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Abstract Interval number theory has been applied to many
fields; however, its applications to production scheduling
are seldom investigated. In this paper, interval theory is
used for its low cost in uncertainty modeling and novel
interval job shop scheduling problem is proposed. To build
the schedule of the problem, the addition and comparison of
two interval numbers are first introduced and then a
decoding procedure is constructed by using the chromo-
some of operation-based representation. It is proved that the
possible actual objective values are contained in interval
objective. An effective genetic algorithm (GA) is presented
and tested by using some randomly generated instances.
Computational results show the effectiveness of the GA.

Keywords Genetic algorithm . Interval number . Job shop
scheduling . Operation-based representation

1 Introduction

Uncertainty is the basic feature of manufacturing process
and often described by using fuzzy theory and stochastic
theory. In the past decade, fuzzy scheduling and stochastic
scheduling have been attracted much attention and many
results have been obtained. For fuzzy job shop scheduling
problem (FJSSP), Sakawa and Mori [1] presented an
efficient genetic algorithm (GA) by incorporating the
concept of similarity among individuals. Sakawa and
Kubota [2] presented a GA for FJSSP with multiple

objectives. Li et al. [3] proposed a GA by adopting two-
chromosome presentation and the extended version of
Giffler-Thompson procedure for FJSSP with alternative
machines. Song et al. [4] presented a combined strategy of
GA and ant colony optimization. They also designed a new
neighborhood search method and an improved tabu search
to intensify the local search ability of the hybrid algorithm.
Niu et al. [5] proposed a particle swarm optimization with
genetic operators (GPSO) to minimize fuzzy makespan. Lei
[6] proposed an efficient Pareto archive particle swarm
optimization for the problem with three objectives for
obtaining a set of Pareto optimal solutions. Petrovic et al.
[7] developed a fuzzy rule-based system to determine the
size of lots. Lei [8] developed an efficient decomposition-
integration genetic algorithm for FJSSP with processing
flexibility. Lei [9] proposed a random key genetic algorithm
for the problem. Hu et al. [10] presented a modified
differential evolution algorithm for FJSSP with new
objective function.

For stochastic job shop scheduling problem, Tavakkoli-
Moghaddam et al. [11] proposed a hybrid method based on
neural network and simulated annealing (SA), which uses a
neural network approach to generate an initial feasible
solution and a SA to improve the quality of the initial
solution. Lei [12] proposed a RKGA for the JSSP subject to
random breakdown. Gu et al. [13, 14] presented two
quantum genetic algorithms for the expected value of
makespan.

Fuzzy and stochastic theories are commonly used to
model the uncertainty of processing conditions. Proba-
bility distribution and membership function are needed
to be known in advance and a number of data are
required to build fuzzy membership function or decide
the distribution of stochastic variable. In the actual
manufacturing systems, it is expensive or impossible to
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produce many processing data for membership function
and probability distribution.

Interval number theory is a novel tool and has been
applied to describe uncertainty. Obtaining the lower and
upper bound of interval is notably simpler than building
membership function or distribution function, so the usage
of interval has some advantages: the lower and upper bound
of interval are only required to indicate uncertain con-
ditions; decision-maker prefers using interval number to
describe his expected objective and the obtained interval
results can be understood easily.

In this paper, we apply interval number theory to
production scheduling and propose a novel scheduling
problems named interval job shop scheduling problems
(IJSSP). To solve IJSSP with objective of total tardiness, an
operation-based representation is first considered and an
effective decoding procedure is then built, which can
guarantee the inclusion of all possible actual objective
values in interval objective, finally, a GA is proposed and
applied to some randomly produced instances.

The remainder of the paper is organized as follows. Basic
concepts of interval theory are introduced in Section 2 and
problem formulation is done in Section 3. Section 4
describes the proposed GA for IJSSP. Numerical test experi-
ments on the proposed algorithm are reported in section 5
and the conclusions are summarized in the final section.

2 Basic concepts of interval theory

Interval number theory was pioneered byMoore [15] as a tool
for bounding and rounding errors in computer programs.

Since then, interval number theory had been developed into a
general methodology for investigating numerical uncertainty
in numerous fields such as data mining [16], automatic
control [17], and optimization [18].

Definition 1 A interval is a set of the form A ¼ A;A
� �

,

where A and A are the left and right limit of the interval A,

respectively. If A ¼ A, A is a real number.

For interval A ¼ A;A
� �

and B ¼ B;B
� �

, the addition of
A and B is defined as follows.

Aþ B ¼ Aþ B;Aþ B
� � ð1Þ

The comparison of any two interval numbers is
importation to the application of interval theory to real
problems including production scheduling. Sengupta and
Pal [19] presented a brief survey of the existing works on
comparing and ranking interval numbers. For example,
Ishibuchi and Tanaka [20] defined the following method to
rank interval numbers.

A�LRB iff A � B and A � B ð2Þ

A<LRB iff A�LRB and A 6¼ B ð3Þ

They suggested another order relation �mw where �LR

cannot be applied,

A�mwB iff mðAÞ � mðBÞ and wðAÞ � wðBÞ ð4Þ

A<mwB iff A�mwB and A 6¼ B ð5Þ

P A � Bð Þ ¼

0 A � B

0:5 � B� A

A� A
� B� A

B� B
B � A < B � A

B� A

A� A
þ 0:5 � B� B

A� A
A < B < B � A

B� A

A� A
þ A� B

A� A
� B� A

B� B
þ 0:5 � A� B

A� A
� A� B

B� B
A < B � A < B

B� A

B� B
þ 0:5 � A� A

B� B
B � A < A < B

1 A � B

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð6Þ

The possibility degree of interval number denotes

certain degree that one interval number is larger or

smaller than another. Jiang et al. [18] proposed a

possibility degree-based ranking method, which is shown

in Eq. 6.

The above possibility degree-based methods have some
features.

(1) 0 � P A � Bð Þ � 1
(2) If P A � Bð Þ ¼ a, then P B � Að Þ ¼ 1� a
(3) If P A � Bð Þ ¼ P B � Að Þ, then A=B
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If A � B, which means A ¼ B, A ¼ B, then P A � Bð Þ ¼
P B � Að Þ ¼ 0:5, so we define A<pdB iff P A � Bð Þ > 0:5
o r P B � Að Þ < 0:5; A < p dB i f f P A � Bð Þ < 0:5 o r
P B � Að Þ > 0:5; A<pdB iff P A � Bð Þ ¼ 0:5.

For A ¼ A;A
� �

and B ¼ B;B
� �

, A _ B ¼ max A;Bf g;½
max A;B

� ��, so A _ B is still interval number.

3 Problem descriptions

IJSSP is the extended version of JSSP by introducing
interval processing conditions including interval processing
times. n×m IJSSP is composed of n jobs Ji i ¼ 1; 2; � � � ; nð Þ
and m machines Mk k ¼ 1; 2; � � � ;mð Þ. Each job consists of
m operations. Operation 0ij indicates the jth operation of Ji
processed on a machine and its processing time is

represented as interval number pij ¼ p
ij
; pij

h i
. The due date

of job Ji is indicated as di ¼ di; di
� �

, where di is the
maximum time meeting customer’s requirement on delivery

and di is the minimum unacceptable time of delivery, that

is, if the delivery is done after time di, customers may
refuse to accept the delivery.

Other constraints of JSSP are still suitable to IJSSP, such as:

Each machine can process at most one operation at a time
No jobs may be processed on more than one machine
at a time
Operation cannot be interrupted
Operations of a given job have to be processed in a
given order and setup times and remove times are
included in the processing times et al. In this paper,
total tardiness is considered.

X
T ¼

Xn
i¼1

Ti ð8Þ

where Ti ¼ max 0;Ci � di
� �

;max 0;Ci � di
� �� �

and Ci ¼
Ci;Ci

� �
are the tardiness and interval completion time of

job Ji, respectively.
For job Ji, if max 0;Ci � di

� �
> 0, then the delivery of

Ji has to delay under any possible actual processing time. If

max 0;Ci � di
� � ¼ 0, job Ji always can be delivered before

due date. The bigger max 0;Ci � di
� �

is, the higher the
possibility of delay in delivery is and the bigger the
tardiness is. Table 1 describes an example of IJSSP with
four jobs and three machines.

4 GA for IJSSP

4.1 The construction of interval schedule

Operation-based representation has been extensively
applied to JSSP [21] and FJSSP [3, 5]. This representa-
tion also can be used in IJSSP. For n×m IJSSP, the
chromosome of operation-based representation is an
integer string p1; p2; � � � ; pmnð Þ, in which serial number of
each job occurs m times. To build the schedule of
scheduling problems, the chromosome is first translated
into an ordered operation list and then each operation in
the list is allocated sequentially a best available beginning
time by adopting some operations of interval numbers
shown in section 2.

4.1.1 Raw interval schedule

Let s ij ¼ s ij; s ij

h i
, t ij ¼ t ij; t ij

h i
, and hk ¼ h

k
; hk

h i
indi-

cate, respectively, the beginning time, the completion time
of 0ij, and the available time of machine Mk. Firstly, We
build a raw interval schedule using the following principles:
each operation may be inserted into the idle time interval of
machines; for 0ij (j>1) processed on machine Mk, if
t i j�1ð Þ<pdhk , σij=ηk; else s ij ¼ t i j�1ð Þ, for 0i1 on machine

Mk, σij=ηk.
For the example shown in Table 1, the chromosome may

be (1,3,2,3,3,4,1,2,4,1,2,4) and the corresponding list of the
ordered operations is o11, o31, o32, o33, o12, o22, o41, o42,
o13, o23, o43. The raw interval schedule is built in the
following way.

The operation o11 is first allocated, σ11=[0,0], τ11=σ11+
p11=[1,3], η1=[1,3], the next is o31, σ31=[0,0], τ31=σ31+
p31=[2,5], η3=[2,5]. For operation o21, its beginning time

Table 1 An illustration of IJSSP
Job Operations

1 2 3 1 2 3 1 2 3 1 2 3
Interval processing time Processing routes Actual processing time Actual processing time

1 [1,3] [3,5] [2,3] M1 M2 M3 3 4 3 3 4 3

2 [2,4] [4,6] [3,5] M1 M3 M2 4 4 4.5 3 3 4

3 [2,5] [3,7] [4,6] M3 M1 M2 4 7 6 4 7 5

4 [5,6] [3,5] [2,4] M3 M2 M1 6 5 2.5 5 4 4
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σ21=[1,3]and the completion time τ21=[3,7], η1=[3,7]. The
operation o32is considered, σ32=[3,7], τ32=[6,14].

For operation o33, σ33=[6,14] and τ32=[10,20]. For
operation o12, if σ12=[1,3], then τ12=[4,8], if the ranking
method of Jiang et al. [18] is used, P 4; 8½ � � 6; 14½ �ð Þ ¼
0:833, τ12=[4,8]<pd σ33, o12can allocated in the idle time
interval before the beginning time of o33. Operation o22is
then considered, σ22=[3,7], τ22=[7,13]. The next is operation
o41, σ41=[7,13], τ41=[12,19]. For operation o42, its process-
ing machine is M2, η2=[10,20] is compared with τ41,
P 10; 20½ � � 12; 19½ �ð Þ ¼ 0:529, η2<pd τ41, so the beginning
time of o42 is 12; 19½ � � 10; 20½ � and τ42=[15,24].

For operation o13, τ12=[4,8] is compared with the
machine available time η3=[12,19], τ12<pdη3, so σ13=η3
and τ13=[14,22]. For operation o23, τ22=[7,13]<pdη2=
[15,24] according to Eq. (7), so σ23=[15,24] and τ23=
[18,29]. The final operation is o43, σ43=[15,24] for τ42>pd

η1=[6,14] and τ43=[17,28]. Figure 1 shows the construct-
ing procedure of raw interval schedule, in which the
isosceles triangle under the line represents the beginning

time of operation and the isosceles triangle on the line
indicates the completion time of operation.

Definition 2 f ðxÞ ¼ f x1; x2; � � � ; xnð Þ is the real valued
function of real variables x1; x2; � � � ; xn, where x ¼
x1; x2; � � � ;ð xnÞ. If all real variables are replaced with interval
number variables X1;X2; � � � ;Xn, x1 X1, x2 X2, � � � ;
xn 2 Xn, and four arithmetic operations of interval number
variables substitute for corresponding operations of real
number, then FðX Þ ¼ f X1;X2; � � � ;Xnð Þ has the monotony
of inclusion relation, that is, if X � Y , then FðX Þ � FðY Þ.
Function F is called the natural interval extension of f.

Theorem 1 If function F is the natural interval extension
of f and has the monotony of inclusion relation,

then bf X1;X2; � � � ;Xnð Þ 	 F X1;X2; � � � ;Xnð Þ. where bf X1;ð
X2; � � � ;XnÞ ¼ f x1; x2; � � � ; xnð Þ 8xi 2 Xi; i ¼ 1; 2; � � � ; njf g.

Once the raw interval schedule is built, for each job Ji,

its raw interval completion time eCi ¼
P
olj2qi

plj, θi is the set of
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Fig. 1 The construction proce-
dure of raw interval schedule
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some operations for computing eCi. For a set of actual
processing time bpij of any operation oij, bpij 2 pij, the actual

raw completion time of bCi ¼
P
olj2qi

bplj. It can be proved that

eCi is the natural interval extension of bCi under the same
operation sequence. So for any possible value of bpij,bCi ¼

P
olj2qi

bplj 2 eCi.

4.1.2 The computation of interval completion time

After the raw interval schedule is constructed, we do some
adjustments for each operation oij meeting the conditions:
s lj � hk or hk � s lj, and σ1j>ηk in the following way:

compute the increment Δs lj ¼ max s lj; hk

n o
� s lj, Δs lj ¼

max s lj; hk
� �� s lj, calculate the new lower and upper limit

of σ1j, which are Δs ij þ s ij and Δs ij þ s ij, by adding the

increment, and adjust the interval beginning time and
completion time of all related operations, as a result, the

lower and upper limit of eCi increases only if the related
Δs lj and Δs lj are greater than 0. Finally, the interval

completion time is obtained for each job Ji, i ¼ 1; 2; � � � ; n.
Figure 2 shows the final interval schedule.

When a set of actual processing times are considered, we

first calculate the raw completion time bCi, and then add the
increment of actual beginning time and adjust the beginning
time and completion time of all related operations. The
actual completion time can be obtained finally. For any

possible value of bpij, bCi 2 eCi, the increment of the actual
beginning time is always equal to one of two increments
Δs lj and Δs lj. It can be concluded that any possible actual

completion time always lies in interval completion time.
This feature can guarantee that interval tardiness of each
job includes all possible actual tardiness.

For any operations, max s ij; hk

n o
¼ Δs ij þ s ij and

max s ij; hk
� � ¼ Δs ij þ s ij. We can directly obtain the final

interval procedure in Fig. 2 by using the equation s ij ¼
max t i j�1ð Þ; hk

n o
and s ij ¼ max t i j�1ð Þ; hk

� �
, that is, s ij ¼

t i j�1ð Þ _ hk for operation oij (j>1) processed on machine

Mk.
As shown in Figs. 1 and 2, eC1 ¼ 14; 22½ �, eC2 ¼ 18; 29½ �,eC3 ¼ 10; 20½ �, eC4 ¼ 17; 28½ �. Operation o42 meets the con-

ditions: s42 � h2 and s42 > h2, so Δs42 ¼ 0, Δs42 ¼ 1,
s42 ¼ t41 _ h2 ¼ 12; 20½ �, with the variation of σ42, τ42 is
equal to [15,25] and the interval beginning time and
completion time of o23, o43 are adjusted, σ23=[15,25], τ23=
[18,30], σ43=[15,25], τ43=[17,28]. Finally, C1=[14,22], C2=
[18,30], C3=[10,20], and C4=[17,29]. If d1=[20,25], d2=
[21,24], d3=[17,22], and d4=[15,20], then T1=[0,2], T2=
[0,9], T3=[0,3], and T4=[2,14]. Σ

T=[2,28].
In Table 1, two sets of possible bpij are considered, the

first set is composed of data in the first bracket of data grid
and the second consists of all data in the second bracket.
Figure 3 shows two possible actual schedules using the data
in Table 1. It can be found that the possible actual
completion time of each operation is contained in its
interval completion time. Similarly, all possible values of
actual total tardiness are located in the interval total
tardiness, so we can compare different solutions in terms
of their interval total tardiness. The smaller the interval total
tardiness is, the better the solution is.

4.2 Algorithm description

An efficient GA is proposed based on the above
procedure to build interval schedule. The GA produces
new solutions by using tournament selection, general-
ized order crossover (GOX) and swap mutation. In the
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Fig. 2 The final interval
schedule
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whole process of the GA, no illegal interval schedules
occur and any possible values of actual objective
are always contained in the corresponding interval
objective.

The GA is described as follows.

1. Randomly generate an initial population P with N
individuals and determine the solution with the best
fitness as elite individual

2. Perform binary tournament selection on P and obtain a
new population P

3. Perform GOX and swap on population P
4. Calculate fitness of each individual and maintain the

elite individual if possible;
5. If the predetermined number of generations is met,

terminates its search; else, go to step 2.

For individual i, its fitness function fitðiÞ ¼ P
Ti. whereP

Ti is the interval total tardiness of individual i . The
usual elite strategy is used, in which the optimal solution
produced by the GA is stored as an elite individual;
moreover, the elite individual is always added into
population before reproduction.

Roulette wheel reproduction and breeding pool
reproduction cannot be applied for the interval feature
of objective, so tournament selection [22] is used and
described in the following way: first two individuals are
randomly selected from the population, and then an
individual is chosen if the individual has smaller fitness
than the other individual. Finally, the selected individ-
uals go back to the population and can be chosen
again.

GOX [23] is described as follows: first randomly select a
substring ℓ of the first parent, determine the position of the
first element of ℓ on the second parent and remove the
substring ℓ from the second parent. By inserting ℓ into the
position of its first element, the offspring is obtained. The
swap mutation is adopted and described as follows:
randomly select two genes from the chosen individual,
and then exchange them.

5 Computational experiments

In this section, the impact of interval ranking methods on
interval schedule is first discussed and then the GA is
compared with GPSO and SA by using seven random
generated instances. The instances 1, 2, 3, and 4 are
composed of 10 jobs and 10 machines and each of the other
instances has 15 jobs and 10 machines. The processing data
are shown in Appendix. All experiments are implemented
by using Microsoft Visual C++ 6.0 and run on PC with 1 G
RAM 2.5 G CPU.

5.1 Analyses on interval ranking methods

In the decoding procedure, some operations may be
inserted into the idle time of machines, and the number of
these insertable operations may be different for the same
chromosome in the deterministic case and interval case. A
set of actual processing time are randomly chosen from the
interval time. For each instance, 300 initial populations are
produced and each individual of these populations are
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Fig. 3 The actual schedules
obtained by using two sets of
actual processing time
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decoded in the deterministic case and interval case,
respectively. Det indicates the results obtained in the
deterministic case and Int denotes the results of interval
case. Table 2 shows the results of the number of the
insertable operations in two cases.

insnumi ¼ 1

N

XN
j¼1

oprij;

avgnum ¼ 1

300

X300
i¼1

ins numi;

min num ¼ min insnumi i ¼ 1; 2; � � � 300jf g;
max num ¼ max insnumi i ¼ 1; 2; � � � 300jf g;
where oprij indicates the number of the insertable oper-
ations of the jth individual in the ith initial population, N is
size of initial population, N=100, and insnumi is the
average number of the insert-able operation in the ith initial
population.

As shown in Table 2, there are no significant differences
between the results obtained in two cases. The values of
avgnum of interval case are nearly equal to those of the
deterministic case for all instances. The results of minnum
of the deterministic case are close to those of interval case
for all instances. The number of the insertable operations
does not increase or decrease notably when processing time
of each operation is converted from a deterministic value
into an interval number, so the chosen ranking methods are
appropriate to build interval schedule.

5.2 Algorithms comparison

The GA is compared with GPSO and SA to test its
performance on IJSSP. GPSO also uses operation-based
representation and produces new solutions by two-point
crossover and inversion mutation. We use the following
parameters for GPSO: population scale of 20 and the
maximum generation of 300 for 10×10 instances and 500
for other instances. With respect to SA, we randomly produce
a chromosome of operation-based representation and translate
it into a schedule as the initial solution, then the initial solution

is improved by exchanging a pair of randomly chosen
operations on a machine and the acceptance probability is

min 1; exp � m
P

T
cð Þ�m

P
Tð Þ

Tk

� �� 	
, where

P
Tc and

P
T

are total tardiness of the the new solution and the current
solution. The initial temperature T0 ¼ � mworst � mbestð Þ=
ln pr:, mworst and mbest are the biggest and smallest mid-
point of solutions. Pr=0.02, Tk=λT k−1, λ=0.90, the number
of the movements in each temperature is 30 for all instances.
The parameters of GA are as follows, population scale of
100, crossover probability of 0.9, mutation probability of 0.1,
the maximum generation of 300 for 10×10 instances, and
500 for other instances.

Three algorithms have the same number of objective
function evaluation for the same problem. The above
parameters are obtained experimentally and can yield the
best results of each algorithm for most of instances. All
algorithms randomly run 20 times on each instance. Table 3
shows the computational results and computational times of
three algorithms, in which min indicates the best solution
obtained in 20 runs, max represents the worst solution in 20

runs and avg ¼ 1
20

P20
i¼1

P
Ti;min, where

P
Ti;min denotes the

best solution obtained in ith run.
From Table 3, the GA outperforms GPSO and SA on

seven instances. The GA obtains the best solutions of seven
instances and the worst solutions produced by the GA are
always better than those of GPSO and SA for six instances.
For instances 1, 2, 3, and 4, avg:GPSO 
 avg:GA is close
to interval [0,9], for instances 5, 6, and 7, avg:GPSO

avg:GA is greater than [0,60], especially for instance 7,
avg:GPSO
 avg:GA > 100; 300½ �. The GA produces better
average results than SA for all instances, especially for
three 15×10 instances, avg:SA
 avg:GA > 0; 90½ �, where
avg.GPSO, avg.SA, and avg.GA indicate the avg of

GPSO, SA, and GA, A
 B ¼ min A� B;A� B
� �

;
�

max A� B;A� B
� ��.

The GA uses similar computational time with GPSO;
however, the performance GA is better than that of GPSO
because the GA converges to the best solutions of seven

Table 2 Results on the number
of the insertable operations Instance Minnum Maxnum Avgnum Instance Minnum Maxnum Avgnum

1 Det 22.97 28.95 26.02 3 Det 23.61 29.22 26.92

Int 22.82 28.19 25.90 Int 23.02 29.10 26.25

2 Det 20.92 27.25 25.67 4 Det 20.91 26.74 24.49

Int 20.58 27.17 25.23 Int 20.67 26.79 24.21

5 Det 42.87 50.71 47.50 6 Det 45.42 52.34 48.34

Int 42.75 50.20 46.56 Int 45.38 52.23 48.21

7 Det 44.81 52.31 48.40 7 Int 44.50 52.27 48.12
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instances and GPSO cannot approximate to the best
solution of any instance. Although the main part of GPSO
is crossover and mutation, the parents for crossover are not
randomly chosen and some pairs of parents may be the
same solution, in each generation, five objective function
evaluations are used to choose a new particle, if GPSO and
the GA have the same population scale, GPSO can only
evolve one fifth of generations of GA under the same
objective evaluations. These features limit the convergence
ability of GPSO to the best solutions and the performance
of GPSO. SA spends less time than GA and GPSO;
however, its performance is also worse than GA and GPSO
for its limited optimization ability, in SA only one kind of
neighborhood search is done.

6 Conclusions

The uncertain scheduling problems have attracted much
attention in the past decade. The literature of uncertain
scheduling focuses on fuzzy scheduling and stochastic
scheduling and the main concern is how to obtain uncertain
schedule using various methods. The modeling cost of
uncertainty is hardly considered. In fact, a number of
processing data are required to obtain fuzzy membership
function or stochastic distribution, and it is expensive or
impossible to implement this purpose.

In this paper, interval number theory is applied to
production scheduling and a new type shop scheduling
problem named IJSSP is proposed. We describe the
decoding procedure of operation-based representation by
using the addition, max _ operator and ranking method
of interval and prove that all possible actual completion
time is contained in interval completion time, so we can
compare solutions according to its objective value. We
design an efficient GA by using GOX, swap, binary
tournament selection et al. The computational experiments
are executed and the results demonstrate the effectiveness
of the GA.

Interval scheduling has some different features from
fuzzy or stochastic scheduling: it is easy to obtain
interval processing conditions such as interval process-
ing time, the operations for building schedule are
simpler than fuzzy or stochastic operations used to form
schedule, the interval objective is easier to meet the
requirement of decision maker than fuzzy or stochastic
objective. In the near future, we will focus on interval
scheduling with some actual processing constraints such
as batches and flexibility. We will also investigate the
new scheduling algorithms for the high quality solutions
of the problems.

Acknowledgement This paper is supported by China National
Science Foundation (70901064)

Table 3 Computational results
and times of three algorithms Instance Algorithm Min Max Avg Time/s

1 GA [5,321] [5,340] [4.1,328.1] 6.54

GPSO [12,322] [7,340] [5.7,335.2] 6.50

SA [5,327] [5,345] [5.9,339.5] 6.00

2 GA [0,493] [0,547] [0.6,527.3] 6.59

GPSO [0,512] [0,556] [1.3,536.8] 6.71

SA [0,518] [0,569] [1.9,544.1] 6.04

3 GA [7,459] [0,522] [2.7,484.1] 6.40

GPSO [0,480] [0,528] [4.5,494.3] 6.45

SA [7,474] [2,535] [6.7,507.2] 5.99

4 GA [4,451] [0,530] [3.1,487.3] 6.33

GPSO [7,468] [4,515] [3.7,505.8] 6.35

SA [3,479] [3,518] [2.9,512.5] 6.05

5 GA [79,1678] [108,1831] [116.3,1771.5] 21.5

GPSO [115,1727] [151,2072] [122.9,1866.5] 21.4

SA [159,1774] [169,2098] [145.2,1898.3] 20.6

6 GA [0,1048] [0,1195] [1.8,1135.8] 22.0

GPSO [0,1137] [1,1270] [3.3,1192.2] 21.6

SA [0,1171] [0,1308] [4.5,1223.3] 20.7

7 GA [69,1524] [335,2031] [232.5,1765.4] 21.1

GPSO [246,1913] [588,2154] [388.7,2016.3] 20.9

SA [321,1922] [595,2190] [431.5,2065.3] 19.7
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Appendix

job 1   [2,4]8  [3,6]6  [2,5]5  [4,6]2  [1,3]1  [3,6]3  [2,5]9  [1,3]4  [3,5]7  [2,4]10
job 2   [2,4]10 [2,5]7  [2,5]4  [1,3]6  [4,6]8  [2,7]3  [3,4]2  [1,4]1  [2,4]5  [3,5]9
job 3   [2,5]6  [1,3]9  [3,5]10 [2,4]8  [3,6]1  [1,4]7  [1,5]4  [2,4]2  [2,5]5  [1,5]3
job 4   [1,3]1  [3,5]5  [1,5]8  [2,6]9  [2,5]10 [1,4]6  [3,5]7  [1,5]2  [1,6]4  [1,4]3
job 5   [2,4]2  [1,4]7  [1,4]3  [2,3]5  [3,5]8  [4,8]9  [3,7]10 [1,4]6  [3,5]1  [3,4]4
job 6   [2,6]4  [2,4]2  [2,5]3  [4,7]5  [1,5]6  [3,6]8  [3,5]7  [2,5]9  [2,5]10 [3,6]1
job 7   [2,4]3  [1,5]5  [1,5]4  [3,5]1  [2,4]9  [3,5]7  [1,3]2  [3,6]10 [5,8]8  [2,3]6
job 8   [3,5]7  [1,3]1  [3,5]9  [2,5]6  [1,4]10 [2,4]2  [1,3]5  [2,5]3  [3,6]4  [2,5]8
job 9   [3,5]9  [1,4]4  [1,5]10 [2,4]2  [3,6]3  [2,5]6  [1,4]8  [3,5]1  [1,3]5  [3,5]7
job 10  [2,5]7  [1,3]5  [3,7]2  [2,4]4  [3,5]1  [4,7]8  [2,5]10 [3,5]6  [1,3]3  [2,4]9

Fig. 4 Processing data of instance 1

job 1    [10 ,16]4     [4,9]6  [10 ,13]7     [5,7]8 [6,9]9   [7,12]2 [10 ,15]5    [5,7]3  [2,5]1  [10 ,18]10
job 2  [3,6]2    [9,13 ]1 [5,9]3  [9,16]10  [5,9]6 [7,12]7  [9,14]5   [8,16]9  [2,6]8  [4,10]4
job 3  [9,14 ]7   [10 ,14]10  [5,8]9  [3,6]4  [4,8]5  [3,7]2  [3,6]8   [1,4]3  [5,9]1  [9,13 ]6
job 4  [10 ,16]5   [1,4]7  [6,10]10  [1,5]6  [7,11]4  [5,10 ]1 [9,14]8 [4,8]9  [4,10 ]2  [2,5]3
job 5    [9,15 ]5       [8,14 ]6      [10 ,17]10  [5,9]1  [2,5]2  [1,5]4  [7,10]7      [3,6]9  [9,13 ]8  [1,3]3
job 6    [4,9]8  [10 ,15]2    [3,5]3  [10 ,18]4  [5,9]1  [10 ,16]5 [10 ,15]9   [8,12]6  [5,9]10   [4,10]7
job 7    [8,13]5       [2,6]10      [10 ,18]8    [5,9]1  [4,8]6  [4,7]9 [7,11]7     [10 ,12]2 [10 ,15]3  [9,13]4
job 8    [10 ,15]2     [5,9]6  [1,4]3  [6,12]8    [4,9]4  [7,14]1 [7,13]9     [6,11]5   [8,13 ]10  [7,13 ]7
job 9    [2,6]9  [2,5]6  [2,4]2  [4,7]4  [6,9]10   [8,14 ]3   [4,9]1 [8,14]7   [1,3]8  [3,6]5
job 10  [5,9]7  [6,9]8  [8,16]3     [6,12]1    [7,13]9   [10 ,14]5 [7,11]4     [3,7]2  [3,6]10    [8,15 ]6

Fig. 5 Processing data of instance 2

job1    [3,5]7  [10,13]9    [4,10]2 [5,9]5  [10,16]4   [10,13]1 [4,10]6 [4,8]3  [4,7]8  [9,13]10
job2    [10,15]10 [9,14]3 [7,14]5 [7,13]4 [2,6]8  [8,13]1 [7,12]2 [8,14]7 [6,10]6  [10,15]9
job3    [5,10]5 [2,5]7  [1,4]4  [7,12]3 [8,12]1 [2,5]8  [4,7]6  [7,10]2 [9,14]9 [8,15]10
job4    [5,10]5 [4,8]6  [7,14]4 [3,8]7  [4,6]8  [8,12]2 [2,4]1  [2,5]9  [6,11]3 [6,11]10
job5    [7,10]2 [5,7]7  [10,14]4 [2,4]1  [9,13]3 [5,9]5  [5,8]9  [1,4]6 [3,6]8  [2,6]10
job6    [1,4]7  [3,5]3  [3,6]8  [5,8]2  [8,13]4 [9,14]9  [4,8]10 [1,4]1  [2,5]6 [6,12]5
job7    [10,14]10 [2,4]8  [9,12]6 [9,11]3 [4,6]7  [3,7]2  [1,4]9  [2,5]4 [8,13]1 [7,11]5
job8    [7,15]6 [9,15]2 [5,9]8  [8,13]4 [6,9]7  [8,10]3 [9,13]9 [1,4]5  [8,14]10 [6,12]1
job9    [4,10]7 [3,6]2  [6,10]8 [3,6]6  [8,12]9 [5,10]4 [4,9]10 [1,4]1  [3,7]3 [10,15]5
job10  [1,3]4  [8,13]1 [7,9]9  [6,12]10[9,15]5 [7,15]2 [10,18]6[1,5]3  [1,4]8  [2,5]7

Fig. 6 Processing data of instance 3

job 1    [7,12 ]2 [5,9]9  [4,8]10 [7,15 ]8  [8,13 ]6 [7,12 ]3  [6,9]1 [2,4]5 [4,8]7 [2,5]4
job 2    [3,6]6  [1,3]1   [1,4]5  [10 ,14 ]8 [8,14 ]2  [2,5]4   [5,10 ]7 [8,11 ]10 [2,5]3 [4,8]9
job 3    [9,12 ]9 [8,13 ]7 [7,10 ]3 [3,7]6  [10 ,17 ]2 [2,6]5  [8,13 ]4 [3,5]8 [1,3]1 [4,7]10
job 4    [8,13 ]2 [2,5]1  [4,8]8  [4,7]4  [5,8]3  [6,10 ]9 [2,4]10 [8,14 ]7 [5,8]6 [4,9]5
job 5    [4,7]3  [4,9]9  [6,12 ]7 [2,5]10  [1,5]4  [9,12 ]6 [10 ,12 ]5 [5,9]1 [8,13 ]2 [4,9]8
job 6    [7,9]9  [4,8]4  [4,7]1  [4,8]3  [6,9]7  [3,7]10 [9,15 ]8 [7,12 ]2 [6,12 ]5 [5,9]6
job 7    [5,8]6  [5,9]2  [4,7]9  [8,10 ]8  [9,14 ]4 [4,8]3  [7,12 ]10 [3,6]5 [9,15 ]1 [5,10 ]7
job 8    [7,14 ]6  [3,6]4  [10 ,14 ]3 [7,11 ]10 [7,13 ]8  [5,10 ]1 [7,13 ]9 [10 ,16 ]5 [10 ,16 ]7 [6,10 ]2
job 9    [2,5]10 [1,4]6  [4,8]7  [10 ,16 ]3 [3,6]8  [1,4]5  [1,3]1  [3,6]9 [5,9]2  [8,14 ]4
job 10  [6,9]4  [5,9]7  [5,8]5  [3,7]9  [2,5]1  [1,3]2  [8,13 ]3 [9,16 ]8 [4,8]10 [2,5]6

Fig. 7 Processing data of instance 4
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job 1    [2,7]3  [9,16]4 [5,11]6 [8,15]10     [10,18]5     [7,14]7 [9,17]1 [7,15]9 [14,17]2     [6,12]8
job 2    [8,15]4 [10,12]3   [4,8]1  [11,20]2     [12,21]10   [9,15]9 [8,16]7 [5,9]6  [8,13]5 [7,15]8
job 3    [7,12]2 [6,9]1  [9,17]4 [15,20]5     [5,12]7 [11,19]10 [8,16]9 [7,13]6 [8,17]3 [14,18]8
job 4    [10,18]5 [15,21]3  [9,17]9 [8,16]6 [7,12]4 [11,19]8 [14,18]2   [13,17]7   [9,18]10     [3,8]1
job 5    [7,13]9 [8,15]10  [8,15]3 [9,16]5 [10,17]4     [9,16]1 [10,17]8 [10,15]7   [11,17]2     [12,16]6
job 6    [15,21]9 [9,18]8 [8,16]7 [10,16]10   [7,14]3 [9,17]2 [8,15]6 [10,17]5   [12,18]1     [12,20]4
job 7    [6,12]5 [7,13]6 [11,15]4    [9,16]10     [11,14]1     [8,14]9 [10,16]7   [7,15]8 [7,11]3 [5,11]2
job 8    [9,16]6 [7,13]5 [8,14]3 [6,13]7 [4,9]2  [9,17]8 [8,13]1 [7,11]4 [8,12]10 [6,10]9
job 9    [5,11]2 [7,14]6 [8,13]1 [6,8]4  [4,8]3  [7,11]8 [8,13]9 [9,14]7 [7,12]10 [6,12]5
job 10  [4,8]3  [7,12]6 [8,16]7 [5,11]10     [3,8]2  [4,9]4  [6,12]9 [7,12]1 [5,9]8  [10,17]5
job 11  [7,11]2 [9,12]5 [3,8]1  [5,10]3 [6,11]10     [8,13]9 [7,11]6 [4,7]4 [7,12]8 [9,17]7
job 12  [6,11]6 [4,10]10  [5,9]1  [6,12]5 [5,10]7 [3,9]4  [4,9]3  [5,12]2 [6,12]9 [4,10]8
job 13  [3,9]6  [7,12]10  [5,9]9  [6,11]8 [4,9]5  [8,13]7 [9,15]4 [7,13]1 [5,9]2  [7,10]3
job 14  [5,11]2 [5,8]9  [4,8]1  [7,14]3 [6,12]10     [5,10]4 [4,6]6  [8,14]7 [6,13]5 [5,11]8
job 15  [8,15]5 [7,12]4 [6,10]7 [5,10]6 [7,12]3 [8,13]9 [4,9]2  [4,10]10 [6,11]8 [3,8]1

Fig. 8 Processing data of instance 5

job 1    [5,8]10 [9,13 ]6 [4,8]5  [7,11 ]3 [8,11 ]8 [5,9]4  [6,10 ]2 [4,9]1  [8,14 ]9 [4,9]7
job 2    [3,8]4  [6,10 ]3 [7,12 ]5 [4,8]2  [2,6]10 [5,11 ]1 [6,12 ]7 [4,7]6  [3,6]8 [6,11 ]9
job 3    [6,10 ]9 [3,7]8  [2,6]3  [4,8]1  [5,9]10 [7,11 ]6 [5,9]7  [4,8]4  [1,5]2 [7,13 ]5
job 4    [7,14 ]4 [8,16 ]3 [6,11 ]7 [5,10 ]5 [9,17 ]8 [10 ,18 ]9 [4,9]6  [8,13 ]10 [3,7]1  [6,10 ]2
job 5    [5,8]5  [7,10 ]7 [8,16 ]2 [3,5]3  [10 ,18 ]8   [7,13 ]1 [7,14 ]9 [6,9]6 [7,10 ]4 [2,6]10
job 6    [8,16 ]7 [6,12 ]1 [7,12 ]5 [5,11 ]4 [4,9]8  [3,8]9  [9,12 ]2 [5,8]6  [12 ,16 ]3 [13 ,19 ]10
job 7    [14 ,17 ]4  [9,15 ]10  [11 ,19 ]7[7,14 ]6 [9,18 ]1 [6,11 ]9 [7,12 ]5 [12 ,21 ]3 [8,13 ]8 [10 ,14 ]2
job 8    [7,14 ]5 [3,8]2  [6,12 ]9 [4,9]1  [10 ,18 ]8   [5,11 ]7 [6,9]6  [4,10 ]4 [4,8]10 [9,17 ]3
job 9    [13 ,22 ]10 [11 ,17 ]2  [9,16 ]5  [7,12 ]4 [6,13 ]9 [7,14 ]3 [5,10 ]7 [12 ,16 ]1 [17 ,21 ]8 [1,3]6
job 10  [8,15 ]4 [7,13 ]3 [9,16 ]7 [10 ,15 ]10 [8,13 ]8 [7,11 ]1 [6,10 ]5 [7,10 ]6 [6,10 ]2 [5,8]9
job 11   [7,14 ]2 [9,17 ]5 [6,12 ]1 [8,14 ]3 [10 ,17 ]10 [8,15 ]7 [5,11 ]8 [8,16 ]9 [6,12 ]6 [4,9]4
job 12   [4,9]2  [7,10 ]4 [6,11 ]1 [5,12 ]3 [4,10 ]10   [9,14 ]8 [7,12 ]9 [10 ,17 ]5 [7,11 ]7 [5,9]6
job 13   [3,8]6  [5,9]4  [6,10 ]7 [5,11 ]2 [4,9]1  [3,6]8  [8,13 ]9 [4,8]10  [6,10 ]3 [8,13 ]5
job 14   [2,5]2  [4,8]1  [6,10 ]8  [5,9]5  [3,9]4  [7,11 ]6 [6,12 ]10  [4,9]9 [5,8]7  [7,9]3
job 15   [5,11 ]5 [7,11 ]9 [6,9]3  [5,8]4  [4,7]2  [8,16 ]7 [5,12 ]8 [13 ,17 ]10 [4,7]6  [3,9]1

Fig. 9 Processing data of instance 6

job1    [78,88]8    [55,61]6    [72,83]9      [40,47]3     [92,101]5     [84,93]7     [3,7]4  [58,63]2      [92,101]10     [7,12]1
job2    [18,23]7    [82,91]2    [13,18]5      [35,43]6     [76,85]3 [82,89]4     [27,36]8  [51,61]9       [70,79]10      [74,82]1
job3    [35,44]1    [67,76]6    [30,39]9      [80,86]10   [65,75]4 [19,24]7     [8,13]5 [77,84]8      [44,53]3        [45,55]2
job4    [72,80]6    [13,20]3    [6,10]4 [69,77]7     [9,14]5 [58,66]8 [45,50]9  [33,38]10     [87,96]2        [53,59]1
job5    [18,23]10  [11,14]5    [67,73]7      [64,70]8     [60,67]1 [89,100]3   [12,19]9  [46,53]6       [71,80]4        [88,93]2
job6    [89,97]7    [90,98]6    [53,61]2      [67,75]8     [74,81]9 [55,62]5     [50,55]1  [27,32]3        [5,10]10        [63,71]4
job7    [53,58]8   [90,98]1    [43,53]9     [24,29]5     [79,86]3 [60,67]2     [33,40]10[24,30]4        [82,91]7        [5,7]6
job8    [72,80]4    [13,18]6    [73,82]10    [5,11]2 [38,44]9 [33,40]3     [28,33]5  [82,87]7        [33,38]1        [74,80]8
job9    [70,79]1    [10,17]8    [78,85]3     [26,31]9     [51,56]5       [80,86]7     [84,92]6  [75,82]2        [37,42]10       [11,16]4
job10  [5,8]3  [23,28]2    [29,36]8      [60,67]7     [51,58]5 [49,56]1     [80,85]6  [4,8]4  [83,92]10       [50,59]9
job11  [58,67]9    [63,71]3    [29,34]6      [60,65]1     [65,74]8 [58,65]4     [32,39]2  [70,75]5        [4,6]10 [90,97]7
job12  [76,81]3    [86,95]10  [81,90]1     [69,75]2     [61,68]9 [60,68]7     [9,12]4 [80,85]8        [81,92]6        [5,9]5
job13  [24,33]5    [9,13]10    [47,54]8      [85,93]7     [40,49]1 [29,34]6     [25,30]3  [63,70]2        [45,53]9        [31,40]4
job14  [12,17]3    [35,43]6    [53,61]7      [60,65]5     [93,101]4     [63,71]10   [65,74]8  [6,10]2 [43,51]9        [73,81]1
job15  [13,23]2    [89,99]9    [50,63]8      [41,51]7     [63,73]4 [52,61]10   [37,41]3  [49,58]6        [79,82]5        [60,64]1

Fig. 10 Processing data of instance 7

1 [25,30]  [33,41]  [23,30]  [45,50]  [21,28]  [35,36]  [22,31]  [32,38]  [28,36]  [30,39]

2 [103 ,111 ] [91,111 ] [78,89] [73,93] [82,97] [103 ,118 ] [103 ,112 ] [91,113 ] [60,77] [94,112 ]

3 [94,104 ] [111 ,126 ] [79,94] [70,89] [73,81] [63,79] [82,87] [100 ,114 ] [70,89] [78,99]

4 [78,95]  [66,80]  [82,93]  [72,86]  [79,93]  [82,96]  [88,99]  [108 ,123 ]  [57,75]  [67,83]

5  [107 ,142 ] [114 ,144 ] [126 ,153 ] [138 ,164 ] [131 ,157 ] [140 ,172 ] [113 ,137 ] [100 ,128 ] [93,116 ] [82,114 ] 
[91,112 ] [67,104 ] [85,110 ] [77,107 ] [81,110 ]

6 [114 ,142 ] [ 87,127 ] [ 83,120 ] [ 125 ,175 ] [ 117 ,152 ] [ 136 ,172 ] [ 176 ,215 ] [ 110 ,162 ] [ 167 ,201 ] [ 138 ,169 ] 
[134 ,191 ] [121 ,161 ] [98,135 ]  [93,126 ]  [114 ,149 ]

7 [987 ,1049 ] [897 ,971 ] [799 ,878 ] [756 ,816 ] [894 ,947 ] [974 ,1027 ] [838 ,894 ] [766 ,820 ]
[887 ,937 ] [737 ,795 ] [899 ,948 ] [1033 ,1080 ] [676 ,750 ] [855 ,918 ] [906 ,984 ]

Fig. 11 Due date of seven instances
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In Figs. 4, 5, 6, 7, 8, 9, 10, each job has ten operations
and the data on each operation is composed of two
parts: the first is interval processing time and the second
is the number of machine on which the operation is
processed.

In Fig. 11, for instance 1–4, ten intervals from left to
right are due dates of job J1, J2, J3, J4, J5, J6, J7, J8, J9, J10.

For instance 5–7, 15 intervals from left to right are due
dates of job J1, J2, J3, J4, J5, J6, J7, J8, J9, J10, J11, J12, J13,
J14, J15.
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