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Abstract The production of a tubular hydroformed part
often requires a combination of internal pressure and axial
force at the tube ends to fully form the tube to its specified
geometry. A successful hydroforming process requires not
only achieving a part that conforms to the design
specifications, but also ensures that the part has a
reasonably uniform thickness distribution and is free of
defects, such as wrinkles, severe thinning, or fractures. The
load path design (pressure vs. end feed history) largely
determines the robustness of the process and the quality of
the finished parts. In this paper, a hybrid constrained
optimization method was proposed to solve this type of
multi-objective problem by coupling a multi-objective
genetic algorithm and a local search. The load path design
procedure was developed by considering five objectives:
four formability objectives (i.e., to minimize the risk of
wrinkling, global and local thinning, and fracture) and a
geometric objective (to minimize the corner radius). A
Kriging predictor was used to accelerate the computation of
genetic operations and generate new feasible solutions.
Finite element simulations of the hydroforming process
were also used after each generation to accurately evaluate
the objectives of the offspring, and solutions with rank 1
were retained throughout all generations. Once the Pareto
solutions were obtained by multi-objective genetic algo-
rithm, a local search was carried out in the regions of
interest with the assistance of visualization. This optimiza-

tion method was applied to the hydroforming of a straight
tube to create a part with an expanded region with a square
cross section; the optimum load path produced a very safe
part with a corner radius of only 9.115 mm and a maximum
thinning of only 23.9%.

Keywords Tube hydroforming . Load path design .

Non-dominated sorting genetic algorithm (NSGA) . Kriging
model . Constrained multi-objective genetic algorithm
(MOGA) . Local search

1 Introduction

Tube hydroforming has captured the interest of researchers
and engineers for several decades. Today, the hydroforming
process is used to produce lightweight products for home
use and in the automotive and aerospace industries.
However, the efficiency of the hydroforming process
largely depends on the given load paths (i.e., internal
pressure vs. time and end feed vs. time) which are
important to generate high-quality parts and save costs.

The design process can be dramatically improved by
utilizing finite element analysis (FEA). For instance,
Manabe and Amino [1] proposed to calibrate certain
process parameters with the aid of FEA simulations and
obtained a better load path. Other studies have proposed
integrated optimization tools coupled with numerical
analysis to obtain an optimal load path [2–6]. Due to
time-consuming simulations, however, attempts to obtain a
global optimum are still cumbersome and results are often
only found at a local optimum.

Recently, several applications using the response surface
methodology (RSM) model for accelerating the optimiza-
tion process have been proposed for tube hydroforming.
Koç et al. [7] presented low-cost RSM models to predict the
protrusion height of “T-shaped” hydroformed parts, and the
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method was shown to provide an economical prediction
and optimization of this height as a function of geometrical
parameters subject to thinning of the wall in the protrusion
region. Ingarao et al. [8] used the classical weighted sum
method and ε-constraint methodology to optimize the
process design for Y-tube hydroforming: there were two
inputs (the maximum pressure and end force at the
calibration stage) and three outputs (tube wall thinning,
final unfilled volume, and fillet radius). The moving least
squares approximation was used to construct the RSM
model. Bonte et al. [9] proposed a sequential approximate
optimization (by fitting the metamodel) to optimize the
metal forming process. It was applied to minimize the
variations in wall thickness of the final product with respect
to the initial tube thickness using a load path defined by
seven parameters, including the initial tube radius and
thickness, the time when axial feeding starts and stops, the
amount of axial feeding, the increase in internal pressure,
and the coefficient of friction.

It can be noted that most of the optimizations performed in
tube hydroforming are still accomplished by considering a
single objective, or by transforming a multi-objective problem
into a single objective by a weighted sum method; moreover,
no more than three objectives have been considered.

The authors have proposed using the normal boundary
intersection (NBI) method [10] and a multi-objective
genetic algorithm (MOGA) method [11] which couples a
Kriging surrogate model to optimize the load path problem
with four objectives in order to hydroform a part with a
square-shaped cross section. Both methods adopted Pareto
optimality; however, the NBI method requires a sequential
improvement in RSM model which can only be performed
manually. The MOGA method, on the contrary, offers an
automatic improvement if needed. Nevertheless, it still
needs an improvement in dealing with more than three
objectives. That is, due to the larger number of objectives,
the predefined Kriging model was not able to reach the
desired prediction accuracy for all the objectives at the
same time. Moreover, it was noted that the maximum
thickness reduction, which is a key factor for evaluating the
local thinning, was not considered in the above work. As
pointed out by Hughes [12], one concern with the methods
described so far is that fitness assignments based on
dominance rank (like NSGA-II) often performs poorly
when the number of objectives is greater than three or four.
Although the accuracy can be improved by adding more
sampling points, the prediction error may still affect the
constraint handling and the poor results may be amplified
through the effect of Pareto drift [13].

This paper presents a methodology to establish a hybrid
multi-objective global search and local search utilizing a
Kriging surrogate model to accelerate the computation
process. In Section 2, the Kriging surrogate model is

introduced. In Section 3, a constraint-handling MOGA is
described and several improvements for constraint-handling
techniques based on NSGA-II are discussed. In Section 4, a
hybrid multi-objective global and local search is proposed,
where the former deals with a global domain to generate a
solution set, and the latter deals with the sub-optimal
solution and its nearby domain using a ε-constraint strategy
(solved by sequential quadratic programming, SQP). In
Section 5, an application is given and the results are
presented, followed by conclusions in Section 6.

2 Kriging metamodel

In order to accelerate calculation speed, a variety of
surrogate methods have been used to substitute the FEA
simulations: polynomial regression [14], radial basis func-
tions [15], artificial neural networks [16], and Kriging
models [9]. It is obvious that the allocation of the sample
points used to build the approximation is important for the
final performance of the surrogate model. Many schemes
and criteria have been proposed to allocate a priori the
sample points in a convex domain of interest: factorial
design, Box–Behnken, Koshal, central composite design,
D-optimal and space-filling design. All these efforts have
been made to approach the true response surface of actual
problems. However, it is practically difficult to conclude
which one is most suitable for allocation and reduction of
sampling points to reach a desired precision.

A computer simulation is repeatable; however, when an
established analytical model based on some limited data is
used to predict “new” data, the output becomes uncertain
due to the limited information that was used to define the
“black box” model. The Kriging technique which originat-
ed from the field of spatial statistics was developed to
represent such a stochastic variable. The response is
modeled as a realization of a regression model and a
random process [17]. The Kriging model has been shown to
be a global model in contrast to response surfaces which are
local models, employing normally distributed basis func-
tions, so both an expected sampling value and variance are
obtained for each test point [18].

The universal Kriging model can be expressed as:

Y ðxÞ ¼
Xp
i¼1

bifiðxÞ þ ZðxÞ ð1Þ

where the coefficients βi (i=1,…p) are the regression
parameters, fi(x) (i=1,…p) are known functions of x, and
the first part is the known approximation function, and Z(x)
is the realization of a stochastic process; while the
approximation function of f(x) globally approximates the
design space, Z(x) creates “localized” deviations so that the
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Kriging model interpolates the ns sampled data points. Z(x)
is a random process with mean zero, variance σ2 and
nonzero covariance:

Cov w; xð Þ ¼ s2
kr q;w; xð Þ; k ¼ 1; 2; . . . p; ð2Þ

and s2
k is the process variance of the kth component of the

response and ρ(θ, wj, xj) is the correlation model. Here, θ is
the unknown correlation parameters used to fit the model
that is typically estimated by the maximum likelihood
estimation method, and wj and xj are the jth components of
sample points w and x.

Usually, the stochastic process is stationary, which
implies that the correlation ρ(θ, wj, xj) depends only on
the distance of wj and xj, namely

r q;wj; xj
� � ¼ r q;wj � xj

� � ð3Þ

A Gaussian correlation function (Eq. 4) and a regression
model with polynomial order 2 is typically used.

r q;wj � xj
� � ¼ exp �

Xnv
j¼1

qj wj � xj
�� ��2" #

ð4Þ

Where nv is the number of design variables.
Unlike response surfaces, however, the Kriging method

has found extremely limited use in hydroforming optimi-
zation since its introduction by Sacks et al. [19].

The accuracy of the Kriging response surface model can
also be measured by checking the predictability of its
response using the prediction error sum of squares (PRESS)
and R2 for prediction (Rpred

2) [14]. After obtaining the
surrogate model, a tenfold cross-validation technique was
used to check the fitting performance for the “new” data.
The PRESS statistic, Rpred

2 of the predictor model, and Syy
(the total sum of squares) were calculated as:

PRESS ¼
Xp
i¼1

yi � ŷ
»

i

� �2
=p ð5Þ

Rpred2 ¼ 1� PRESS

Syy
ð6Þ

Syy ¼ yTy�
Pp
i¼1

yi

� �2

p
¼

Xp
i¼1

y2i�
Pp
i¼1

yi

� �2

p
ð7Þ

where yi is the actual value, ŷ
»
i is the value predicted by the

Kriging predictor for the ith testing point, and p is the
number of prediction points. The final PRESS is the
average of ten cross-validation tests.

3 MOGA and constraint-handling technique

3.1 MOGA

Most engineering problems have several, possibly conflicting,
objectives, and therefore, all the objectives cannot generally
be simultaneously optimized. For instance, for typical hydro-
formed components, there are competing objectives; there is a
need to reduce the risk of necking/fracture and wrinkling,
minimize thinning, while achieving a specified geometry and
maintaining a reasonably uniform thickness distribution
throughout the part. This constitutes a problem of multiple
objectives.

To solve problems with multiple objectives, it is
common practice to reduce the problem to a single
objective, even though there may exist different conflicting
goals (e.g., maximizing formability and minimizing
thinning) for the optimization task. As a result, multiple
goals are often redefined as a weighted sum objective
function, thereby artificially reducing the number of
apparently conflicting goals into a single objective.
However, the correlation between objectives is usually
rather complex and difficult to find. As a consequence, it
may be very troublesome to combine different objectives
into a single goal function a priori, that is, before
alternatives are known.

In order to circumvent the difficulty of selecting a
relative weight for each objective (where the correlation
between objectives is usually rather complex), a Pareto
optimization algorithm (called NSGA-II) which uses a
ranking, elitist selection and non-dominated sorting
strategy was adopted for this study. The NSGA-II
algorithm developed by Deb et al. [20] has been a
popular optimization tool in recent years. It adopts an
elitism strategy and crowding-distance calculation, which
offer a much better spread of solutions and better
convergence in most problems near the true Pareto-
optimal front compared to the Pareto-archived evolution
strategy and the strength-Pareto evolutionary algorithm—
two other elitist multi-objective evolutionary algorithms
(MOEA) that pay special attention to creating a diverse
Pareto-optimal front.

The principle of this algorithm is illustrated in Fig. 1. The
Pareto fronts were sorted to different ranks according to a
fitness value. After this non-dominated sorting, a crowding
distance was calculated for each individual (Fig. 1b). The
purpose of assigning a crowding distance value is to generate
a series of uniformly distributed Pareto fronts, which helps to
maintain better diversity of the population.

Goel et al. [13] noted that in MOEA, the genetic
operators may destroy some of the solutions to explore
the design space. Introducing elitism in MOEAs alleviates
this problem to some extent, but when the number of non-
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dominated solutions in the combined population exceeds
the population size, as happens commonly in elitist MOEAs,
some of the non-dominated solutions have to be dropped. This
problem is referred to as Pareto drift since the Pareto optimal
solution is lost, and this may lead to a suboptimal global
solution.

Therefore, an archiving strategy is suggested to augment
NSGA-II, and is referred to as archiving NSGA-II (NSGA-
IIa) [13]. The strategy of NSGA-IIa is to keep all the
potential non-dominated solutions in one group during the
whole evolution process. In this work, the archive was
initialized with all non-dominated solutions inherited from
these points of design of experiment, and then comple-
mented with the potential non-dominated solutions from
new generations for which fitness functions were calculated
by FEA.

3.2 Constraint handling technique

In problems with constraints, it is more difficult to handle
violation of the constraints. Most real-world optimization
problems have constraints that must be satisfied. Currently,
a single-objective genetic algorithm (GA) can employ five
different constraint-handling strategies: (1) discarding in-
feasible solutions, (2) reducing the fitness of infeasible
solutions by using a penalty function, (3) if possible,
customizing genetic operators to always produce feasible
solutions, (4) repairing infeasible solutions, and (5) hybrid
methods. Handling of constraints has not been adequately
researched for MOGAs [21]. For example, all major multi-
objective GA assume problems without constraints.

In general, constraint-handling strategies 1, 3, and 4 are
suitable for both single-objective GA and MOGA. However,
for the most widely used penalty function strategy, it is not
straightforward in MOGA, since it operates on the fitness
assignment of an objective value, while for MOGA the fitness
assignment is usually based on the non-dominance rank of
each solution.

In the constrained NSGA-II, a method using category 4
is described to handle three different non-dominated
rankings. Wang and Yin [22] proposed a method of M+1
non-dominated sorting to solve the constraints in engineer-

ing design problems (M referred to the number of
objectives and 1 referred to the overall constraint violation).
Favuzza et al. [23] proposed two crowded comparison
operators for constraints handling in the design of an
electric distribution network. Deb et al. [20] proposed the
constraint-domination concept and a binary tournament
selection method based on it, which was called the
constrained tournament method. The main advantages of
the constrained tournament method are that it requires
fewer parameters and it can be easily integrated into multi-
objective GA. Seshadri proposed a NSGA-II algorithm
programmed with Matlab language [24]. However, the
constraint-handling program was not presented.

Hence, in this paper, a hybrid constraint-handling
method was proposed (Fig. 2), which aims to utilize the
simple operation of the penalty function method and also
the tournament selection method. This method can be
described as follows:

Step 1 Weeding out the infeasible solutions in the process
of generating new children. Evaluate the children
using the Kriging model and eliminate those with
constraint violations.

Following the initiation of the population, new
children were generated through genetic operations
(mutation and crossover). The objective values of
each child were evaluated with the Kriging
predictor. If any of the objective values violated
the boundary, then the child was marked with
violation. The program continually generated new
children until it met the constraints. Although the
satisfying of the constraints may be pseudo
feasible (since the true objective values probably
still violate the boundaries), the violation would
remain small so long as a well-established Kriging
model was used. Moreover, the operation in step 2
will also help to keep feasible solutions and
eventually eliminate infeasible solutions.

Step 2 Ranking by constraint violation (stage 1, Fig. 2)
The comparison mechanism considered here,

operated on solutions that have constraint viola-
tions and determined a rank for each solution

Fig. 1 a Schematic of the
NSGA-II procedure and b the
crowding distance calculation
(adapted from [20])
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(see Appendix 1). The constraint violation (CV)
values were calculated as:

CV ¼
Xl

i¼1

Max 0; giðxÞð Þ½ � ð8Þ

if there is constraint violation, i.e., gi(x)>0, l is the
number of constraints. CV is equal to 0 if there is
no constraint violation and gi(x)≤0.

Step 3 Ranking of general NSGA-II with non-dominated
sorting, crowding distance sorting, and elitism
selection (stage 2, Fig. 2)

The algorithm operated in a way that the CV
operator was carried out for the population merged
from the parent and the offspring. It dominated the
operation in the early stages of running the
MOGA, but in the later stages, conventional
NSGA-II dominated the selection of population
for the next generation when the number of the
feasible individuals in the merged population had
reached the designed population number.

4 A hybrid optimization algorithm coupling global
MOGA and local searches

The selection procedure of the MOGA algorithm (Fig. 3) is
described as follows:

1. Initialize the parent population Pt′.
2. Create the offspring Qt′ through the crossover and

mutation operators. The objective function values are
calculated using the Kriging predictor.

3. Check the constraint violation (CV) of each child. If
CV>0, randomly generate a new point and evaluate the
function by Kriging predictor until the child population
is fully filled.

4. Recombine the parent and child populations into a new
population Ut=Pt′UQt′. Carry out non-dominated sort-
ing for CV first. Assign a rank for each individual as
E=E1, E2,… (Fig. 2). If the number of Ut exceeds the
current population size N, go to step 5, or else go to 6.

Fig. 3 Flowchart of optimization strategy

Stage I: Ranking by CV Stage II: NSGA-II

Ranking by CV

E1

E2

E3

Qt’

Pt’

Rejected

Fig. 2 Constrained NSGA-II algorithm
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5. Recombine the parent and child populations into a new
population Rt=PtUQt. Do non-dominated sorting for
objective rank and crowding distance and assign a rank
for each individual (F=F1, F2,…) (Fig. 2).

6. Select the next generation Pt+1. An elitist individual is
transferred to the next population with a size Np.

7. The true objective values are calculated with FEA and
then the ranking in steps 4–5 is run once again for the
actual values.

8. Steps 1–7 are repeated to generate subsequent gen-
erations. The MOGA process is terminated when the
stop criterion, such as a predetermined number of
generations, is satisfied.

9. The local search is done after the Pareto solution set is
obtained. The sequential quadratic programming algo-
rithm in MATLAB® was used as the local optimizer.

It should be noted that in order to utilize the information
from constraint violations, the amount of infeasibility (or the
extent of constraint violation) was used to rank the solutions.
During the first several stages (e.g., n=1–10), the constraint
information was utilized to explore more design points near
the boundary by keeping those individuals that were found to
violate the constraints after obtaining the true objective values
by FEA. However, as stated above, with the genetic operation
continuing, these points will be automatically eliminated.

It was noted that the proposed method may save a
significant amount of computation time. The metamodel
generation took approximately 10 h to calculate the design
of experiment and model fitting using a HP xw9300
workstation with dual 2.2 GHz AMD Opteron™ Processors
and 4 GB of RAM. For example, one genetic operation
took 2,440 s. In addition, the objective functions had to be
solved 2,777 times in one iteration. This step may only take
several hours of calculation calling the Kriging model.
Actually, it was a time-consuming process to generate new
feasible solutions as noted in the dashed box (Fig. 3). If
FEA is used to generate new feasible solutions, each run
will last approximately 10 min, and the total time will be
2,777×10=27,770 min or approximately 462.8 h. More-
over, the calculation time using the Kriging model will
decrease to about 300 s after the first generation. The
savings in computation time will be significant compared to
using FEA, especially for problems with a complex
boundary in the solution domain.

4.1 Visualization and decision making

The decision for selecting the optimal solution can be obtained
with the assistance of visualization. Generally, it is difficult to
visualize the established response surface model with six
parameters; however, it is possible to visualize the Pareto
solution set for any two objectives (in 2-D) or three objectives

(in 3-D). In this work, the objectives of corner radius and the
tube wall thinning were selected for visualization.

Moreover, visualization can assist to find the global
optimum when preference is given for a certain objective.
In this paper, it was preferred to obtain a minimum corner
radius (or minimum thinning) based on the global multi-
objective optimization.

5 Case study: straight tube hydroforming
with square-shaped die

5.1 Finite element model

In this section, the load path for hydroforming a straight tube
with a 90-mm outer diameter and a 2-mmwall thickness into a
square-shaped die was investigated. Figure 4a shows the FE
mesh of the die and a deformed tube. Due to the symmetry
of the part, only one quarter of the tube and die were
modeled for the simulation (Fig. 4a). Figure 4b shows a cross
section of the tube inside the die. The forming process
consisted of pressurizing and expanding the tube in the radial
direction by a distance s until it contacted the die. A
compressive force was simultaneously applied at the tube
ends to supply more material into the die cavity and thus
avoid excessive thinning.

The tube material in this study was mild steel as listed in
Table 1, and the hydroforming die was modeled as a rigid
body. The tube was meshed with 2,565 Belytschko-Tsay
shell elements with seven integration points through the
thickness of the tube wall. The material was assumed to be
isotropic; therefore, the von Mises yield criterion was used
for the simulation. A material model named “MAT_-
PIECEWISE_LINEAR_PLASTICITY” (No. 24) was cho-
sen to represent the isotropic hardening behavior [26].
Coulomb’s coefficient of friction was set to 0.1 for the
contact interface.

A mesh sensitivity analysis was completed which
included four different mesh sizes: 2, 2.5, 3, and 5 mm.
From the resultant deformation of the tube at the A–A cross
section (45°) (Fig. 5), it appears that the 2- and 3-mm mesh
sizes have a rather symmetric and uniform deformation
compared to the 5-mm mesh size. The maximum displace-
ments of the tube are 17.22, 17.77, 16.74, and 16.52 mm
for the mesh sizes from 2 to 5 mm, respectively. The
displacement for the mesh size of 2.5 mm is much closer
(3% difference) to the one for the 2-mm mesh size;
however, the former simulation time is only one third of
the running time for the 2.0-mm mesh. The optimization
was implemented for the 2.5-mm mesh (simulation time of
10 min each run) to evaluate the developed optimization
algorithms. Moreover, the simulation and load path optimi-
zation with a mesh size of 3 mm and a higher strength steel
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(DP600) (Table 1) were completed for a comparison of the
results.

5.2 Design variables and objective functions

5.2.1 Design variables

The design variables for the load path were: five parameters
for pressure and one for end feed, namely P1, P2, P3, P4,
P5, and D (Fig. 6). P1 to P5 were different pressure levels,
in megapascal, (P1 was the yield pressure, P2, P3, and P4
were the intermediate pressure levels and P5 was the
calibration pressure) and D was the maximum end feed
displacement, in mm, at the end of the process. In order to
account for different mesh sizes and materials, the ranges
for each design variable were selected as follows:

10 � P1 � 19; 20 � P2 � 28; 26 � P3 � 28

30 � P4 � 35; 40 � P5 � 85; 10 � D � 14
ð9Þ

All the design variables and the objective values were
linearly normalized between 0.2 and 0.8.

5.2.2 Objective functions and constraints

The load path design for hydroformed parts in which the
tube wall fills the corners of a die cavity has two primary
objectives: (1) improving the corner-filling ability and (2)

minimizing thinning of the tube wall, without reaching the
onset of plastic localization. Industrial parts are typically
produced in a multi-stage forming process, where a tube is
bent and possibly crushed prior to hydroforming. In order
to maximize the formability during the final hydroforming
stage, the work hardening needs to be minimized in the
preliminary stages: the overall level of work hardening can
be evaluated by noting the maximum flow stress after
forming. Consequently, the maximum stress and strain in
the formed part are considered by establishing objective
functions in terms of three measures of forming severity:
the risk of fracture/necking, wrinkling, and severe thinning.

The forming severity of the hydroforming process was
evaluated with both the forming limit diagram (FLD) and the
forming limit stress diagram (FLSD) as shown in Fig. 7, where
df is the minimum distance in stress space from a point (σ2,
σ1) to the stress limit, and dth is the minimum distance in
strain space from a point (ε2, ε1) to the thinning limit. Finally,
dw is the distance in stress space from a point (σ2, σ1) to the
major stress axis, as shown in Fig. 7b.

An objective function to evaluate the risk of necking or
fracture was defined as follows [10]:

f1 ¼ Obj f ¼ 1

df
¼ 1

smax
1 � ks f

�� �� ð10Þ

where σ1 is the numerically calculated maximum principal
stress in element i (i=1 to n, n is the total number of elements
in the model) and σf is the corresponding forming stress limit

Table 1 Material properties of the tube

Grade Strength coefficient
(MPa)

Yield stress
(MPa)

Ultimate tensile
stress (MPa)

Density (kg/m3) Young’s modulus
(GPa)

Poisson’s ratio Hardening
exponent n

Mild steel 601.8 265 380 7,800 210 0.30 0.168

DP600 795.8 390 610 7,800 205 0.30 0.115
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(Fig. 7b); k is a scaling factor that ensures that σ1 is not
greater than kσf and is only used to simplify calculations.

An objective function to assess the risk of wrinkling was
defined by the following expression:

f2 ¼
Obj w ¼

Xn
i¼1

diw
�� �� ¼ Xn

i¼1

s i
2

�� �� s i
2 < 0

Obj w ¼ 0 s i
2 � 0

8>><
>>: ð11Þ

Finally, an objective function was defined to evaluate
thinning severity:

f3 ¼
Obj th ¼

Xn
i¼1

dith
� �2

"i1 > h "i2
� �

Obj th ¼ 0 "i1 � h "i2
� �

8><
>: ð12Þ

where ε1 is the major strain in element i, and η(ε2) is the
thinning limit d (Fig. 7a). In order to optimize the
hydroforming process, the minimum value of each of these
objective functions is sought.

The primary objective of the current tube hydroforming
problem is to maximize the amount of expansion of the
tube wall into the corners of the die, or in other words, to
minimize the corner radius:

f4 ¼ RC ð13Þ
The above function (12) of severe thinning was

evaluated on every element in the tube. In reality, the local
thickness reduction may reach a limit. Hence, the maximum
local thinning ratio was employed to minimize the function:

f5 ¼ t � tminð Þ � 100%=t ð14Þ
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where t is the original tube thickness, and tmin is the
minimum thickness in the deformed tube. The load path is
therefore optimized by minimizing each of these formabil-
ity objectives (Eqs. 10–14), and the problem can be
summarized by the following formulation which places
constraints on each objective:

Minimize FðxÞ ¼ f1ðxÞ; f2ðxÞ; f3ðxÞ; f4ðxÞ; f5ðxÞ½ �
0:2 � f1 � 0:75; 0:2 � f2 � 0:75

st:
0:2 � f3 � 0:30; 0:2 � f4 � 0:60; 0:2 � f5 � 0:38

ð15Þ

each design variable is the same: 0.2≤xi≤0.8, i =1, 2,…6.
It can also be noted that some of these objectives are in

conflict with each other in the design domain. Therefore,
there will not likely be a single optimal solution that
satisfies every objective at the same time.

5.3 Kriging surrogate model

The design of experiments was carried out using the Latin
hypercube sampling (LHS) method. The design variables

were generated by LHS and normalized within the range
[0.2, 0.8]. It has been suggested [25] that the minimum
number of design points required to build a quadratic model
is k=d(d−1)/2+3d+1, where d is the number of factors to
analyze. In this case, d=5 and k=26, but in order to obtain
a more precise model 50 design points were generated
(Appendix 2).

Then, the tenfold cross-validation was implemented and
the PRESS value was obtained for the model with regard to
each objective. The data was divided into ten subsets: nine
of the subsets were input as the training data and the last
one was used as the testing data. The total average error of
the cross-validation was obtained as an estimation of the
precision.

The quality of the Kriging model is demonstrated by the
error and correlation values in Table 2. The PRESS error
for each objective was low, and particularly for f4 which

dth

( 2)

d  Thinning limit

a  FLC

b  Safety margin limit

c  Balanced biaxial tension

dth

( 2)

d  Thinning limit

a  FLC

b  Safety margin limit

c  Balanced biaxial tension

0.4

a b

Fig. 7 a FLD and b FLSD

Table 2 Prediction accuracy of the calculated response surface model
for each objective

f1 f2 f3 f4 f5

No. of observations 50 50 50 50 50

PRESS error 0.0040 0.0050 0.0065 0.0008 0.0012

Rpred2 0.9339 0.7408 0.9269 0.9557 0.9611

Syy 0.0606 0.0193 0.0885 0.0186 0.0302 Fig. 8 The evolution of the fourth and fifth objectives (generations 1,
15, and archived set)

Int J Adv Manuf Technol (2012) 60:1017–1030 1025

where x is the normalized vector of design variables: x=
[P1, P2, P3, P4, P5, D]T. After normalization, the range of



had the lowest value. Except for objective f2 (with a value
of 74.08%), the Kriging response surface for all the other
objectives had a high adjusted coefficient of correlation
which indicates an explanation above 92.69% of the
variability in predicting new observations. The result for
f2 was a little low, but the value was still reasonable.

6 Results from MOGA and local search algorithms

6.1 Global search using MOGA

The optimization was implemented with MOGA in 15
generations. The elitist chromosomes were saved in an
independent archive for each generation. Figure 8 shows
three stages in the evolution of the optimization with regard
to the fourth and fifth objectives: the 1st generation, the
15th generation, and the final archived solution set. From
Fig. 8, it can be seen that both objectives (i.e., the minimum
corner radius f4 and the minimum thinning ratio f5) evolved
efficiently toward the Utopia point, which is defined as
point (0,0). The archiving successfully retained the elitist
solutions in each generation. Three solutions, including two
extreme points and one with the second minimum L2 norm,

were selected for investigation. Table 3 lists the normalized
values and actual objective values (in bold).

It can be seen from Table 3 that solution A has the
smallest corner radius f4 or RC=9.165 mm among the three
solutions, but the greatest local thinning ratio (f5). Solution
C has the smallest thinning ratio, but the greatest corner
radius RC=10.13 mm. This indicates that these two
objectives (f4 and f5) conflict with each other. Moreover,
solution B has a larger stress objective value (lower stress
safety margin), L2 norm, and corner radius than solution A,
but its thinning (local and global) and wrinkling values are
smaller. Generally, it was difficult to determine which
solution is better based on just one objective. Therefore, the
final decision for the best solution should be made according
to the designer’s specific criterion or preference. In this paper,
the preferred load path was determined by a local search on
the basis of the corner radius and the thinning ratio.

If the stress safety margin for this hydroforming process
is defined as the difference in major stress between the most
critical stress state in the part and the forming limit stress
curve, Fig. 9 shows that the optimum safety margin
improves after 15 generations. Although the average f1
value did not vary significantly, the optimum safety margin

Fig. 9 The evolution of the stress safety margin (y-axis absolute
value of f1)

Table 3 The objectives of the
three selected points (without
units)

Normalized values and actual
objective values (in bold)

norm normalization, True FEA
results

f1 f2 f3 f4 f5 L2 norm

A (norm) 0.4511 0.5914 0.2078 0.5437 0.3775 0.6619

B (norm) 0.4519 0.4683 0.2001 0.5607 0.3542 0.6632

C (norm) 0.4513 0.6060 0.2000 0.5799 0.3450 0.6748

A (True) −98.42 260,946 0.1629 9.1650 0.2958 –

B (True) −98.06 178,909 0.0024 9.6198 0.2569 –

C (True) −98.32 270,663 0.0001 10.130 0.2417 –

Fig. 10 Comparison of two archived datasets
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increased up to a value of 91 MPa in the last generation.
This can be considered an upper limit of the stress safety
margin and ensures that the forming process will be robust
and will produce quality components.

Therefore, it can be seen that the stress safety margin
value improved for the last population as a result of the
optimization. In the next step of the local search, it can
be assumed that all the design points in the domain
nearest the Pareto front have met the formability safety
requirements which were represented by the first three
objectives.

6.2 Local search using sequential quadratic programming

In the above constraint-handling study, the boundary of the
local thinning ratio was relaxed from 0.38 to 0.44
(corresponding to an increase in maximum thinning ratio
from 30% to 40%) to investigate the effect of boundary size
on the efficiency of the search. A second archived dataset
was therefore determined and is plotted in Fig. 10. From the
comparison of the two sets shown in Fig. 10, it was verified
that the first archived set represents a more uniform
distribution and better Pareto solutions (approaching closer

to the origin). Nevertheless, it should also be noted that by
relaxing the boundary of the thinning ratio objective f5
improved somewhat (see circled region A in Fig. 10). This
means that it is possible to improve the results in this local
region where solutions lead to some of the smallest values
of the corner radius.

The data from regions A and B (Fig. 10) were used to
establish a Kriging response surface model for local search in
these two regions, respectively. Only one of the objectives of
minimum corner radius (f4) and local minimum thinning ratio
(f5) were kept as output together with the inputs in the new
dataset for setting up the Kriging model. The datasets were
extracted from a 361×11 dataset, and each dataset consisted
of 50×7 and 55×7 matrices for f4 and f5, respectively. The
results were plotted inside the circle in Fig. 11.

For the local search in both regions, the local minima
were obtained after approximately 40 s of run time.
Figure 11 also shows an enlargement of region A where it
can be seen that the minimum was slightly better than the
value obtained by MOGA. For the local search in region B,
there was also a significant improvement: the optimized

Fig. 11 Best results of local search and sampling points in region A
(zoomed in) and region B

Table 4 Local search result in region A

f4 f5 L2 norm f1 f2 f3

Local min A+ 0.5418 0.3789 0.6619 0.4705 0.4131 0.2057

Global best 1 0.5437 0.3775 0.6619 0.4511 0.5914 0.2078

Global best 2 0.5421 0.3788 0.6613 0.4665 0.6208 0.2069

Local min AΔ 9.115 0.298 – −91.35 142,089 0.1187

Global best 1 9.165 0.296 – −98.42 260,946 0.1629

Global best 2 9.123 0.298 – −92.72 280,533 0.1467

Table 5 Local search result in region B

f4 f5 L2 norm f1 f2 f3

Local min B+ 0.5785 0.3436 0.6728 0.4508 0.6011 0.2000

Global best 3 0.5799 0.3450 0.6748 0.4513 0.6060 0.2000

Local min BΔ 10.09 0.2390 – −98.53 267,381 1.26E−5
Global best 3 10.13 0.2420 – −98.32 270,663 6.72E−5

Global best 1 and 3 were from the first archived solution set; global
best 2 was from the second archived solution set
+ Prediction of local search
Δ FEA results of local search

Fig. 12 Comparison of the load path from MOGA and local search
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results (with “o”) were presented and compared to the
two archived datasets (shown in Tables 4 and 5). The
load paths for these two final minimum objectives and
obtained through local searches were plotted and com-
pared with the Pareto load path solutions using MOGA
(Fig. 12).

7 Discussion

The predicted results (identified by the symbol +) in the local
searches were examined by two additional FEA runs and are
also presented in Tables 4 and 5 (identified by the symbolΔ).

Since the solution obtained after the local search was better
than that from the MOGA search, the final minimum corner
radius was chosen to be 9.115 mm in region A with the
preference of a smaller corner radius; meanwhile, the other
objective (f5) under the same load path reached a thinning
ratio of 29.8% which is less than 30%. The stress safety
margin is 91.35 MPa, which indicates a very safe process.
Meanwhile, if less thinning was preferred, the final solution
could also be selected from region B, which represents a
maximum thinning of 23.9% and a corner radius of
10.09 mm. The results also show that the other objectives
improved in terms of the stress safety margin of 98.53 MPa,
wrinkling of 267,381 MPa, and thinning value of 1.26e-5.

The above load path results for the mild steel tube
were compared with the load paths using a different
mesh size and a higher-strength steel DP600 (Fig. 13,
Tables 6 and 7). It indicated that the load paths for the
finer mesh (2.5 mm) and the coarser mesh (3 mm) were
very similar: the pressure difference was only 5.5%
(1.2 MPa) and the difference in end feed was only 5.4%
(0.65 mm). The maximum pressure and axial end feed are
84.82 vs. 85 MPa and 11.99 vs. 11.34 mm for different
mesh size. This verified that this optimization method can
generate an accurate result with different mesh sizes.
However, the load path for a DP600 tube showed a
significantly higher value for the total end feed compared to
that for the mild steel tube. In the calibration stage, the rate of
pressure increase (ΔP/ΔD) is almost the same for both tubes,
but this is not the case for the early deformation stage. From
the observations with different mesh sizes and materials, it
underscores the fact that the loading path during the early
stages of deformation is more critical to the success of the
hydroforming operation than that during the final calibration
stage. Therefore, close attention should be paid to the design
of the first part of the load path. In Fig. 13, it was shown that
the hybrid optimization method is capable to provide a
variety of loading paths for design engineers to choose from
according to their preference.

8 Conclusions

In this study, a hybrid global and local search optimization
strategy was proposed and applied to designing the load
path of a hydroformed tubular part with a square cross
section. A constraint-handling technique was developed
and coupled with the conventional NSGA-II. The following
conclusions can be drawn:

1. A constraint-handling algorithm was applied and
implemented to the multi-objective optimization with
more than three objectives, which incorporated the
ranking of constraint violations and a second ranking of
non-domination of objectives and local crowding
distance.

Fig. 13 Comparison of the load paths optimized for different mesh
sizes with the mild steel and different material (mild steel and DP600)

Table 6 The optimal load path obtained using MOGA

P1 (MPa) P2 (MPa) P3 (MPa) P4 (MPa) P5 (MPa) D (mm)

Load path 1 18.58 19.77 26.50 30.84 84.82 11.99

Load path 2 16.83 22.59 26.97 31.44 85.00 11.34

Load path 3 10.00 26.76 28.00 32.74 85.00 13.31

Table 7 The objectives obtained by current optimal load path

Final objective results

f1 (MPa) f2 (10
5) (MPa) f3 f4 (mm) f5 (%)

Optimal path 1 −91 1.42 0.11 9.12 29.80

Optimal path 2 −94 2.43 0 9.79 24.65

Optimal path 3 −1,049 1.39 0.05 13.98 16.49
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2. A hybrid algorithm combining the global search (using
MOGA) and local search (using SQP) for multi-
objective optimization was proposed and applied to
the optimization of a hydroformed part. The case study
showed better results, with smaller corner radius of
9.115 mm and thickness thinning ratio of 23.9% being
obtained compared to the single MOGA search with
corner radius of 10.09 mm and thinning ratio of 29.8%
up to 9.7% and 19.8% improvement, respectively.

3. The optimization problem with five objectives was
investigated first. It was noted that the proposed method,
which uses the Kriging predictor to generate new points,
with constraint handling and FE calculation for evaluating
new offsprings can achieve a good performance in terms
of both accuracy and efficiency in dealing with more than
three objectives.

4. Visualization was used to assist in decision making and to
search for the Pareto solutions. It is suggested that the
plotting of results be focused on the preferred objectives.

5. This case study showed that the stress safety margin
improved when the corner filling and thinning objectives
were attained. The improved stress safety margin leads to
a more robust forming process and a better quality part.
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Appendix 1

Table 8 The example of the evolution in generation=1 sorting by
constraint violation (CV) operation in constrained MOGA

Columns 10 through 15 of the constraint violation output

f4 f5 Non-dominated
sorting

Crowding
distance

Violation
value

Rank of
violation

0.5844 0.4190 1.0000 Inf 0 1.0000

0.5632 0.3724 1.0000 0.3742 0 1.0000

0.5755 0.3968 1.0000 0.2165 0 1.0000

0.5763 0.3589 1.0000 0.1681 0 1.0000

0.5455 0.3767 1.0000 0.0832 0 1.0000

0.5464 0.3928 1.0000 0.2603 0 1.0000

0.5794 0.3700 1.0000 0.1218 0 1.0000

0.5992 0.4181 2.0000 0.5982 0 1.0000

0.5658 0.4567 2.0000 0.7687 0.0067 2.0000

0.6107 0.3618 1.0000 0.3514 0.0107 3.0000

· · · · · ·

· · · · · ·

· · · · · ·

0.7224 0.3636 1.0000 Inf 0.1224 28.0000

0.7543 0.4788 2.0000 Inf 0.1831 29.0000

0.7451 0.5010 2.0000 Inf 0.1961 30.0000

0.5807 0.5628 3.0000 5.0000 0.2127 31.0000

0.5515 0.5543 2.0000 0.4206 0.2191 32.0000

0.5275 0.5659 2.0000 0.7948 0.2280 33.0000

0.5410 0.5674 1.0000 1.3884 0.2321 34.0000

0.5101 0.5394 2.0000 0.9650 0.2663 35.0000

Appendix 2

Table 9 The dataset of DOE with LHS: input of 6 and output of 5 (normalized)

No. P1 P2 P3 P4 P5 D f1 f2 f3 f4 f5

1 0.6639 0.5962 0.3524 0.2555 0.6074 0.4228 0.4541 0.5308 0.2061 0.5992 0.4181

2 0.3906 0.4206 0.3929 0.5785 0.4020 0.4409 0.4183 0.6249 0.2031 0.6474 0.3771

3 0.3989 0.7203 0.3890 0.7760 0.4858 0.2255 0.7132 0.6199 0.6168 0.5244 0.5749

4 0.2839 0.7635 0.2360 0.6522 0.4508 0.6988 0.7152 0.4571 0.6347 0.5567 0.5746

5 0.5243 0.3993 0.6000 0.5907 0.2053 0.2092 0.3847 0.6165 0.2003 0.7223 0.3636

6 0.6258 0.3054 0.2908 0.6836 0.5655 0.3956 0.4369 0.4505 0.2011 0.6390 0.3757

45 0.2622 0.3839 0.5328 0.6208 0.3679 0.6356 0.4232 0.5950 0.2047 0.6601 0.3885

46 0.3817 0.3953 0.4032 0.3336 0.3152 0.2334 0.4017 0.5873 0.2012 0.6803 0.3654

47 0.2747 0.7993 0.4086 0.4053 0.2068 0.3165 0.6611 0.4954 0.6230 0.6230 0.5606

48 0.6355 0.7375 0.6964 0.6363 0.7951 0.5106 0.6780 0.5495 0.4518 0.5188 0.5670

49 0.4592 0.3053 0.7641 0.2841 0.7943 0.7835 0.4810 0.4883 0.2017 0.5631 0.3724

50 0.7428 0.3632 0.3917 0.2727 0.7848 0.6370 0.4521 0.5992 0.2074 0.5455 0.3766

DOE design of experiment
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