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Abstract This study analyzes variations in metal removal
rate (MRR) and quality performance of roughness average
(Ra) and corner deviation (CD) depending on parameters of
wire electrical discharge machining (WEDM) process in
relation to the cutting of pure tungsten profiles. A hybrid
method including response surface methodology (RSM)
and back-propagation neural network (BPNN) integrated
simulated annealing algorithm (SAA) were proposed to
determine an optimal parameter setting. The results of 18
experimental runs via a Taguchi orthogonal table were
utilized to train the BPNN to predict the MRR, Ra, and CD
properties. Simultaneously, RSM and SAA approaches
were individually applied to search for an optimal setting.
In addition, analysis of variance was implemented to
identify significant factors for the processing parameters.
Furthermore, the field-emission scanning electron microscope
images show that a lot of built-edge layers were presented on
the finishing surface after the WEDM process. Finally, the
optimized result of BPNNwith integrated SAAwas compared
with that obtained by an RSM approach. Comparisons of the
results of the algorithms and confirmation experiments show
that both RSM and BPNN/SAA methods are effective tools
for the optimization of parameters in WEDM process.

Keywords Optimization . Neural network . Simulated
annealing algorithm . Response surface methodology .Wire
electrical discharge machining . Pure tungsten

1 Introduction

Wire electrical discharge machining (WEDM) has become
an important non-traditional machining process. It is widely
used in the aerospace, nuclear, and automotive industries.
This is because WEDM provides an effective solution for
machining hard materials (like titanium, molybdenum,
zirconium, tungsten carbide, etc.) with intricate shapes
and profiles that are difficult to machine using conventional
methods [1–4]. Cutting velocity and surface roughness are
important output parameters. These determine the produc-
tion efficiency and quality of WEDM [5–8]. In addition, the
machining accuracy, especially at corner position, may be
destroyed because of some phenomena such as wire defect,
vibration, etc. The accuracy of the corner cuts (sharp
corners and small fillet radii) may be improved by
modifying the cutting parameters and the wire path.
Sanchez et al. [9] presented a study on the corner geometry
generated by successive cuts (roughing and finishing).
Errors at different zones of the corner were identified and
related to the material removed during each cut. The
influence of limited cutting speed on the accuracy of
WEDM corner cutting was then discussed. Han et al. [10]
described a simulation method for WEDM in the rough
cutting of a corner. In the simulation, they analyzed the
vibration of the wire electrode due to the reaction force
acting on the wire electrode during the WEDM. They also
set up a geometrical model of the wire electrode path and
numerical control (NC) path before investigating the
relationship between the wire electrode movement and
NC movement. Dodun et al. [11] investigated the WEDM
corner cutting accuracy. Their experimental work shows
that the use of WEDM to obtain outside corners with a
small corner angle and small thickness produces a
machining error shaped like post-yield bending. Therefore,
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improving the production efficiency, quality of surface rough-
ness, and corner cut accuracy of WEDM is a significant area of
study. In addition, the selection of optimum cutting parameters
is key to obtaining a higher cutting speed or good surface finish.
Improperly selected parameters may also result in serious
consequences like short-circuiting of the wire and wire
breakage. The possibility of wire breakage imposes certain
limits on the cutting speed, which in turn reduces productivity.
Discharge current, discharge capacitance, pulse duration, pulse
frequency, wire speed, wire tension, average working voltage,
and dielectric flushing conditions are the machining parameters
which affect WEDM performance measures [5–8]. However,
the problem of selecting optimum cutting parameters for
WEDM processes is not fully solved, even though up-to-date
computer numerical control (CNC) WEDM machines are
available. Therefore, there is a need to apply a statistical
technique to optimize parameters in WEDM processes so as
to improve the performance measures.

The Taguchi method has been used quite successfully in
several industrial applications to optimize manufacturing
processes and in the design of electrical and mechanical
components [12–16]. However, Taguchi’s method can only
find the best set of specified process parameter level
combinations which include the discrete setting values of
the process parameters. The application of a conventional
Taguchi method is unreasonable when the variable of a
process parameter is continuous. Response surface meth-
odology (RSM) is also a good method for minimizing the
number of experiments to achieve the optimum conditions.
Tzeng and Yang [17] implemented RSM to determine the
optimal parameters of a CNC turning process for SKD11.
Liu et al. [18] used RSM to present the mathematical
models for modeling and analysis of the effects of drilling
hole in the EDM process parameters, including the
discharge current, pulse time on, duty factor, and capaci-
tance value. Chuang et al. [19] applied RSM to determine
the optimal parameters of an injection molding process for
manufacturing thin-shell plastic parts. Gaitonde et al. [20]
also applied RSM to investigate the relationship between
cutting conditions and machinability characteristics during
the turning processes of metal matrix composites. Recently,
back-propagation neural network (BPNN) has become a
very powerful and practical method for modeling complex
nonlinear systems [21–24]. At the same time, the use of
simulated annealing algorithms (SAA) can be found in
various research fields for parameter optimization. A means of
applying BPNN integrated with SAA has been proposed to
improve upon the conventional Taguchi method for optimizing
a multiple input–multiple output process parameter design
problem. Qiao [25] applied the Davidon–Fletcher–Powell
method and SAA approach to optimize a cooling system
design in plastic injection molding. Arul et al. [26] applied a
SAA approach to search for the optimal process parameters

for delamination constrained drilling of glass fiber-reinforced
plastics. Sayarshad and Ghoseiri [27] used a SAA approach
to optimize a fleet size and freight car allocation problem
wherein car demands and travel times were assumed to be
deterministic and unmet demands were back-ordered. Yang
et al. [28] proposed the optimization methodology of SAA
for the selection of the best process parameters for electro-
discharge machining. Chen et al. [29] also had conducted
BPNN integrated SAA to analyze the variation of cutting
velocity and workpiece surface finish that determine an
optimal parameter setting of the WEDM process on the
manufacture of pure tungsten profiles. The literature [12–29]
shows that statistical techniques have, for the most part, been
individually applied to the study of optimal process
parameters. Therefore, the RSM method and BPNN with
integrated SAA approach are used in this paper to model and
compare the optimization of WEDM process parameters that
affect the metal removal rate (MRR), roughness average (Ra),
and corner deviation (CD) on manufactured tungsten
profiles.

In this study, analysis of variance (ANOVA) is utilized to
examine the most significant factors for the WEDM process
parameters. In addition, in order to study the surface texture
produced and to identify finishing mechanism, field-emission
scanning electron microscope (FE-SEM) images were also
examined. Finally, the optimal parameter settings are verified
by conducting confirmation experiments and comparing the
results of different approaches of RSM and SAA.

2 Experimental setups

2.1 Material

Tungsten exhibits the highest operating temperature of all
metals at about 2,900°C (3,173 K) as well as the melting
temperature of 3,420°C (3,693 K). By using tungsten
powder with a purity of 99.97%, outgassing of impurities
can be avoided. This material quality is used for electrodes
in high-intensity discharge lamps and, through its high
purity, guarantees consistent lamp quality and increased
lifetimes [30]. Moreover, the impurities of tungsten can
contaminate the environment of semiconductor manufac-
turing, and a high powder-to-particle ratio will reduce the
quality and reliability of semiconductors. Therefore, high-
purity tungsten is necessary for semiconductor manufactur-
ing processes. In addition, tungsten has high hardness,
toughness, and brittleness and cannot be machined easily.
Generally, machining tungsten results in very high tool
wear. Robust machine tools and consistent machining
conditions are essential, otherwise chips and cracks may
occur; therefore, WEDM is a good manufacturing method
[30].
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Table 1 lists the basic physical properties of the pure
tungsten used in the present study, which was provided by
PLANSEE Co. [30].

2.2 Schematic of a specimen

Figure 1 shows the machining setup of aWEDMprocess. The
experiments were conducted on a rigid CNCWEDMmachine
with a maximum output current of 25 A, maximum wire feed
rate of 18 m/min, and x–y-axis feed rate of 0.8 m/min
(machine type CW-430F, manufactured by Ching Hung
Machinery & Electric Industrial Co., Ltd., Taiwan). A
workpiece thickness of 5 mm and a 0.25-mm brass wire
(Cu65/Zn35) were used in all the experiments. At the same
time, for each set of cutting parameters, continuous cutting
with a straight length of 40 mm and orthogonal length of
10 mm was made into the workpiece.

2.3 Experimental design and parameter settings

The product quality produced by WEDM is always affected
by process parameters such as the pulse on and off times,
peak current, arc on and off times, polarity, servo voltage,
no load voltage, duty factor, dielectric constant, feed rate
override, wire feed rate, wire tension, water pressure, etc.
[5–8]. In this study, experiments were planned using a
factorial design based on a Taguchi L18 orthogonal array
with 21×36. Table 2 lists the process factors and factor
levels that an experimental factor with two levels (i.e., the
pulse on time, factor A) and other six experimental factors
with three levels include. The pulse on time (i.e., factor A),
the pulse off time (i.e., factor B), arc off time (i.e., factor C),
the servo voltage (i.e., factor D), the wire feed rate (i.e.,
factor E), the wire tension (i.e., factor F), and the water
pressure (i.e., factor G) were the selected factors for the
WEDM process. The selection of factors was based on the
engineer’s experience and the advice from the handbook
recommended by the machine manufacturer.

2.4 Measuring apparatus

2.4.1 Kerf and corner deviation measuring apparatus

The kerf and corner deviation of the workpieces after the
WEDM experimental runs were measured using an Optics
Zoom Scope (OZS, model no. ZS-3020-VP-MI, Bao-I
Tech. Co., Taiwan).

2.4.2 Surface measuring apparatus

The roughness average (Ra) of the surface after WEDM was
measured by a surface analyzer (Form Talysurf 50 Taylor
Hobson Ltd., UK).

2.4.3 FE-SEM apparatus

The surface texture produced and the finishing mechanism
after the WEDM process were observed and investigated
using a FE-SEM (JEOL, model no. JSM-6500F, Japan).

Table 1 Basic physical properties of the pure tungsten

Property Value

Purity (wt.% tungsten) 99.97%

Melting point 3420°C

Density at 293 K 19.3 g/cm3

Hardness at 293 K 460 (HV30)

Young’s modulus at 293 K (GPa) 396

Poisson’s ratio 0.28

electrical conductivity (Ωm) 5.6×10−8

Thermal conductivity at 293 K (W/mK) 138

(a)

Dielectric flushing

Workpiece (pure tungsten plate)

Wire guides

Wire feeding

Dielectric flushing

Wire take-up wheel

50mm

5m
m

Wire supply wheel

Fig. 1 Scheme of the WEDM process

Table 2 Process factors and factor levels

Process factors Level Unit

1 2 3

A: Pulse on time 0.3 0.5 – μs

B: Pulse off time 12 14 16 μs

C: Arc off time 12 14 16 μs

D: Servo voltage 42 44 46 V

E: Wire feed rate 8.4 9.6 10.8 m/min

F: Wire tension 1,473.33 1,620 1,767.66 gf

G: Water pressure 10.70 12.85 15.00 bar

Fixed parameters: Feed rate override=1.5 rate; Arc on time=0.2 μs
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2.5 Experimental results

The kerf is measured using the OZS and is expressed as the
sum of the wire diameter and twice the wire–workpiece
gap. The kerf value is the average of six measurements
made from the workpiece with 2-mm increments along the
cut length. MRR is calculated from Eq. 1 [5].

MRR ¼ k � t � vc � r ð1Þ

where k is the kerf, t is the thickness of the workpiece
(5 mm), vc is cutting speed (millimeters per minute), and ρ
is the density of the workpiece material (19.3 g/cm3). The
cutting speed (vc) was directly obtained from the computer
monitor of WEDM machine.

Corner deviation (CD) was defined as the geometrical
contour error on the inner corner by orthogonal cutting. It is
denoted and depicted in Fig. 2, which is also the localized
enlargement of Fig. 1 (part a). It shows a micrograph of the
corner deviation by WEDM operating under the conditions
A1B3C1D3E2F1G2 (run no. 9 of Table 3). The measurement
data of Ra and CD, vc, kerf, and the calculated results of
MRR were listed in Table 3.

3 Optimization methodologies and results

The optimization methodologies used include RSM,
neural networks, and optimization algorithms necessary
for developing the proposed approach. Figure 3 illus-
trates the flowchart used to find an optimal setting for the
WEDM process. The following sections detail each of the
steps.

Step 1 Identify the objectives of the problem: This study
aimed to identify an optimal setting to minimize
the Ra and CD as well as maximize the MRR.

Step 2 Propose experiments: Use an orthogonal array
table to design and conduct the experiments.

Step 3 Experiment and measurement: The experiments
were carried out on a rigid CNC wire electrical
discharge machine. The MRR, Ra, and CD were
measured.

Step 4 Analysis of variance: ANOVA was applied to
identify the most significant factors.

Step 5 Optimization process: RSM and BPNN/SAA
approaches were used to obtain an optimal setting.

Step 6 Compare results: The results were compared with
those predicted through modeling. Optimal set-
tings determined by RSM and BPNN/SAA were
also compared.

3.1 Analysis of variance

In order to analyze the results of the experimental designs,
ANOVA is utilized. ANOVA is used to investigate the
relationship between a response variable and one or more
independent variables. It can be determined whether the
difference between the average of the levels is greater than
what could reasonably be expected from the variation that
occurs within the level. A “model F value” is calculated
from a model mean square divided by a residual mean
square. It is a test of comparing a model variance with a
residual variance. If the variances are close to being the
same, the ratio will be close to 1 and it is less likely that any
of the factors have a significant effect on the response. As
for a “model P value,” if the “model P value” is very small
(<0.05), then the terms in the model have a significant
effect on the response [31]. Similarly, an “F value” on any
individual factor terms is calculated from a term mean
square divided by a residual mean square. It is a test that
compares a term variance with a residual variance. If the
variances are close to being the same, the ratio will be close
to 1 and it is less likely that the term has a significant effect
on the response. Furthermore, if a “P value” of any model
terms is very small (<0.05), the individual terms in the
model have a significant effect on the response. The results
of ANOVA are shown in Table 4.

Table 4 lists the ANOVA result of the MRR. The
contribution percentages for the MRR are 70.66% and
13.04% by the factor terms “A” (the pulse on time) and “B”
(the pulse off time), respectively. The other factor terms can
be regarded as insignificant due to their smaller “contribution
percentage” compare with the factor terms “A” and “B”.

Table 4 also lists the ANOVA results of the Ra. The
contribution percentages for Ra are 84.88% and 7.91% by

0.0393mm

50µm
100X

Brass wire(Corner deviation =0.25mm)Workpiece

Fig. 2 Localized enlargement of Fig. 1, part (a). Corner deviation by
a WEDM operation under the conditions A1B3C1D3E2F1G2 (run no. 9
of Table 3)
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the factor terms “A” (the pulse on time) and “G” (the water
pressure), respectively. Again, the other factor terms can be
regarded as insignificant due to their smaller “contribution
percentage” compare with the factor terms “A” and “G”.

Table 4 also lists the ANOVA results of the CD. The
contribution percentages for CD are 14.70% and 78.10% by
the factor terms “A” (the pulse on time) and “F” (the wire

tension), respectively. Yet again, the other factor terms can be
regarded as insignificant due to their smaller “contribution
percentage” compared with the factor terms “A” and “F”.

3.2 Response surface methodology

RSM is a statistical technique for determining and
representing the cause and effect relationship between true
mean responses and input control variables. The main idea
of RSM is to use a set of designed experiments to obtain an
optimal response. In this work, response surface modeling
is utilized for determining the relations between the various
WEDM process parameters with the various machining
criteria and for exploring the effect of these process
parameters on the responses, i.e., the MRR, Ra, and CD.
In the general case, the response surface is described by an
equation of the form [31]:

Y ¼ b0 þ
Xn
i¼1

bixi þ
Xn
i¼1

biix
2
i þ

Xn
j¼2

Xj�1

i¼1

bijxixj::: ð2Þ

where Y is the corresponding response, e.g., the MRR, Ra,
and CD produced by the various process variables of
WEDM; the xi (1, 2,…, n) are coded levels of n quantitative
process variables; and the terms β0, βi, βii, and βij are the
second-order regression coefficients. The second term
under the summation sign of this polynomial equation is

Experiment & measurement

Propose experiment

Identify effect factors

Creating regression model

Residual analysis

Obtain an optimal setting

Define an objective function BPNN training

Simulated annealing algorithm

Obtain an optimal setting

Residual analysis

Define an fitness function

Step 1

Step 2

Step 3

Step 4

Optimization process

Step 6

Identify objectives of problems

Comparing with RSM & BPNN/SAA results

RSM BPNN/SAA

ANOVA analysis

Step 5

Fig. 3 Flowchart of the optimization process

Table 3 Results of experimental runs

Run no. A B C D E F G Data Result

vc (mm/min) Kerf (mm) MRR (g/min) Ra (μm) CD (mm)

1 1 1 1 1 1 1 1 7.4074 0.339 0.2423 1.1786 0.0378

2 1 2 2 2 2 2 2 6.7567 0.334 0.2178 1.3362 0.0366

3 1 3 3 3 3 3 3 6.4102 0.337 0.2085 1.4561 0.0306

4 1 1 1 2 2 3 3 7.5987 0.329 0.2412 1.2691 0.0295

5 1 2 2 3 3 1 1 6.4516 0.335 0.2086 1.2369 0.0389

6 1 3 3 1 1 2 2 6.5359 0.336 0.2119 1.3362 0.0349

7 1 1 2 1 3 2 3 7.5019 0.332 0.2403 1.4023 0.0373

8 1 2 3 2 1 3 1 6.5359 0.332 0.2094 1.3049 0.0291

9 1 3 1 3 2 1 2 6.1881 0.340 0.2030 1.2786 0.0393

10 2 1 3 3 2 2 1 7.7942 0.348 0.2617 1.6453 0.0328

11 2 2 1 1 3 3 2 9.3809 0.346 0.3082 1.8159 0.0273

12 2 3 2 2 1 1 3 7.5988 0.350 0.2566 1.9534 0.037

13 2 1 2 3 1 3 2 8.5763 0.344 0.2845 1.6711 0.0255

14 2 2 3 1 2 1 3 8.3333 0.346 0.2786 1.7254 0.0371

15 2 3 1 2 3 2 1 7.4074 0.349 0.2493 1.6653 0.0315

16 2 1 3 2 3 1 2 8.1103 0.349 0.2733 1.8234 0.0368

17 2 2 1 3 1 2 3 8.0000 0.349 0.2697 1.8414 0.0295

18 2 3 2 1 2 3 1 7.6923 0.343 0.2548 1.6273 0.0243
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attributable to the linear effect, whereas the third term
corresponds to the higher-order effects; the fourth term of
the equation includes the interactive effects of the process
parameters.

The objective of this study was to identify an optimal
setting for process parameters that can minimize the
measured Ra and CD as well as maximize the MRR of a

WEDM process. Therefore, the objective function, F(x),
can be defined as follows:

d1 ¼ MRRi �MRRmin

MRRmax �MRRmin

� �
ð3Þ

d2 ¼ Ramax � Rai
Ramax � Ramin

� �
ð4Þ

d3 ¼ CDmax � CDi

CDmax � CDmin

� �
ð5Þ

DF ¼ dw1
1 � dw2

2 � dw3
3

� �
1 ðw1þw2þw3Þ=

FðxÞ ¼ �DF ð6Þ

where w1, w2, and w3 are the weightings of importance for
MRR, Ra, and CD, respectively. MRRmax and MRRmin are
the maximum and minimum values of MRR. Similarly, Ra

max and Ra min, and CDmax and CDmin are the maximum and
minimum values of Ra and CD, respectively. The values of
w1, w2, and w3 are identical since MRR, Ra, and CD are
equally important in this study. DF is a desirability function
[31]; the objective is to choose an optimal setting to
maximize the desirability function, DF, i.e., minimize F(x).

3.2.1 Development of mathematical predictive models

A combined desirability function can be calculated from Eq. 6.
At the same time, by considering the insignificant terms via
ANOVA—the “P value” of any model term is >0.05—the
individual terms in the model have an insignificant effect on
the response [31]. Namely, the insignificant terms of the
machining parameters can be removed without reducing the
operation performance of the regression models. In addition,
the experimental analysis and developed regression models
in this paper were performed using the Design Expert version
6.0.10 software (Stat-Ease, Inc.). In this work, Eq. 2 can be
rewritten according to the result of the software run.
Mathematical predictive models for the MRR, Ra, and CD
are shown as follows:

MRR ¼ 4:2814� 10�1 þ 2:5208� 10�1 � A
� �

� 6:6326� 10�3 � B
� �

� 2:9374� 10�3 � C
� �

� 4:1755� 10�3 � D
� �

þ 2:6672� 10�3 � G
� � ð7Þ
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Ra ¼ 1:5660� 10�1 þ 2:2053� Að Þ
þ 3:8348� 10�2 � G
� � ð8Þ

CD ¼ 9:5863� 10�2 � 1:7888� 10�2 � A
� �

� 3:4315� 10�5 � F
� � ð9Þ

3.2.2 Optimal setting through the use of RSM

An optimal setting can be obtained through RSM by choosing
appropriate combinations of WEDM process parameters as
starting values. This optimal setting gives an appropriate
combination of pulse on time of 0.43 μs, pulse off time of
12.00 μs, arc off time of 12.00 μs, servo voltage of 42.00 V,
wire feed rate of 10.48 m/mim, wire tension of 1,764.43 gf,
and water pressure of 10.71 bar.

3.3 BPNN integrating SAA

Figure 4 shows the flowchart used to find an optimal
process through BPNN with integrated SAA. At the same
time, the Matlab Neural Network Toolbox was used as a
platform to create the networks.

3.3.1 BPNN training

ABPNN is usually divided into three parts: the input layer, the
hidden layer, and the output layer. The information contained
in the input layer is mapped to the output layers through the
hidden layers. Each unit can only send its output to the units
on the higher layer and receive its input from the lower layer.
More hidden layers can be added to obtain a powerful
multilayer network. The architecture of the BPNNmodel used

in this study for the WEDM process is shown in Fig. 5. The
node number of the hidden layer was determined by train
trials, and the final value obtained was 5, which made the
configuration of BPNN 7–5–3. A hyperbolic tangent-
sigmoid transfer function was used as the activation function
for the hidden layers, and a log-sigmoid transfer function
was used for the output layers. Simultaneously, the Leven-
berg–Marquardt reduction scheme was also selected for the
neural network algorithm. The convergent function is as
follows:

MSE ¼ 1

N

XN
i¼1

di � yið Þ2

where N is the experimental time, di is the experimental
value, and yi is the predicted value of the neural network for
training sample i.

In this study, the Matlab Neural Network Toolbox was
used as a platform to create the networks. The BPNN
training process settled that an appropriate combination of
conditions was 1,000 for the number of iterations, 0.001 for
performance goal, 5 for maximum validation failure
number, 10−10 for minimum performance gradient, and 25
for epochs between displays.

3.3.2 SAA optimization

Various numerical optimization algorithms have been devel-
oped to solve optimization problems. Unfortunately, no
universal algorithm exists which works well for all problems.
This is because the convergence and the efficiency of a
particular algorithm are dependent on the problem to be
solved. In this study, the optimal WEDM process parameters
for cutting pure tungsten profiles was identified using the
SAA as follows.

C
utting

direction

Built-up layer

C
utting

direction

Fig. 6 a FE-SEM micrograph on the surface finish of after a WEDM
operation under the conditions A1B1C1D1E1F1G1 (run no. 1 of
Table 3). b FE-SEM micrograph on the surface finish of after a

WEDM operation under the conditions A2B2C1D1E3F3G2 (run no. 11
of Table 3)
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Define a fitness function S(x) The formulation of S(x) for
using in SAA search approach can be defined as follows:

Minimize SðxÞ ¼ Pk
i¼1

yti � ypi
� �2

Subject to LCLi≦ypi≦UCLi

LCL=μ−nε; n=1, 2,…, N
UCL=μ+nε; n=1, 2,…, N

x process parameters
k total number of response which is nominal-the-best

type and has a certain target
yt predicted value of i response that is a nominal-the-

best type response
yp certain target value
UCLi upper control limit of i response
LCLi lower control limit of i response
μ mean value of experimental data
ε standard deviation of experimental data

Annealing approach Annealing function selects Boltzmann
annealing which takes random steps, with a size propor-
tional to the square root of temperature.

Reannealing interval We set the reannealing interval to be
100; this is the number of points to accept before reannealing.

Temperature updates function Exponential temperature up-
date decreases as 0.95iteration.

Initial temperature Initial temperature is the temperature at
the beginning of the run; it was set to 100°C for all
experiments, namely, a relatively faster convergence can be
obtained using initial temperature 100°C.

3.3.3 Optimal setting of BPNN/SAA approaches

An optimal setting was obtained by choosing appropriate
combinations of WEDM process parameters via a BPNN/
SAA approach. An appropriate combination was calculated
to be: pulse on time of 0.43 μs, pulse off time of 12.84 μs,
arc off time of 12.73 μs, servo voltage of 42.41 V, wire feed
rate of 8.89 m/min, wire tension of 1,693.64 gf, and water
pressure of 10.74 bar.

4 Results and discussions

4.1 Observation of the cutting surface

Figure 6a, b shows the FE-SEM micrographs in which the
surface finish of the specimens after the WEDM operations
can be examined. Figure 6a displays the surface finish after
cutting using parameters A1B1C1D1E1F1G1 (i.e., run no. 1
of Table 3). Some fine cracks parallel to the direction of the
cutting were found. At the same time, Fig. 6b displays the
surfaces finish obtained under the cutting conditions of
A2B2C1D1E3F3G2 (i.e., run no. 11 of Table 3). At the same
time, it can be seen from Fig. 6b that a lot of built-edge
layers were presented. Figure 6b shows that the higher
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pulse on time, the more intense the discharge energy
becomes and the more powerful is the explosion, which
can increase the metal removal rate and also results in brass
wire of cutting tool accelerating depletion; the residual
particle of brass wire was adhered on the cutting surface.
This will generate a larger built-up layer and therefore
produces rougher surfaces.

4.2 Influence of cutting conditions on the MRR, Ra,
and CD

Figure 7a–c shows the significant factor of cutting
condition that can be implemented based on the results of
ANOVA and BPNN/SAA for the MRR, Ra, and CD.
Figure 7a shows the variations of MRR under cutting
conditions with different pulse on times and pulse off times.
The results of the BPNN/SAA approach suggested that an
appropriate combination of parameters was 12.73 μs of arc
off time, 42.41 V of servo voltage, 8.89 m/min of wire feed
rate, 1,693.64 gf of wire tension, and 10.74 bar of water
pressure. Figure 7a indicates that MRR increases with an
increase in the pulse on time when a similar pulse off time
is used. The higher the discharge energy produced by an
increase of the pulse on time, the more powerful is the
explosion, and this enables an increased MRR. Similarly,
MRR decreases with an increased pulse off time for a
constant pulse on time.

Figure 7b shows the variations of Ra with various pulse on
times and water pressures when other cutting conditions
were set to 12.84 μs of pulse off time, 12.73 μs of arc off
time, 42.41 Vof servo voltage, 8.89 m/min of wire feed rate,
and 1,693.64 gf of wire tension. Figure 7b plots the main
effects; as pulse on time increased, the surface roughness of
the machined surface increased. This is because the
discharge energy becomes more intense with increased pulse
on times; the more powerful is the explosion, the MRR is
increased (as shown in Fig. 7a) and the brass wire of cutting
tool accelerates depletion, which leads to generate the built-
up layer. With increased built-up layer, this results in a
rougher surface. Hence, to obtain a smooth surface finish for
a WEDM workpiece, pulse on time should be set as low as
possible. Figure 7b also shows that with the pulse on time
held constant, increasing the water pressure results in a
slightly increased Ra.

Figure 7c shows the BPNN estimate for the CD with
variable pulse on time and wire tension when using constant
pulse off time of 12.84 μs, arc off time of 12.73 μs, servo
voltage of 42.41 V, wire feed rate of 8.89 m/min, and water
pressure of 10.74 bar. Figure 7c clearly indicates that CD
decreases with an increase in wire tension with a constant
pulse on time, which illustrates that a higher wire tension has
resulted in stronger forces acting on the wire, responsible for
wire deformation decreases that withstand a component of
force with corner cutting, and therefore CD can be reduced.
Moreover, CD also decreases with an increase in the pulse on
time when wire tension is held constant.

4.3 Comparison of results from different approaches

4.3.1 Residual analysis

In order to check prediction errors of the RSM analysis and
BPNN training results, the residual results, which are
defined as the differences between the actual and predicted
values for each point in the design, can be calculated.

Table 5 lists the residuals based on the RSM approach.
The percentage errors for MRR, Ra, and CD are 2.15%,
3.40%, and 3.24%, respectively. Table 5 also shows the
residuals based on the BPNN training results. The percent-
age errors for MRR, Ra, and CD, are 0.89%, 1.12%, and
0.54%, respectively. By comparison, the percentage errors
for MRR, Ra, and CD via a trained BPNN are less than
those measured from regression models derived by the
RSM approach.

4.3.2 Confirmation experiment runs

The data from the confirmation experiment runs and their
comparison to the predicted values for MRR, Ra, and CD
are listed in Table 6.

The first predicted run of Table 6 shows that an RSM
approach gives optimal parameters of pulse on time
0.43 μs, pulse off time 12.00 μs, arc off time 12.00 μs,
servo voltage 42.00 V, wire feed rate 10.48 m/min, wire
tension 1,764.43 gf, and a water pressure of 10.71 bar. The
values predicted by the regression models for the MRR, Ra,
and CD are 0.2754 g/min, 1.5200 μm, and 0.0276 mm,
respectively. At the same time, with this combination of

Table 6 Confirmation runs of MRR, Ra and CD by two different approaches

Applied method Optimal parameters MRR (g/min) Ra (μm) CD (mm)

A (μs) B (μs) C (μs) D (V) E (m/min) F (gf) G (bar) Pred./Exp. Pred./Exp. Pred./Exp.

RSM 0.43 12.00 12.00 42.00 10.48 1,764.43 10.71 0.2754/0.2801 1.5200/1.4745 0.0276/0.0285

BPNN/SAA 0.43 12.84 12.73 42.41 8.89 1,693.64 10.74 0.2994/0.2925 1.2843/1.3125 0.0262/0.0274
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parameters, the confirmation runs show MRR, Ra, and CD
to be 0.2801 g/min,1.4745 μm, and 0.0285 mm, respec-
tively. Furthermore, for the second predicted run, which is
also an optimal run found by the BPNN/SAA method, the
parameters were set at: pulse on time, 0.43 μs; pulse off
time, 12.84 μs; arc off time, 12.73 μs; servo voltage,
42.41 V; wire feed rate, 8.89 m/min; wire tension,
1,693.64 gf; and water pressure, 10.74 bar. With these
parameters, the proposed algorithm predicts the MRR, Ra,
and CD to be 0.2994 g/min, 1.2843 μm, and 0.0262 mm,
respectively. Confirmation experiments show that the MRR,
Ra, and CD are 0.2925 g/min, 1.3125 μm, and 0.0274 mm,
respectively. By comparison, the BPNN/SAA approach
produced better predictions of the confirmation results than
the RSM method.

5 Conclusions

This research proposes an effective process parameter
optimization approach that integrates Taguchi’s parameter
design method, response surface methodology (RSM), back-
propagation neural network (BPNN), and simulated annealing
algorithm (SAA) on WEDM processes. The proposed
approach can effectively assist engineers in determining the
optimal process parameter settings for the WEDM process
under multi-response consideration. According to the imple-
mentation, the results obtained in the illustrative example are
summarized as follows:

1. With the higher pulse on time, which leads to the
discharge energy becoming more intense, the metal
removal rate was increased and the brass wire of cutting
tool accelerates depletion, generates a larger built-up
layer, and therefore produces rougher surfaces. Simulta-
neously, increasing the wire tension results in the decrease
of corner deviation (CD).

2. This modeling approach was validated through two
additional sets of experimental data in order to verify the
quality of the algorithm. By comparison, the percentages of
residual via a trained BPNN are less than those predictions
from the regression models derived by the RSM approach.
At the same time, the BPNN/SAA approach produced
better quality than the RSM method for the confirmation
results of the optimization process parameters.

3. The modeling and optimization methods proposed in this
paper show great potential in complicated industrial
applications. Obviously, this confirms the excellent
reproducibility of the experimental conclusions. More-
over, the results have been successfully applied to a
production line manufacturing semiconductor compo-
nents operated by Chin Shun Precision Industry Co.,
Taiwan.
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