ultrasonic vibrations, especially
amorphous polymers which are preferred to crystalline
polymers for joint quality. Furthermore, by the use of high-
power ultrasonic energy source, oscillating shear forces break
polymer chains and static force produces the high strength
solid-state bonds. Besides, the ultrasonic welding technology
is an innovative method to produce hybrid joints for multi-
material components.
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Figure 1 shows a schematic of an ultrasonic plastic
welding machine [2]. The most important parameters of the
USW process are:

1. The vibration frequency: the frequency which the
transducer vibrates with. In most of the machines it is
unchangeable

2. The vibrational amplitude of the welding tip

The duration of the welding operation (the welding time)

4. The clamping pressure in the weld area

w

Modeling of systems is of fundamental importance in
almost all fields. This is because models enable us to
understand a system better, simulate and predict the system
behavior and hence help us in optimizing the system
parameters. Widely developed linear models are applied in
the different areas of engineering, but most of the real time
systems are ill defined and uncertain in nature. As a result,
system modeling based on the traditional linear systems is
not appropriate for complicated systems. Non-traditional
systems, namely soft computing which is a collection of
methodologies like fuzzy systems, artificial neural networks
(ANN), genetic algorithm (GA), particle swarm optimiza-
tion (PSO), and so forth, were designed to tackle
imprecision and uncertainty involved in complex nonlinear

Fig. 1 Schematic of ultrasonic
plastic welding machine [2]

Pneumatic cylinder o

systems. The evolution of soft computing techniques has
helped in understanding the various aspects of nonlinear
systems and thereby making it possible to model them as
well as optimization of these systems [3, 4]. Recently, these
techniques have found numerous applications for modeling
and optimization of various manufacturing and machining
processes [5—13].

Since the mid-1960s which the first ultrasonic welding
was done, various novel papers have been written investi-
gating the effects of the ultrasonic welding (USW) process
parameters on the joint strength and quality. It has been
defined that by increasing the weld time, pressure, and
amplitude up to a certain value, weld strength will increase.
Further increases of the welding parameters will reduce the
joint quality and strength [1]. Kirkland [14] has extracted
the fundamental formulas needed in frequency selection in
ultrasonic plastic welding. Additionally, Tsujino et al. [15]
have investigated frequency characteristics of welding
machines by using a combination of 90 kHz and 27 or
20 kHz vibration systems and have shown its increasing
strength of polyvinyl chloride specimen joints compared
with that of 27 kHz plastic welding systems. Moreover,
Espinoza et al. [16] have optimized the ultrasonic welding
machine parameters such as weld time, hold time, and
pressure on the burst strength of the joints of polyurethane
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specimens using Taguchi robust design. Furthermore,
Michaeli et al. [17] have studied optimizing the ultrasonic
welding machine parameters of micro parts of polycarbonate
by analysis of variance. Compared with the research
efforts on the welding of similar materials, only limited
research has been done on the ultrasonic welding of
dissimilar materials, including ABS and PMMA. Besides,
to the best of our knowledge, there is no published result
for modeling and optimization of USW machine parameters
in joining ABS and PMMA together.

In this research, the effective parameters of the USW
process on the weld strength of ABS-PMMA were
modeled and optimized using the artificial intelligence
(AI) approach. Firstly, the relation between input parameters,
that is welding time, pressure and amplitude, and output
one, namely strength of the weld, was modeled using
ANN, adaptive neuro-fuzzy inference systems (ANFIS),
and hybrid systems (HS). All of the models were trained
with experimental data which obtained based on a full
factorial design. The best model amongst these techniques
was selected for the optimization process. Secondly, in order
to obtain the maximum weld strength, the selected predictor
was introduced as the fitness function to the GA and PSO.
Finally, the best optimization result was validated by verifying
experiments. Figure 2 illustrates the usage of Al methods for
modeling and optimization of the USW process.

The paper is organized as follows: the fundamentals of
ANN, ANFIS, HS, GA, and PSO are presented in Section 2.
Section 3 illustrates the experimental procedure; implemen-
tation of ANN, ANFIS and HS for modeling is described in
Section 4; Section 5 explains the GA and PSO implemen-
tation for optimization; Section 6 states the model valida-
tion step, and Section 7 concludes the paper.

2 Artificial intelligence methods
2.1 Artificial neural networks
ANN is a mathematical model which is inspired by the human

biological nerve system and is used to solve complex
scientific and engineering problems. The advantage of ANN

Training Data
Preparation

Modeling =

A Full Factorial
experimental
design

is the ability to be trained based on experimental/real life data
to predict solutions. During the training, an ANN model
adjusts itself to establish the relation between the input and the
output. In spite of this, an ANN model does not require any
explicit formula; but instead it is an implicit model by itself
where it can be trained to adopt and adjust itself to perform
certain tasks.

In this study, two network types were considered: feed-
forward back-propagation (FFBP) and cascade-forward
back-propagation (CFBP). The first one is consisted of
one input layer, one or several hidden layers and one output
layer. Usually, back-propagation learning algorithm (BP) is
used to train this network. In the case of the BP algorithm,
first the output layer weights are updated. For each neuron
of the output layers, there is a constant desired value at first.
By this value and the learning rules, the weight coefficient
is updated. For some problems, the BP algorithm presents
suitable results, while it leads to improper results for others.
In some cases, the learning process is upset as a result of
getting trapped in local minimum. This is because of the
answer, lying at the smooth part of the threshold function.
The CFBP network like the FFBP network uses the BP
algorithm for updating weights, but the main characteristic
of this network is that each layer’s neurons are related to
all previous layer neurons. In addition, the Levenberg—
Marquardt (LM) learning algorithm [18] was utilized for
the tuning of the network weights. In addition, the logistic
sigmoid (LOGSIG) and tangential sigmoid (TANSIG)
activation functions in two hidden layers were used.

2.2 Adaptive neuro-fuzzy inference systems

ANFIS is used for the modeling of nonlinear or fuzzy input
and output data, and for the prediction of output according
to the input. It applies a combination of the least squares
method and the back-propagation gradient descent method
for training fuzzy inference system membership function
parameters to emulate a given training data set. Functionally,
it is equivalent to the combination of neural network and
fuzzy inference systems. A comprehensive description
regarding ANFIS architecture as well as the learning
algorithm of ANFIS can be found in Jang’s [19] work.
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Fig. 2 Application of Al for modeling and optimization of the USW process
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2.3 Hybrid systems

Hybrid systems are the methods to solve problems
where more than one Al method is employed in [20].
Hybrid systems have been classified as sequential
hybrids, auxiliary hybrids and embedded hybrids. In
this study, an auxiliary hybrid system; namely, an
ANN-PSO hybrids is utilized. In this system which
has been used by several authors [21, 22], the gradient
descent learning algorithm is replaced by the PSO method
to update the weights and biases of ANN. In other words,
an ANN-PSO HS makes use of PSO to determine the
weights and biases of a multilayer network with the BP
learning algorithm.

2.4 Genetic algorithm

GA in particular became popular through the work of
John Holland in the early 1970s. A GA is an iterative
procedure which borrows the ideas of natural selection
and survival of the fittest from natural evolution. GA is
categorized as global search heuristics where a popula-
tion of abstract representations (chromosomes) of candi-
date solutions (individuals) is simulated as an
optimization problem that evolves towards better solu-
tions. Traditionally, solutions are represented in binary as
strings of 0 and 1 s, but integers and floating point
numbers can also be used. The evolution usually starts
from a population of randomly generated individuals and
happens in generations. In each generation, the fitness of
each individual in the population is evaluated. Based
upon their fitness, multiple individuals are stochastically
selected from the current population and modified
(recombined and possibly randomly mutated) to form a
new population. The new population is then used in the
next iteration of the algorithm. The algorithm terminates
when either a maximum number of generations has been
produced, or a satisfactory fitness level has been reached
[23, 24].

2.5 Particle swarm optimization

PSO was originally inspired by social behavior of
organisms such as bird flocking and fish schooling.
PSO shares many similarities with evolutionary compu-
tation techniques such as GA. The system is initialized
with a population of random solutions and searches for
optima by updating generations. However, unlike GA,
PSO has no evolution operators such as crossover and
mutation. It searches the solution space by assigning
velocities v and a neighborhood relationship to the
individuals x. An individual in each generation is attracted
to the best location in its history (p”) and to the best
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location found by its neighborhood (p”). The classical
formulation is given in the following equations:

vi(t +1) = wilt) + 171 (P} = xi) + g2 (P} —x)) (1)
x(t+ 1) =x(t) +vi(t + 1) (2)

The neighborhood type may range between small (local),
randomized, and large (global), differing especially in the
rate of information distribution. The parameters ¢, control
the impact of the attractors, while r;,, are uniform random
samples in [0, 1] used as stochastic components. The
inertness factor w controlling the influence of former
velocities is usually set<1 for convergence [25, 26].

3 Experimental procedure

In this study, for preparation of training samples, the joining
method of two parts of ABS and PMMA together were
observed at different working conditions. First of all, the
parts were cut from sheets with thickness of 5 mm. In the
ASTM Gl.1, it is noted that PMMA and ABS have
compatibility in joining together [27], but the rigidity of
PMMA is higher than ABS. Since the penetration of the
welded nuggets into each other is unknown, using an
energy director is not possible. In the ultrasonic welding of
metals, nuggets are formed almost exactly under the
sonotrode [15]. But in the ultrasonic welding of PMMA,
due to the rigidity of the polymer and the direction of the
tool vibration which differs from the USW of metals, in
order to have the nuggets approximately under the
sonotrode, workpieces were cut as shown in Fig. 3.
Therefore, it could be said that nuggets are exactly under
the sonotrode face and the piece’s formation does not let
the other areas of the piece to be joined by the produced
heat of the friction. Experiments were done using 15 kHz
ultrasonic welding involving a 10-mm diameter welding
tip, as shown in Fig. 4.

At first stage, in order to understand the effects of the
welding machine parameters, five levels for welding time,
three for pressure and three for amplitude were assigned.
Table 1 shows the primal assigned levels for each
parameter. After completing the experiments, it was
observed that the joints undergoing the first level of
welding time had not joint completely and the ones

Fig. 3 Welded parts of ABS and PMMA
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Fig. 4 15 KHz ultrasonic welding machine (Maxwide Inc.)

including the fourth and fifth level of the welding time had
the least joint quality due to the increase of welding
duration. Therefore, these levels were omitted and experi-
ments were done using welding times of 0.4 (level 1) and
0.64 s (level 2).

In the second stage, a full factorial experiment with four
repetitions was designed to conduct the experiments.
Table 2 shows the designed experiments with relative
average strength of four repetitions as well as standard
deviation between the four repetitions of same set of
process parameters.

4 Strength modeling
In this research, Al methods, which consist of using ANN,

ANFIS, and ANN-PSO HS, are used to model the effect of
USW machining parameters including welding time,

Table 1 Primal levels for experiments

Welding time (s) Pressure (bar) Amplitude (pum)

0.24 (level 1)
0.4 (level 2)

0.64 (level 3)
0.88 (level 4)

1.1 (level 5)

2.5 (level 1) 50 (level 1)

3.5 (level 2) 55 (level 2)

4.5 (level 3) 58 (level 3)

Table 2 The average results of joint strength for full factorial design
with four repetitions

Run  Welding Pressure  Amplitude  Average SD
time (s)  (bar) (um) strength (KN)

1 1 1 1 44.50 8.49
2 1 1 2 301.50 13.7
3 1 1 3 528.00 34.6
4 1 2 1 248.50 24.34
5 1 2 2 282.50 12.43
6 1 2 3 210.00 12.63
7 1 3 1 273.00 5.3
8 1 3 2 102.50 18.65
9 1 3 3 232.00 353
10 2 1 1 155.00 13.01
11 2 1 2 338.50 40.11
12 2 1 3 358.00 21.97
13 2 2 1 458.00 17.2
14 2 2 2 525.00 17.1
15 2 2 3 679.50 46.05
16 2 3 1 212.50 33.83
17 2 3 2 472.50 17.1
18 2 3 3 630.50 27.4

pressure, and vibration amplitude on the strength of welded
parts of ABS and PMMA together.

4.1 Strength modeling using ANN
4.1.1 Pre-processing

To avoid introducing unnecessary bias resulting from
variables being measured on the different scales and in
order to increase the training velocity, input and output data
were normalized. Input data of the first parameter, welding
time, were remained un-normalized, while the data of
pressure and amplitude were normalized to the boundary of
[0,1] using the below min—max equation [28]:
Min—max scaling:
)(i - Xmin

X, = L fmin 3
! Xmax _Xmin ( )

in which X, is the normalized parameter, X; is the real
parameter, X, is the minimum parameter value (of each X,
and X« is the maximum parameter value (of each X)).
The output data were normalized to the boundary of
(0.0445, 0.679) using decimal scaling [28]:
Decimal scaling

Y

Y =
10"

(4)
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Fig. 5 Topology of considered neural network

where Y’ is the normalized target data and Y is the real data.
In order to proportionate the normalization boundary of
parameters and target data, n=3 was determined.

About 70% of the data were used for training, and the
remaining was utilized for validation and testing.

4.1.2 Processing

The neural networks toolbox of MATLAB™ was used
in this part of the research. Considering and applying
three inputs in all experiments, the strength value
derived from different conditions, network with three
neurons in input layer (welding time, pressure and
amplitude) and one neuron in output layer (strength)
and two hidden layers were designed. Figure 5 shows
the considered neural network topology, Input and output
parameters.

One of the great challenges in the modeling of nonlinear
systems using ANN is selecting the appropriate number of
hidden layer/layers, number of nodes for hidden layers and
their transfer functions.

For a simple problem with linear and quadratic
approximation, only one hidden layer is needed [29].
By Kolmogorov’s theorem, two hidden layers in FFBP are
enough for all of the problems, although this theorem was
rejected [30]. There are some other networks that have
three [31, 32] or more (seven) hidden layers [33] for

complicated problems. Additionally, some formulas were
given to estimate the number of hidden layers [34].
However, in this study an ANN with two hidden layers
was considered as it is adequate in most of the conven-
tional problems [29].

In order to choose an adequate number of nodes for
these hidden layers, there is no specific rule; however, there
are some guidelines and empirical formulas in various
papers and textbooks [29, 35-37]. In this study, a hybrid
method for choosing the optimal number of nodes for
hidden layers is proposed. This is a hybrid of the empirical
formula given by [38] with the increasing method [39]. In
this hybrid method, at first the maximum number of nodes
for hidden layers is chosen according to the following
equation: #<2;+1, where 4 and i are the number of hidden
and input units respectively [38]. Then, according to the
increasing method, a network with the minimum number of
hidden units was built and then new neurons were added to
the network gradually. The hidden units are added until it
reaches the maximum possible number of % in the above
empirical formula.

According to the above formula, the maximum
number of recommended hidden units is seven ones.
Consequently, we started from the minimum number of
hidden units and continued until reaching the total
seven numbers for them. For each combination, the
performances of networks were calculated using statistical
yardsticks.

For choosing the best transfer functions for hidden units,
following strategies were chosen [39]:

Different neurons for several networks at the uniform
transfer function for each layer.
Different neurons for several networks at various
transfer functions for each layer.

4.1.3 Post-processing

In this paper, the determination coefficient R* and root-
mean-square error (RMSE) were used according to the

Table 3 Results for different

neurons and hidden layers Net  Topology  Transfer function  R? RMSE

of a FFBP for several networks ] ]

at the uniform transfer function Train Val Test Train Val Test

for layers
1 2-2-1 T-T-T 0.8988 0.9981 0.8889 0.0692 0.0643 0.0591
2 3-2-1 L-L-L 0.9472 1 0.9971 0.0394 0.0775 0.0717
3 4-2-1 T-T-T 0.9785 0.9994 0.9989 0.0271 0.0294 0.0268
4 5-2-1 L-L-L 0.9657 0.9855 0.9976 0.0327 0.0382 0.0693
5 3-3-1 T-T-T 0.9181 0.945 0.9996 0.0527 0.0434 0.0529
6 4-3-1 L-L-L 0.971 0.9126 0.9534 0.0292 0.0658 0.0602
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Table 4 Results for different

neurons and hidden layers Net  Topology  Transfer function  R? RMSE

of a FFBP for several networks ] ]

at the various transfer function Train Val Test Train Val Test

for layers
1 2-2-1 T-L-T 0.8795 0.857 0.9288 0.0609 0.0839 0.0456
2 3-2-1 L-T-L 0.9498 0.9683 0.9933 0.0384 0.0774 0.0426
3 4-2-1 T-T-L 09114 0.8841 0.9957 0.0616 0.0552 0.0714
4 5-2-1 L-L-T 0.8905 0.9585 1 0.0659 0.0727 0.0784
5 3-3-1 L-T-T 0.8868 0.9837 0.9712 0.0593 0.0493 0.051
6 4-3-1 T-L-L 0.9486 0.8413 0.9812 0.0401 0.0709 0.0789

following equations as a yardstick for performance
measurement:

T

RMSE = % Z (S — Tk)z (5)
=1

Where T denotes the number of data patterns, S is the
network output of the kth pattern and 7 is the target output
of the kth pattern (experimental output data).

In addition, the determination coefficient is measured as
follows:

T
> Sk
T, = *=! 6
; 7 (6)

M~

[Sk — Tx]

=~
Il

1

RP=1-

M~

[Sk - Tm]

-~
Il

When the RMSE is at the minimum and R’ is high,
(R’>0.8); a model can be evaluated as very good [40].
Furthermore, the fact that the RMSE error values are
very close to each other, is an indication of sufficient
regularization [41].

4.1.4 Results and discussion of ANN results
Both strategies were used for FFBP and CFBP networks

with the LM learning algorithm. The best results for these
networks and algorithms are shown in Table 3, 4, 5, and 6.

Tables 3, 4, 5, and 6 show that increasing the number
of hidden units leads to poor generalization. In Table 3, it
is concluded that the LOGSIG activation function had
better outcomes than the TANSIG. However, the best
result in this strategy belongs to the network with a
topology of 4-2-1 with the TANSIG transfer function
which produces 0.9785, 0.9994, and 0.9976 for the
determination coefficient of the train, validation, and test
sets, respectively, with an RMSE of 0.0271, 0.0294 and
0.0268. Table 4 shows that the network with a topology of
3-2-1 and LOGSIG-TANSIG-LOGSIG transfer functions
had better results compared with the others. Furthermore,
it can be concluded that for the FFBP networks, the
strategy of uniform transfer functions for all layers had
better performance than the second one. For CFBP
networks with uniform activation functions, according to
Table 5, it is found that the second network had the best
predictions. Additionally, it is seen that with the
LOGSIG transfer function, the CFBP networks have
poor generalization compared with the TANSIG ones.
Besides, Table 6 demonstrates that the second network
with a topology of 3-2-1 by LOGSIG-TANSIG-LOGSIG
transfer functions had the best predictions. For the CFBP
network, generally speaking, the second strategy had a
better performance.

Finally, amongst all of the four best networks, the FFBP
network with a 4-2-1 topology and TANSIG activation
functions had the best predictions; thus, it is selected from
this subsection as the best evaluator.

Table 5 Results for different

neurons and hidden layers Net  Topology  Transfer function  R? RMSE

of a CFBP for several networks ] ]

at the uniform transfer function Train Val Test Train Val Test

for layers
1 2-2-1 T-T-T 0.9777 0.9956 0.957 0.026 0.0361 0.0389
2 3-2-1 L-L-L 0.9918 0.9853 0.9974 0.0173 0.046 0.0462
3 4-2-1 T-T-T 0.9817 0.976 0.9997 0.0269 0.0691 0.0677
4 5-2-1 L-L-L 1 0.9957 0.9789 0.0008 0.0455 0.0774
5 3-3-1 T-T-T 0.9982 0.9508 0.9987 0.008 0.038 0.0571
6 4-3-1 L-L-L 1 0.9829 0.9911 0 0.0506 0.0749
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Table 6 Results for different

neurons and hidden layers Net  Topology  Transfer function  R? RMSE

of a CFBP for several networks ] ]

at various transfer function for Train Val Test Train Val Test

layers
1 2-2-1 T-L-L 0.9796 0.9984 0.9672 0.0279 0.0314 0.0249
2 3-2-1 L-T-L 0.9855 0.9811 0.9808 0.0207 0.0268 0.0186
3 4-2-1 T-T-L 0.9547 0.9563 0.9644 0.038 0.0388 0.0337
4 5-2-1 L-L-T 0.9892 0.9577 0.9652 0.0181 0.0563 0.0676
5 3-3-1 L-T-T 0.9538 0.9792 0.9851 0.037 0.0499 0.0207
6 4-3-1 T-L-T 1 0.9746 0.9779 0 0.0259 0.0431

4.2 Strength modeling using ANFIS
4.2.1 Pre-processing

In this subsection, the normalizing of data is similar to
Section 4.1.1., but there is further processing for dividing
the data into the train, validation, and test sets. This is
because ANFIS is very sensitive to the input variable
selection for learning; that is, one of the great challenges in
the modeling of nonlinear systems using ANFIS is selecting
the important input variables from all possible input
variables. Consequently, it is necessary to do input selection
that finds the priority of each candidate inputs and uses
them accordingly [42, 43]. For this purpose, the Jang’s
method was selected [43]. The utilized input selection
method is based on the assumption that "the ANFIS model
with the smallest RMSE after one epoch of training has a
greater potential of achieving a lower RMSE when given
more epochs of training" [43]. Using a written code in
MATLAB™, a set of train/validation/test sets were made
randomly, and then were trained for one epoch. The
smallest one was used for further processing. These
optimum sets are labeled as the best sets in Table 7, and
the corresponding number is related to the values of RMSE

after one epoch of training, for the best set amongst 1,000
runs.

4.2.2 Processing

The Fuzzy Logic Toolbox of MATLAB™ was used for this
part of the research. In order to find the optimum ANFIS
parameters for training, two different strategies were
utilized:

e Various kinds of membership functions (MFs) with
equal number of MFs
*  Various kinds of MFs with different number of MFs.

Since it has been proven that the hybrid algorithm is
highly efficient in the training of ANFIS [19], it was
selected as the learning algorithm. Besides, Gaussian
(gaussmf) and bell shape (gbell) MFs were selected as
MF types.

4.2.3 Post-processing

The same criteria that was used for ANNSs, is applied for
ANFIS.

Table 7 Various kinds of

membership functions No. No.of MFs Bestset MFstype R’ RMSE
with equal/different number
of membership functions Train Val Test Train Val Test
1 2-2-2 0.0178  gbelmf 0.9913  0.7256  0.588 0.0169  0.1945  0.2874
0.0154  gaussmf 0.9948  0.2065 0.1379  0.0149 0.1757  0.3269
2 3-3-3 0 gbelmf 1 0.1834 0.8941 0 0.5223  0.4897
0 gaussmf 1 0.8738 0 0 0.5157  0.5103
3 3-2-2 0.0185  gbelmf 0.9925  0.9929 0.0759 0.0152 0.1461 0.2932
0.0241  gaussmf 0.9429 0.7141 0.9231 0.0398  0.0465 0.1642
4 2-3-2 0.007 gbelmf 0.9968 0.9643  0.0143  0.007 03714  0.2985
0.006 gaussmf 1 0.9799  0.791 0.0001  0.3226  0.1196
5 2-2-3 0 gbelmf 1 0.8241 0.48 0 0.1854  0.1373
0 gaussmf 1 0.1684  0.9468 0 02432 0.2727
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Table 8 Results for different

neurons and hidden layers Net Topology Transfer function R RMSE

of a FFBP for several networks ] ]

at the uniform transfer function Train Test Train Test

for layers
1 2-2-1 T-T-T 0.8697 0.7056 0.0618 0.1534
2 3-2-1 L-L-L 0.979 0.8241 0.025 0.1336
3 4-2-1 T-T-T 0.909 0.6177 0.0517 0.1131
4 5-2-1 L-L-L 0.9915 0.637 0.0163 0.1671
5 3-3-1 T-T-T 0.8678 0.8995 0.0625 0.212
6 4-3-1 L-L-L 0.9652 0.6826 0.0335 0.1289

4.2.4 Results and discussion of ANFIS results

First it should be noted from Table 7 that increasing the
number of membership functions rapidly leads to the
overtraining of the ANFIS. Next, it is seen that the second
strategy, i.e. different number of MFs, had better conse-
quences compared with the first one. Finally, the best
ANFIS predictor is an ANFIS with an order of 3-2-2
number of membership functions for the first, second and
third inputs respectively, with Gaussian MFs. Although
there are some published results that ANFIS had better
predictions compared with the ANN [44], but it is seen that
in this study, ANN provides better results.

4.3 Strength modeling using the ANN-PSO hybrid system
4.3.1 Pre-processing

The same normalized data for the ANN section were used
for this part, but validation data were added to the test data
for measuring the performance of HS.

4.3.2 Processing

For this subsection, the ANN-PSO code given by [45] was
utilized. Like Section 4.1.2., both strategies were used for
FFBP and CFBP networks, but here PSO is used instead of
the LM learning algorithm for updating the weights and
biases.

4.3.3 Post-processing

The same criteria used for ANNs and ANFIS, were applied
for this part.

4.3.4 Results and discussion of ANN-PSO HS results

According to the obtained results, it is evident that in this
study, PSO training of ANN had lower performance than
the LM algorithm. Table 8 shows that a 3-2-1 topology with
LOGSIG transfer function had better results. For the FFBP
network with various transfer functions, a 4-3-1 topology
not only does not result in over fitting, but also produced
suite predictions compared with other networks of Table 9.
For the CFBP network with the same activation functions
(Table 10), the network with three hidden units for each
hidden layer with the TANSIG function had the best
predictions. For networks of Table 11, a 3-3-1 topology
had the best results. By Tables 8, 9, 10, and 11, firstly it is
concluded that the CFBP network with a 3-3-1 topology
and various types of activation functions when the PSO
algorithm is used for training, had the best predictions.
Secondly, contrary to the training with LM, increasing the
hidden units resulted in better predictions.

4.4 Results and discussion of Strength Modeling

Al methods were implemented for modeling strengths
of welded parts. The best predictor of the ANN method

Table 9 Results for different

neurons and hidden layers Net Topology Transfer function R RMSE

of a FFBP for several networks ] ]

at the various transfer function Train Test Train Test

for layers
1 2-2-1 T-L-T 0.7944 0.7234 0.0777 0.2041
2 3-2-1 L-T-L 0.9876 0.8264 0.0192 0.1544
3 4-2-1 T-T-L 0.9993 0.7889 0.0045 0.3156
4 5-2-1 L-L-T 0.988 0.7239 0.0195 0.2085
5 3-3-1 L-T-T 0.9568 0.669 0.0317 0.4103
6 4-3-1 T-L-L 0.9999 0.8283 0.0015 0.1488
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Table 10 Results for different

neurons and hidden layers Net Topology Transfer function R RMSE

of a CFBP for several networks ] ]

at the uniform transfer function Train Test Train Test

for layers
1 2-2-1 T-T-T 0.9778 0.903 0.0262 0.2492
2 3-2-1 L-L-L 0.9734 0.7447 0.0279 0.1524
3 4-2-1 T-T-T 0.9999 0.8164 0.0021 0.3305
4 5-2-1 L-L-L 0.9975 0.7367 0.009 0.1805
5 3-3-1 T-T-T 0.9594 0.8687 0.0384 0.2042
6 4-3-1 L-L-L 0.9733 0.8029 0.028 0.1039

is a FFBP network with 4/2 hidden layers for the first
and second layers and TANSIG/TANSIG/TANSIG
transfer functions. The best ANFIS model is an ANFIS
with 3-2-2 number of MFs for the first, second and
third inputs, with Gaussian MFs. For ANN-PSO HS,
the CFBP network with a 3-3-1 topology and various
types of activation functions had the best predictions.
In comparison with the resulted values of R* and RMSE
from these evaluators, it is established that the ANN
method had better predictions amongst other methods.
This evaluator is selected for the optimization process,
namely to introduce as the fitness function to the GA and
PSO optimization algorithms.

5 Optimization of USW machine parameters

The goal of optimization is to find values of the variables
that minimize or maximize the objective function while
satisfying the constraints. For this physical system, the
optimization problem can be expressed as the follows:

* Find—welding time, pressure and amplitude

*  Maximize—weld strength (a function of welding time,
pressure and amplitude)

* Subject to the following variable bounds—0.4<welding
time<0.64 and O<pressure and amplitude<1

The bounds of these variables are in the range of
valid neural network modeling boundaries. Since the
pressure and amplitude parameters were normalized to
the boundary [0, 1] (the welding time was not
normalized) and the designed ANNs were trained with
these normalized parameters, the only parameters that
belong to these boundaries could have wvalid ANN
outputs [46]. In other words, these boundaries are
constraints of this optimization problem. As noted before,
the best founded predictor was presented to the GA and
PSO as the fitness function.

5.1 Optimization by use of GA

For this section, the GA toolbox of MATLAB™ was
selected for implementing the GA for optimization. In the
GA, the deployment of the optimal solution search requires
the tuning of some features related with the GA; for
example population size, selection method and crossover
functions, mutation rate, migration, etc. Although some
general guidelines about such selections exist in the
relevant literature [23, 47, 48], the optimal setting is
strongly related to the design problem under consideration.
Thus, in most of the cases it is obtained through the
combination of the designer’s experience and experimenta-
tion. Table 12 shows optimized values of USW process
parameters using GA.

Table 11 Results for different

neurons and hidden layers Net Topology Transfer function R RMSE

of a CFBP for several networks ] ]

at the various transfer function Train Test Train Test

for layers
1 2-2-1 T-L-T 0.9914 0.6761 0.0158 0.2467
2 3-2-1 L-T-L 0.9944 0.6158 0.013 0.1544
3 4-2-1 T-T-L 0.995 0.7933 0.0383 0.1869
4 5-2-1 L-L-T 0.9049 0.6308 0.0533 0.1667
5 3-3-1 L-T-T 0.965 0.947 0.0326 0.2669
6 4-3-1 T-L-L 0.9998 0.705 0.0027 0.168
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Table 12 Optimization results

Optimum parameters (normalized)

Optimization result

Pressure (bar)

(normalized calculated strength)
Amplitude (pum)

of GA and PSO Method
Welding time (s)
GA 0.616
PSO 0.614

0.645
0.648

1
1

0.7465
0.7465

5.2 Optimization by use of PSO

The PSO toolbox in MATLAB™ released by [49] was
utilized for this part of the study. PSO has been applied
successfully to a wide variety of search and optimization
problems and it has been proven to be a powerful
competitor to the other evolutionary algorithms such as
GA [26, 50]. Moreover, a simple algorithm, easy to
implement and few parameters to adjust are other
advantages of PSO algorithms over other ones. Further-
more, there are some strategies and few empirical rules
that can be found in the manuscripts [51-54], which
could be worked out to guide the effective choice of
parameters. Table 12 demonstrates optimization results
calculated by PSO.

5.3 Results and discussion of optimization results

In this paper, GA and PSO methods were used to set the
parameters of USW process such as welding time,
pressure and amplitude, to obtain the maximum weld
strength. The best result of each method is shown in
Table 12. It is observed that GA and PSO results are
comparable to each other. Although there are slight
differences in the optimum values of welding time and
pressure for GA and PSO calculations, but it leads to
differences of the strength value in the order of 107>,
which in this case is insignificant. The maximum value of
non-optimized experimental outputs for strength value,
depicted in Table 2, is 679.50 kN that increases to
747.65 kN after the optimization. An improvement of
10% in strength is gained through optimization.

Table 13 Non-optimized, optimized, and validation experiment results

6 Validation

In accordance with the number of repetitions in the
experimental procedure, four validation experiments with
the optimized set of process parameters, as in Table 12,
were conducted to verify the calculations. Table 13 lists the
non-optimized, optimized and validation experiment results
with the average output of validation experiments as
730 kN (737, 755, 708, and 720 kN for each individual
output) and 755 kN being the maximum value. Compared
with the non-optimized results, an 8% and 11% gain in the
strength of the weld is achieved.

It is seen that there is a difference between the
results of GA and PSO optimization with the validation
experiments. This can be attributed to different sources
with the most important ones being the inaccuracy in
making the specimens and errors in the experimental
measurements affecting the accuracy of the data gathered
for training the models. This leads to decreasing the
accuracy of the modeling process and therefore under-
mining the accuracy of the fitness function utilized for
GA and PSO.

7 Conclusions

In this article, application of Al methods for modeling and
optimization of a manufacturing process, that is USW of
ABS and PMMA, was presented. To our knowledge, there
is no published result for modeling or optimizing USW of
ABS and PMMA. The modeling process started with
preparation of the training data according to a full factorial

Method/experiment Parameters Objective Improvement vs.
function non-optimized case

Welding Pressure Amplitude Strength (KN) (%)
time (s) (bar) (pm)

Non-optimized result 0.64 35 58 679 -

Normalized GA and PSO 0.61 0.64 1 0.747 -

De-normalized GA and PSO 0.61 3.79 58 747 10

Average of four validation experiments 0.61 3.8 58 730 8

The maximum validation experiments value 0.61 3.8 58 755 11
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experimental design being used for training the models
based on ANN, ANFIS and ANN-PSO HS methods. By
choosing a proper strategy for setting the variables of the
modeling methods, the modeling results revealed that ANN
had better performance than ANFIS as well as HS methods.
The best model was a FFBP ANN with 4/2 hidden units in
the first/second hidden layers, with TANSIG transfer
functions for all layers. Then, the optimization process
was initiated by presenting the best evaluator to the
optimization algorithms, GA and PSO, as the fitness
function. It is found that GA and PSO, in this case, had
the same performance since the optimization results of
both of them were identical. Both algorithms were able
to improve the weld strength value by 10%. Finally, in
order to validate the calculations, verification experi-
ments were performed. The results of verifying experi-
ments displayed good agreement with the optimizing
computations. Comparing the values of measured weld
strengths in the non-optimized-cases with the average
output of verifying experiments shows an 8% increase.
The optimization methodology developed in this research
can be used to model and optimize any general
manufacturing process. Also the optimized results for
USW process can be used to increase the quality of the
relevant processes such as welding the front and tail
lights of most of cars that are made up of ABS and
PMMA in the automobile industries.
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