
Int J Adv Manuf Technol (2012) 59:539–545
DOI 10.1007/s00170-011-3528-7

ORIGINAL ARTICLE

A note on single-machine scheduling problems
with the effects of deterioration and learning

Li-Yan Wang · En-Min Feng

Received: 14 April 2009 / Accepted: 5 April 2011 / Published online: 11 August 2011
© Springer-Verlag London Limited 2011

Abstract This paper studies two single-machine
scheduling problems with the effect of deterioration
and learning. In this model, the processing times of
jobs are defined as functions of their starting times
and positions in a sequence. For the following two
objective functions: the weighted sum of completion
times and the maximum lateness, this paper proposes
two heuristics according to the corresponding single
machine problems without learning effect. This paper
also gives the worst-case error bound for the heuristics
and provides computational results to evaluate the
performance of the heuristics.

Keywords Scheduling · Single machine ·
Deteriorating jobs · Learning effect

1 Introduction

In classical scheduling problems, the processing times
of jobs are assumed to be constant values. However,
there are many situations that the processing times of
jobs may be subject to change due to deterioration
and/or learning phenomena. Machine scheduling prob-
lems with deteriorating jobs and/or learning effect have
been paid more attention in recent years. Extensive
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surveys of research related to scheduling deteriorating
jobs can be found in Alidaee and Womer [1] and Cheng
et al. [2]. An extensive survey of different schedul-
ing models and problems involving jobs with learning
effects can be found in Biskup [3]. More recent papers
which have considered scheduling jobs with deteriorat-
ing jobs and/or learning effect include Wu et al. [4],
Shiau et al. [5], and Eren and Guner [6]. Wu et al. [4]
considered single-machine total weighted completion
time scheduling problem under linear deterioration.
They proposed a branch-and-bound method and sev-
eral heuristic algorithms to solve the problem. Shiau
et al. [5] considered two-machine flowshop scheduling
to minimize mean flow time with simple linear deterio-
ration. Toksar and Guner [6] considered the bicriteria
parallel machine scheduling with a learning effect. They
introduced a mixed nonlinear integer programming for-
mulation for the problem. Lee et al. [7] and Wang et al.
[8] developed a new deterioration model where the
actual job processing time is a function of jobs already
processed. Lee et al. [7] showed that the single-machine
makespan problem remains polynomially solvable un-
der the proposed model. Wang et al. [8] showed that the
total completion time minimization problem for a ≥ 1
remains polynomially solvable under the proposed
model, where a denotes the deterioration rate. For the
case of 0 < a < 1, they showed that an optimal schedule
of the total completion time minimization problem is
V-shaped with respect to normal job processing times.
They also used the classical smallest processing time
first rule as a heuristic algorithm for the case of 0 < a <

1 and analyze its worst-case bound.
However, to the best of our knowledge, apart from

the recent paper of Lee [9], Wang [10, 11], Wang and
Cheng [12, 13], Toksar and Guner [14], and Wang
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et al. [15], it has not been investigated the scheduling
problems with the effects of deterioration and learning.
The phenomena of learning effect and deteriorating
jobs occurring simultaneously can be found in many
real-life situations. For example, as manufacturing be-
comes increasingly competitive, in order to provide
customers with greater product varieties, organizations
are moving toward shorter production runs and fre-
quent product changes. The learning and forgetting that
workers undergo in this environment have thus be-
come increasingly important as workers tend to spend
more time in rotating among tasks and responsibilities
prior to becoming fully proficient. These workers are
often interrupted by product and process changes, caus-
ing deterioration in performance, which we will refer
to, for simplicity, as forgetting. Considering learning
and forgetting effects in measuring productivity should
be helpful in improving the accuracy of production
planning and productivity estimation (Nembhard and
Osothsilp [16]).

In this paper, we investigate the implications of these
phenomena occurring simultaneously for two sing-
machine scheduling problems. Specifically, we gener-
alize the results of Wang et al. [15] to a more general
context. The remaining part of this paper is organized
as follows: In Section 2, we formulate the model. In Sec-
tions 3 and 4, we consider two single-machine schedul-
ing problems. In Section 5, we present computational
experiments to evaluate the performance of the heuris-
tic algorithms. The last section is the conclusion.

2 Problem formulation

The focus of this paper is to study the effects of de-
terioration and learning simultaneously. The learning
effect model provided by Pegels’ learning curve [21]
is combined with the proportional linear deterioration
model [13] in which the basic job processing time is pro-
portional to the deteriorating rate to yield our model.
The model is described as follows: There are given
n independent and non-preemptive jobs available for
processing on a single machine. All the jobs will be
processed starting at time t0 ≥ 0 without overlapping
and idle time between them. Associated with each job
j ( j = 1, 2, ..., n), there is a normal processing time
pj, a due date d j, and a weight w j. Let pjr(t) be the
processing time of job J j if it is started at time t and
scheduled in position r in a sequence. As in Wang et al.
[15], we assume that the actual processing time of job j
if scheduled in position r is given by

pjr(t) = pj(αar−1 + β)(b + ct), (1)

where pj is the basic (normal) processing time of job
J j and a denotes the learning index with 0 < a ≤ 1,
b ≥ 0, c ≥ 0. A schedule is a sequence of the jobs
that specifies the processing order of the jobs on the
machine. Under a given schedule π = (1, 2, . . . , n), the
completion time of job J j is given by C j = C j(π). Let∑

w jC j and Lmax = max{C j − d j| j = 1, 2, . . . , n} repre-
sent the total weighted completion time and the maxi-
mum lateness of a given permutation. In the remain-
ing part of the paper, the problem considered will be
denoted using the three-field notation schema α|β|γ
introduced by Graham et al. [17].

3 The weighted sum of completion times
minimization problem

First, we give some lemmas; they are useful for the
following theorems:

Lemma 1 For a given schedule π = [J1, J2, . . . , Jn] of
1|pjr(t) = pj(αar−1 + β)(b + ct)|γ , if the f irst job starts
at time t0 ≥ 0, then the completion time C j of job J j is
equal to

C j = (t0 + b
c

)

j∏

i=1

(1 + pic(αai−1 + β)) − b
c

. (2)

Lemma 2 (Zhao et al. [18]) For the problem 1|pj(t) =
pj(b + ct)| ∑ w jC j, an optimal schedule can be ob-
tained by sequencing the jobs in non-decreasing order of

pj

w j(1+pj)
(i.e., the weighted shortest processing time f irst

(WSPT) rule).

From Lemma 2, we can use WSPT rule as a
heuristic algorithm for the general problem 1|pjr(t) =
pj(αar−1 + β)(b + ct)| ∑ w jC j.

Theorem 1 Let S∗ be an optimal schedule and S
be a WSPT schedule for the problem 1|pjr(t) =
pj(αar−1 + β)(b + ct)| ∑ w jC j. Then ρ1 = ∑

w jC j(S)/
∑

w jC j(S∗) ≤ 1/(αan−1 + β), and the bound is tight.

Proof Without loss of generality, we can suppose that
p1

w1(1+p1)
≤ p2

w2(1+p2)
≤ . . . ≤ pn

wn(1+pn)
. Then we have

∑
w jC j(S)

=
n∑

j=1

w j

[(

t0 + b
c

) j∏

i=1

(1 + pic(αai−1 + β)) − b
c

]
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≤
n∑

j=1

w j

[(

t0 + b
c

) j∏

i=1

(1 + pic (α + β)) − b
c

]

=
n∑

j=1

w j

[(

t0 + b
c

) j∏

i=1

(1 + pic) − b
c

]

,

∑
w jC j(S∗)

=
n∑

j=1

w j

[(

t0 + b
c

) j∏

i=1

(
1 + pic

(
αai−1 + β

)) − b
c

]

≥
n∑

j=1

w j

[(

t0 + b
c

) j∏

l=1

(
1 + cp[i]

(
αan−1 + β

)) − b
c

]

= (
αan−1 + β

) n∑

j=1

w j

×
[(

t0 + b
c

) j∏

i=1

(
1

αan−1+β
+cα[i]

)

− b
c(αan−1+β)

]

≥ (
αan−1 + β

) n∑

j=1

w j

[(

t0 + b
c

) j∏

i=1

(1 + cp[i]) − b
c

]

≥ (
αan−1 + β

) n∑

j=1

w j

[(

t0 + b
c

) j∏

i=1

(1 + cpi) − b
c

]

hence

ρ1 =
∑

w jC j(S)/
∑

w jC j(S∗) ≤ 1/(αan−1 + β).

It is not difficult to see that the bound is tight, since
if a = 1, we have

∑
w jC j(S)

∑
w jC j(S∗) = 1. This result is intuitive

because when a = 1, the WSPT schedule is optimal. ��

Obviously, ρ1 = ∑
w jC j(S)/

∑
w jC j(S∗) depends

on the parameter values.

4 The maximum lateness minimization problem

Lemma 3 (Zhao et al. [18]) For the problem 1|pj(t) =
pj(b + ct)|Lmax, an optimal schedule can be obtained by
sequencing the jobs in non-decreasing order of d j (i.e.,
the smallest due date (EDD) rule).

Lemma 4 (Wang et al. [15]) For the problem 1|pjr(t) =
pj(αar−1 + β)(b + ct)|Cmax, an optimal schedule can be
obtained by sequencing the jobs in non-decreasing order
of p j (i.e., the shortest processing time f irst (SPT) rule).

In order to solve the problem approximately, from
Lemma 3, we can use the EDD rule as a heuristic for
the problem 1|pjr(t) = pj(αar−1 + β)(b + ct)|Lmax. To
develop a worst-case performance ratio for the heuris-
tic, we have to avoid cases involving nonpositive Lmax.
Similar to Cheng and Wang [19], the worst-case error
bound is defined as follows:

ρ2 = Lmax(S) + dmax

Lmax(S∗) + dmax
,

where S and Lmax(S) denote the heuristic schedule
and the corresponding maximum lateness, respectively,
while S∗ and Lmax(S∗) denote the optimal schedule and
the minimum maximum lateness value, respectively,
and dmax = max{d j| j = 1, 2, . . . , n}.

Theorem 2 Let S∗ be an optimal schedule and S be
an EDD schedule for the problem 1|pjr(t) = pj(αar−1 +
β)(b + ct)|Lmax. Then

ρ2 = Lmax(S) + dmax

Lmax(S∗) + dmax
≤

(
t0 + b

c

) ∏n
i=1(1 + cpi) − b

c

C∗
max

,

and the bound is tight, where C∗
max is the optimal

makespan of the problem 1|pjr(t) = pj(αar−1 + β)(b +
ct)|Cmax.

Proof Without loss of generality, supposing that d1 ≤
d2 ≤ . . . ≤ dn, we have

Lmax(S) = max

{(

t0 + b
c

) j∏

i=1

(1 + cpi(αai−1 + β))

− b
c

− d j| j = 1, 2, . . . , n
}

≤ max

{(

t0 + b
c

) j∏

i=1

(1 + cpi) − b
c

− d j| j

= 1, 2, . . . , n} = L
′
max(S),

where L
′
max(S) is the optimal value of the problem

1|pj(t) = pj(b + ct)|Lmax.

Lmax(S∗) = max

{(

t0 + b
c

) j∏

i=1

(1 + pic(αai−1 + β))

− b
c

− d[ j]| j = 1, 2, . . . , n
}



542 Int J Adv Manuf Technol (2012) 59:539–545

= max

{(

t0 + b
c

) j∏

i=1

(1 + cp[i])

− b
c

− d[ j] −
(

t0 + b
c

) j∏

i=1

(1 + cp[i])

+ b
c

+
(

t0+ b
c

) j∏

i=1

(1+ pic(αai−1+β))

− b
c

| j = 1, 2, . . . , n
}

≥ max

{(

t0 + b
c

) j∏

i=1

(1 + cp[i])

− b
c

− d[ j]| j = 1, 2, . . . , n
}

− (t0 + b
c

)

j∏

i=1

(1 + cp[i])

+ b
c

+
(

t0+ b
c

) j∏

i=1

(1+ pic(αai−1+β))

− b
c

≥ L
′
max(S)−

(

t0+ b
c

) n∏

i=1

(1 + cpi)+ b
c

+C∗
max,

hence,

Lmax(S)−Lmax(S∗)≤
(

t0 + b
c

) n∏

i=1

(1 + cpi)− b
c

−C∗
max,

and so

ρ2 = Lmax(S) + dmax

Lmax(S∗) + dmax

≤ 1 +
(
t0 + b

c

) ∏n
i=1(1 + cpi) − b

c − C∗
max

Lmax(S∗) + dmax

≤ 1 +
(
t0 + b

c

) ∏n
i=1(1 + cpi) − b

c − C∗
max

C∗
max

≤
(
t0 + b

c

) ∏n
i=1(1 + cpl) − b

c

C∗
max

,

where C∗
max can be obtained by the SPT rule (see

Lemma 4).
It is not difficult to see that the bound is tight, since

if a = 1, we have Cmax = (t0 + b
c )

∏n
l=1(1 + cpl) − b

c and
ρ2 = Lmax(S)+dmax

Lmax(S∗)+dmax
= 1. This result is intuitive because

when a = 1, the EDD schedule is optimal. ��

5 Computational experiments

Computational experiments were conducted to eval-
uate the effectiveness of the heuristics of WSPT and

Table 1 Computational
results of the heuristics
for τ = 0.25

a n ρ1
1

αan−1+β
ρ2

∏n
l=1(1+pl)−1

C∗
max

Mean Max Mean Max Mean

0.15 6 1.0043 1.0284 1.9998 1.0081 1.0248 3.1052
7 1.0144 1.0587 1.9999 1.0135 1.0425 5.4208
8 1.0592 1.0886 2.0000 1.0148 1.0672 9.9395
9 1.0213 1.1420 2.0000 1.0339 1.1532 15.7421

10 1.0343 1.1284 2.0000 1.0508 1.1148 26.1052
11 1.0504 1.0787 2.0000 1.0635 1.1235 37.4208
12 1.0602 1.1851 2.0000 1.0535 1.1762 57.8956

0.50 6 1.0582 1.1219 1.9394 1.0040 1.1141 4.7158
7 1.0935 1.1164 1.9692 1.0236 1.1014 7.2543
8 1.0049 1.1342 1.9845 1.01051 1.0410 12.4032
9 1.0579 1.1789 1.9922 1.0664 1.1950 19.6228

10 1.0282 1.1619 1.9961 1.0996 1.2362 28.9121
11 1.0393 1.1564 1.9980 1.0440 1.1641 43.7158
12 1.0235 1.1516 1.9990 1.0240 1.1741 62.9854

0.85 6 1.0032 1.0249 1.3853 1.0687 1.1061 4.1458
7 1.0137 1.1081 1.4522 1.0150 1.1043 8.8537
8 1.0157 1.1778 1.5145 1.0117 1.1509 14.3855
9 1.0131 1.1602 1.5717 1.0131 1.1624 24.4145

10 1.0117 1.1019 1.6239 1.0167 1.1261 35.5458
11 1.0141 1.1124 1.6711 1.0140 1.1343 45.8537
12 1.0515 1.1479 1.7133 1.0127 1.1447 69.1254
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Table 2 Computational
results of the heuristics
for τ = 0.5

a n ρ1
1

αan−1+β
ρ2

∏n
l=1(1+pl)−1

C∗
max

Mean Max Mean Max Mean

0.15 6 1.0230 1.1410 1.9998 1.0024 1.0311 5.0965
7 1.0285 1.1045 1.9999 1.0076 1.1378 9.2620
8 1.0314 1.1528 2.0000 1.0071 1.1407 15.9691
9 1.0317 1.1512 2.0000 1.0030 1.1528 25.7365

10 1.0120 1.1510 2.0000 1.0324 1.1511 38.6965
11 1.0265 1.1459 2.0000 1.0376 1.1078 50.1620
12 1.0845 1.1159 2.0000 1.0176 1.1378 72.2967

0.50 6 1.0137 1.0458 1.9394 1.0581 1.0733 6.9076
7 1.0003 1.0021 1.9692 1.0447 1.0145 10.8040
8 1.0284 1.1017 1.9845 1.0719 1.1006 19.4152
9 1.0191 1.1069 1.9922 1.0191 1.0429 28.3193

10 1.0317 1.0628 1.9961 1.0081 1.0533 38.9076
11 1.0103 1.0748 1.9980 1.0110 1.0258 50.8040
12 1.0120 1.0598 1.9990 1.0000 1.0000 85.8040

0.85 6 1.0227 1.1465 1.3853 1.0838 1.1034 7.0598
7 1.0123 1.12193 1.4522 1.0270 1.1307 15.1657
8 1.0258 1.1565 1.5145 1.0429 1.1744 25.3542
9 1.0258 1.1394 1.5717 1.0260 1.1306 36.4482

10 1.0027 1.1165 1.6239 1.1038 1.1734 49.9598
11 1.0023 1.0093 1.6711 1.0170 1.0407 58.1657
12 1.0513 1.0993 1.7133 1.0070 1.0278 96.1657

EDD. The heuristic algorithms were coded in VC++
6.0 and ran the computational experiments on a Pen-
tium 4-2.4G personal computer with a RAM size of
1G. For all the tests, the values t0 = 0. In addition,
a = 0.15, 0.50, and 0.85, respectively. For each job J j,

the job deterioration rate pj was generated from a
uniform distribution over [1, 100], and the weight w j

was generated from a uniform distribution over [1, 10].
For each job J j, the due date d j was generated from
a uniform distribution over [1, τ b

c (
∏n

l=1(1 + cαl) − 1),

Table 3 Computational
results of the heuristics
for τ = 1

a n ρ1
1

αan−1+β
ρ2

∏n
l=1(1+pl)−1

C∗
max

Mean Max Mean Max Mean

0.15 6 1.0035 1.1204 1.9998 1.0002 1.0424 8.0239
7 1.0060 1.0195 1.9999 1.0044 1.1033 15.5601
8 1.0020 1.0118 2.0000 1.0023 1.0719 24.9593
9 1.0062 1.0725 2.0000 1.0059 1.0693 35.7481

10 1.0035 1.0804 2.0000 1.0021 1.0124 48.0239
11 1.0070 1.0095 2.0000 1.0011 1.0087 55.3323
12 1.0020 1.0160 2.0000 1.0021 1.0127 76.5342

0.50 6 1.0095 1.0115 1.9394 1.0022 1.0423 8.8928
7 1.0065 1.0403 1.9692 1.0147 1.0547 15.6122
8 1.0031 1.0307 1.9845 1.0087 1.1101 25.4174
9 1.0033 1.0083 1.9922 1.0132 1.0177 37.3129

10 1.0012 1.0055 1.9961 1.0022 1.0423 49.8928
11 1.0016 1.0140 1.9980 1.0089 1.0213 59.6122
12 1.0078 1.0012 1.9990 1.0000 1.0000 80.2598

0.85 6 1.0010 1.0014 1.3853 1.0000 1.0000 9.1557
7 1.0108 1.0124 1.4522 1.0956 1.0143 15.8152
8 1.0012 1.0103 1.5145 1.0133 1.0160 24.4076
9 1.0015 1.0140 1.5717 1.0015 1.0018 38.3697

10 1.0012 1.0019 1.6239 1.0011 1.0040 51.1557
11 1.0008 1.0044 1.6711 1.0010 1.0040 66.2135
12 1.0002 1.0047 1.7133 1.0000 1.0000 98.1435
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where τ ∈ {0.25, 0.5, 1} and α = β = 0.5, b = c = 1. For
each heuristic, seven different job sizes, n = 6, 7, 8,
9, 10, 11, and 12 were used. As a consequence, 42
experimental conditions were examined, and 20 repli-
cations were randomly generated for each condition.
A total of 1,260 problems were tested. In order to
study the effects of these parameters as well as to
construct accurate and easily implemented algorithms,
two heuristic algorithms are presented in this section.
Each algorithm consists of two phases; the first phase
involves generating an initial solution in a simple way,
and the second phase further improves the quality of
the solution by a neighborhood search, which provides
good solutions and offers possibilities to be enhanced
[20]. In the first step, jobs are sorted in non-decreasing
order of the ratio pj

w j(1+pj)
to obtain an initial solution.

The second step is to improve the initial solution by
using pairwise interchanges. In order to study the im-
pact of the parameters, the mean and maximum of the
ratio of the optimal solution and the WSPT (EDD)
solution and the worst-case error bound are reported
in Tables 1, 2, and 3. It is observed from Tables 1, 2,
and 3 that the mean and maximum of the ratio of the
optimal solution and the WSPT solution and the worst-
case error bound for WSPT algorithm increase as the
learning effect is stronger. It is noticed from Tables 1,
2, and 3 that the mean and maximum of the ratio of the
optimal solution and the EDD solution decrease as the
tardiness factor τ becomes larger. It is also found that
the minimum and mean ratios equal one for some cases.
In these cases, it is very easy to find a schedule such that
all jobs can be finished before their due dates, yielding
zero maximum tardiness. In addition, the ratio of the
two solutions increases as the job size increases. This
phenomenon is due to the fact that the learning effect
becomes even stronger as the number of processed jobs
grows. Our main goal was to evaluate the performance
of the heuristics by comparing the heuristic solutions
with the optimal solutions. The results are summarized
in Tables 1, 2, and 3. From Tables 1, 2, and 3, we see that
the performance of the heuristic algorithms is good.

6 Conclusions

We have considered in this paper two single-machine
scheduling problems with the effect of deterioration
and learning. For the weighted sum of completion
times minimization problem and the maximum lateness
minimization problem, we gave two heuristics accord-
ing to the corresponding problems without learning
effect. We also gave the worst-case error bound for

the heuristics. Computational results show that the
heuristic algorithms are very effective and efficient in
obtaining near-optimal solutions. Future research may
focus on determining the computational complexity of
these two problems as they remain open, or proposing
more sophisticated heuristics.

Acknowledgements We are grateful to the editor and two
anonymous referees for their helpful comments on an earlier ver-
sion of this paper. This research was supported by the National
Natural Science Foundation of China (Grant No. 11001181).

References

1. Alidaee B, Womer NK (1999) Scheduling with time depen-
dent processing times: review and extensions. J Oper Res Soc
50:711–720

2. Cheng TCE, Ding Q, Lin BMT (2004) A concise survey of
scheduling with time-dependent processing times. Eur J Oper
Res 152:1–13

3. Biskup D (2008) A state-of-the-art review on scheduling with
learning effects. Eur J Oper Res 188:315–329

4. Wu C-C, Lee W-C, Shiau Y-R (2007) Minimizing the total
weighted completion time on a single machine under linear
deterioration. Int J Adv Manuf Technol 33:1237–1243

5. Shiau Y-R, Lee W-C, Wu C-C, Chang C-M (2007) Two-
machine flowshop scheduling to minimize mean flow time
under simple linear deterioration. Int J Adv Manuf Technol
34:774–782

6. Eren T, Guner E (2008) A bicriteria parallel machine
scheduling with a learning effect. Int J Adv Manuf Technol.
doi:10.1007/s00170-008-1436-2

7. Lee W-C, Wu C-C, Liu H-C (2009) A note on single-machine
makespan problem with general deteriorating function. Int J
Adv Manuf Technol. doi:10.1007/s00170-008-1421-9

8. Wang J-B, Wang L-Y, Wang D, Huang X, Wang X-R (2009)
A note on single-machine total completion time problem with
general deteriorating function. Int J Adv Manuf Technol.
doi:10.1007/s00170-008-1918-2

9. Lee W-C (2004) A note on deteriorating jobs and learning
in single-machine scheduling problems. Int J Bus Econ 3:
83–89

10. Wang J-B (2006) A note on scheduling problems with learn-
ing effect and deteriorating jobs. Int J Syst Sci 37:827–
833

11. Wang J-B (2007) Single-machine scheduling problems with
the effects of learning and deterioration. Omega 35:397–
402

12. Wang J-B, Cheng TCE (2007) Scheduling problems with the
effects of deterioration and learning. Asia-Pac J Oper Res
24:245–261

13. Wang X, Cheng TCE (2007) Single-machine scheduling
with deteriorating jobs and learning effects to minimize the
makespan. Eur J Oper Res 178:57–70

14. Toksar MD, Guner E (2007) Minimizing the earliness/
tardiness costs on parallel machine with learning effects and
deteriorating jobs: a mixed nonlinear integer programming
approach. Int J Adv Manuf Technol. doi:10.1007/s00170-
007-1128-3

15. Wang J-B, Huang X, Wang X-Y, Yin N, Wang L-Y (2009)
Learning effect and deteriorating jobs in the single ma-

http://dx.doi.org/10.1007/s00170-008-1436-2
http://dx.doi.org/10.1007/s00170-008-1421-9
http://dx.doi.org/10.1007/s00170-008-1918-2
http://dx.doi.org/10.1007/s00170-007-1128-3
http://dx.doi.org/10.1007/s00170-007-1128-3


Int J Adv Manuf Technol (2012) 59:539–545 545

chine scheduling problems. Appl Math Model. doi:10.1016/
j.apm.2009-01-004

16. Nembhard DA, Osothsilp N (2002) Task complexity effects
on between-individual learning/forgetting variability. Int J
Ind Ergon 29:297–306

17. Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG
(1979) Optimization and approximation in deterministic se-
quencing and scheduling: a survey. Ann Discrete Math 5:
287–326

18. Zhao C, Zhang Q, Tang H (2003) Scheduling problems under
linear deterioration. Acta Automatic Sinica 29:531–535

19. Cheng TCE, Wang G (2000) Single machine scheduling with
learning effect considerations. Ann Oper Res 98:273–290

20. Gupta AK, Sivakumar AI (2005) Job shop scheduling tech-
niques in semiconductor manufacturing. Int J Adv Manuf
Technol 27:1163–1169

21. Pegels C-C (1969) On start-up or learning curves: an ex-
panded view. AIIE Trans 1:316–322

http://dx.doi.org/10.1016/j.apm.2009-01-004
http://dx.doi.org/10.1016/j.apm.2009-01-004

	A note on single-machine scheduling problems with the effects of deterioration and learning
	Abstract
	Introduction
	Problem formulation
	The weighted sum of completion times minimization problem
	The maximum lateness minimization problem
	Computational experiments
	Conclusions
	References



