Int J Adv Manuf Technol (2012) 59:815-828
DOI 10.1007/s00170-011-3527-8

ORIGINAL ARTICLE

Optimization of process planning with various flexibilities
using an imperialist competitive algorithm

Kunlei Lian - Chaoyong Zhang - Xinyu Shao -
Liang Gao

Received: 21 April 2011 /Accepted: 10 July 2011 /Published online: 7 August 2011

© Springer-Verlag London Limited 2011

Abstract In this paper, we investigate the optimization of
process planning in which various flexibilities are consid-
ered. The objective is to minimize total weighted sum of
manufacturing costs. Various flexibilities, including process
flexibility, sequence flexibility, machine flexibility, tool
flexibility, and tool access direction (TAD) flexibility,
generally exist in process planning and consideration of
these flexibilities is essential for improving production
efficiency and system flexibility. However, process plan-
ning is strongly NP-hard due to the existence of various
flexibilities as well as complex machining precedence
constraints. To tackle this problem, an imperialist compet-
itive algorithm (ICA) is employed to find promising
solutions with reasonable computational cost. ICA is a
novel socio-politically motivated metaheuristic algorithm
inspired by imperialist competition. It starts with an initial
population and proceeds through assimilation, position
exchange, imperialistic competition, and elimination. Com-
putational experiments on three sets of process planning
problem taken from literature are carried out, and compar-
isons with some existing algorithms developed for process
planning are presented. The results show that the algorithm
performs significantly better than existing algorithms like
genetic algorithm (GA), simulated annealing (SA), tabu
search (TS), and particle swarm optimization (PSO).

Keywords Process planning - Imperialist competitive
algorithm - Genetic algorithm - Simulated annealing

K. Lian - C. Zhang (><) - X. Shao + L. Gao

The State Key Laboratory of Digital Manufacturing Equipment
and Technology, Huazhong University of Science and Technology,
Wuhan 430074, People’s Republic of China

e-mail: zcyhust@mail.hust.edu.cn

1 Introduction

Computer-aided process planning (CAPP) is a key component
of computer integrated manufacturing system (CIMS). It links
computer-aided design (CAD) and computer-aided manufac-
turing (CAM) by transforming a part design into a set of
machining instructions. This paper addresses the process
planning problem in generative CAPP systems. An important
feature of the generative system is its high degree of flexibility
to adapt itself to multi-variety and small-batch production
environments. Therefore, optimization of process planning
with various flexibilities is essential for improving production
efficiency as well as system flexibility. Generally, process
planning is concerned with conducting two activities, namely,
operation selection and operation sequencing, simultaneously.
Operation selection refers to the act of selecting necessary
operations to achieve machining features of a given part and
determining relevant manufacturing resources for each opera-
tion, while operation sequencing is the act of determining an
optimized sequence of operations subject to the precedence
constraints among operations. There exist a number of
flexibilities with respect to these two activities of process
planning: (1) During the phase of operation selection, a
manufacturing feature can be achieved through different
combinations of operations (process flexibility), and alterna-
tive machines, tools, and tool access directions (TAD) may
exist for each operation (machine flexibility, tool flexibility,
and TAD flexibility). (2) During the phase of operation
sequencing, different sequences of operations result in different
process plans for the same part (sequence flexibility). Although
many studies, including Li et al. [1], Kim et al. [2], and Seok
Shin et al. [3], dealt with some or part of these process
planning flexibilities, to the best of the authors’ knowledge,
there is no existing study that comprehensively considered
the impact of different flexibilities on the outputs of process

@ Springer

816

Int J Adv Manuf Technol (2012) 59:815-828

planning. Therefore, in this paper, the process planning
problem with various flexibilities is extensively studied.
Process planning can be modeled as a constraint-based
traveling salesman problem (TSP) [4] and therefore is
strongly NP-hard. Due to its intrinsic intractability of process
planning, efficient algorithms are needed to solve this
problem in reasonable computational time. In recent years,
metaheuristic algorithms have shown their advantages in
solving combinatorial optimization problems, and a number
of metaheuristic approaches have been proposed for the
optimization of process planning, for example, genetic
algorithm (GA), simulated annealing (SA), particle swarm
optimization (PSO), tabu search (TS), and ant colony
optimization (ACOQ). This paper adopts a novel optimization
algorithm named imperialist competitive algorithm (ICA) to
address the process planning problem with various flexibil-
ities. ICA is a population-based evolutionary algorithm
motivated by imperialistic competition. It starts with an
initial population and effectively searches the solution space
through some specially designed operators to converge to
optimal or near-optimal solutions. The superiority of ICA
over some existing approaches developed for process
planning is validated through extensive experiments using
benchmark problems taken from literature. Computational
results show that ICA is very effective and efficient in
solving process planning problem with various flexibilities.
The rest of this paper is organized as follows. Section 2
gives a review of related work about process planning and
ICA. Section 3 elaborates the process planning problem with
various flexibilities. Details of the proposed ICA are presented
in Section 4. Section 5 illustrates the efficiency of ICA
through three experiments. Section 6 concludes the paper.

2 Literature review

Process planning has been extensively studied in the past
30 years, and numerous approaches have been proposed to
obtain optimal or near-optimal solutions. For reviews on
process planning, the reader is referred to Leo and
Hongchao [5] and Marri et al. [6]. With respect to different
flexibilities considered by researchers in the optimization of
process planning, the existing approaches can be classified
as the following three categories.

1. Process planning with machine flexibility, tool flexibility,
TAD flexibility, and sequence flexibility. Zhang et al. [7]
dealt with the process planning problem in a job shop
manufacturing environment by considering multiple
decision-making activities, i.e., operation selection,
machine selection, setup selection, cutting tool selection,
and operations sequencing, simultaneously. A genetic
algorithm (GA) was employed to obtain near-optimal

@ Springer

process plans. Qiao et al. [8] studied the operation
sequencing problem for prismatic parts and four types of
process planning rules, including precedence rules,
clustering rules, adjacent order rules, and optimization
rules, were considered. Ma et al. [9] proposed a
simulated annealing (SA) algorithm for process planning
optimization. The machine flexibility, tool flexibility,
TAD flexibility, and sequence flexibility were considered
in their work. Li et al. [1] developed a hybrid GA and
SA algorithm to solve the process planning problem
with constraints. GA was conducted in the first stage to
generate some good process plans. SA was carried out in
the second stage to search for optimal or near-optimal
process plans based on the process plans obtained by
GA. Li et al. [10] developed a constraint-handling
method and a tabu search (TS) algorithm to address the
process planning problem. Li et al. [11] studied the
process planning problem in distributed manufacturing
environment, and GA was applied to handle it. Guo et al.
[12] proposed a particle swarm optimization (PSO)
algorithm for the optimization of operation sequencing
in process planning. Salehi and Tavakkoli-Moghaddam
[13] divided the process planning into preliminary
planning and secondary planning. The aim of prelimi-
nary planning was to generate some feasible operation
sequences and secondary planning aimed at selecting
optimized machining resources for each operation. Liu et
al. [4] mapped the process planning to a constraint-based
traveling salesman problem, and an ant colony optimi-
zation (ACO) algorithm was implemented to solve it.

Process planning with machine flexibility, process
flexibility, and sequence flexibility. In recent years,
integration of process planning and scheduling (IPPS)
has drawn the attention of many researchers. Flexibil-
ities considered in process planning of IPPS are usually
different from that considered when conducting process
planning alone. Kim et al. [2] addressed the integrated
process planning and scheduling problem in job shop
flexible manufacturing systems. Various flexibilities,
including sequence flexibility, process flexibility, and
machine flexibility, were considered in the process
planning function, and a symbiotic evolutionary algo-
rithm was proposed to obtain optimal solutions. Shao et
al. [14] presented a new model to integrate the two
functions of process planning and scheduling. A
modified GA-based approach was developed to facil-
itate the integration and optimization of the two
functions. Leung et al. [15] proposed an ACO
algorithm in an agent-based system to integrate process
planning and shopfloor scheduling. Artificial ants were
implemented as software agents, and a graph-based
solution method was suggested. Li et al. [16] formu-
lated a mathematical model of integrated process

Int J Adv Manuf Technol (2012) 59:815-828

817

planning and scheduling, and an evolutionary
algorithm-based approach was proposed.

3. Process planning with machine flexibility, tool flexibility,
process flexibility, and sequence flexibility. Seok Shin et al.
[3] proposed a symbiotic evolutionary algorithm to solve
a multi-objective FMS process planning problem with
various flexibilities. Four types of flexibilities related to
machine, tool, sequence, and process were studied.

A review of related work reveals that the existing
approaches suffer from at least one of the following drawbacks:

1. Process planning is conducted without consideration of
various flexibilities, which limits the application of
process planning to a small domain.

2. Process planning is considered only for prismatic parts.

3. Some approaches that are tested on relatively small
number of problems may not adapt to realistic
conditions in multi-variety production environment.

To the best of our knowledge, this paper is the first attempt
to address the process planning with various flexibilities. Due
to its combinatorial nature, it is reasonable to use metaheuristic
algorithm to obtain near-optimal solution in acceptable
computational time. ICA is a novel population-based evolu-
tionary algorithm proposed by Atashpaz-Gargari and Lucas
[17]. Similar to other metaheuristic algorithms mimicking
different kinds of natural phenomena such as natural
evolution, birds flocking, and fish schooling, ICA is inspired
by the socio-political process of imperialistic competition.
ICA has been successfully applied to solve many combina-
torial optimization problems. Atashpaz-Gargari and Caro
[18], Atashpaz-Gargari et al. [19], and Gargari et al. [20]
firstly applied ICA to PID controller designing. Rajabioun et
al. [21] used ICA as a tool to achieve Nash equilibrium point.
Khabbazi et al. [22] utilized the ICA to minimize the error
probability for binary phase shift keying modulation.
Forouharfard and Zandieh [23] proposed an ICA to
schedule receiving and shipping trucks in cross-docking
systems. Kaveh and Talatahari [24] suggested an ICA
application in optimal design of skeletal structures. Lucas
et al. [25] applied ICA to design a linear induction motor.
Nazari-Shirkouhi et al. [26] presented an ICA application
in solving the integrated product mix-outsourcing problem.
Sarayloo and Tavakkoli-Moghaddam [27] used ICA to
address the dynamic cell formation problem with production
planning. ICA had also been applied to wireless sensor
network localization [28], scheduling of assembly flowshop
problem [29], unit commitment problem [30], stochastic
assembly balancing problem [31], and data clustering [32].
Recently, some researchers have incorporated chaos theory
into ICA to develop more robust algorithms, such as
adaptive ICA [33] and chaotic ICA [33, 35, 36]. Abdechiri
et al. [34] proposed an adaptive ICA that utilized probabi-

listic model to balance the exploration and exploitation
abilities of the ICA. Abdechiri et al. [34] and Bahrami et al.
both [35] developed a chaotic ICA that used the chaos theory
to adjust the movement angle of colonies towards the
imperialists. Duan et al. [36] proposed a chaotic ICA that
used chaotic sequences instead of random sequences to
diversify the population and to improve ICA’s performance in
preventing premature convergence to local minimum. In
addition, ICA has been hybridized with electromagnetic-like
mechanism to solve group scheduling problem in flexible
flow shops [37]. Therefore, ICA is adopted in this paper to
obtain optimal or near-optimal solutions of the process
planning problem. Computational results in Section 5 show
that the proposed ICA outperforms some existing approaches
developed for process planning.

3 The process planning problem
3.1 Process planning problem representation

Process planning is the act of selecting necessary operations
needed to manufacture a part and determining the sequence of
these selected operations subject to predefined precedence
constraints. There generally exist a number of flexibilities in
the optimization of process planning. In this paper, five
flexibilities are considered, namely, process flexibility, ma-
chine flexibility, tool flexibility, TAD flexibility, and sequence
flexibility. Process flexibility refers to the possibility of
producing the same manufacturing feature with alternative
operations or sequences of operations. Machine flexibility
relates to the possibility of performing the same operation on
different machines. Tool flexibility is decided by the possibil-
ity of performing the same operation with alternative cutting
tools. TAD flexibility indicates the possibility of performing
the same operation with different TADs. Sequence flexibility
relates to the possibility of interchanging the sequence of
operations which is required to manufacture a job.

In this paper, we utilize a network representation that is
developed by Ho and Moodie [2, 3, 38] to describe the
flexibilities explained previously. Figure 1 shows a network
representation of a part. As is shown in Fig. 1, there are three
types of nodes in the network, namely, starting node,
intermediate node, and ending node. Both the starting node
and the ending node are dummy ones that do not contain any
operation information. They indicate the beginning and the
ending of the manufacturing process of a part respectively. An
intermediate node represents an operation. It contains alter-
native machines, cutting tools, and TADs that can perform the
operation. The arrow that connects two nodes indicates the
precedence relations between the nodes. A flexible process
plan network must be acyclic to ensure that only a finite
number of operations are traversed to form a process plan. In

@ Springer

818

Int J Adv Manuf Technol (2012) 59:815-828

Fig. 1 A network representa-
tion of a part

Starting node

Number of operation

Alternative machines

{4,6,8)
{4,8,9}
{4y, y}

order to describe the process flexibility, an ‘OR’ relationship is
introduced. If the links that follows a node are connected by
an ‘OR’ symbol, only one of them is needed to traverse.

3.2 Objectives

The objective considered in this paper is the total weighted
cost (TWC) of machine cost (MC), tool cost (7C), machine
change cost (MCC), tool change cost (TCC), and setup
change cost (SCC). The definitions of these objectives are
given as follows [1].

* Machine cost (MC)
n
MC =" McI, (1)
=1

Where 7 is the number of operations and MCI; is the
predetermined machine cost index for using machine .

@ Springer

Alternative tools
Alternative TADs
Ending node
» Tool cost (TC)
TC =" 1CI, (2)
i—1

13

Where TClI, is the predetermined tool cost index for
using tool 7, a constant for a particular tool.

* Machine change cost (MCC): a machine change means two

adjacent operations are performed on different machines.

MCC = MCCI x S~ Q(M;y — M) 3)

n
i=1

Where MCCI is the machine change cost index and M;
is the identity of the machine used for operation i.

_M%{lfm¢mﬂ @

QM;
(Wi 0 if M; = My,

Int J Adv Manuf Technol (2012) 59:815-828

819

* Set-up change cost (SCC): a set-up change is needed
when two consecutive operations are not machined on
the same machine with the same 74D. The number of
set-up changes (NSC) can be computed as:

n—1

NSC =% (81 (M; — Mi1,), $2(TAD; — TAD;41))
=1
(5)
The corresponding SCC can be computed as:
SCC = NSC x SCCI, (6)
Where
aw-n=4. 57")
: “lox=vy
0X=Y=0
2,(XY) = { . (8)
1 otherwise,

And SCCI is the set-up change cost index.

* Tool change cost (TCC): a tool change means that two
consecutive operations are not executed on the same
machine with the same tool. The number of tool
changes (NTC) can be computed as:

n—1
NTC = QZ(QI(M7M+1)aQI(E7E+1))7 (9)
i=1

The corresponding 7CC can be computed as:

NTC
TCC =) TCCl, (10)

i=1

and the TCCI is the tool change cost index.
The total weighted cost (TWC) is defined as follows.

TWC = wi*MC 4+ wy*TC + w3*SC 4 w4*MCC + ws*TCC,

(11)

Where w;—ws are the weights.

4 The proposed imperialist competitive algorithm
4.1 Frame work of imperialist competitive algorithm

ICA is a novel population-based optimization algorithm
proposed by Atashpaz-Gargari and Lucas [17]. Each
individual in the population is named as country, and the
whole countries are classified into two categories: impe-

rialist and colony. Imperialists are some of the best
countries in the initial population, and the rest countries
are colonies of them. Colonies of the initial population are
distributed to initial imperialists. An imperialist and its
corresponding colonies form an empire. The power of
each country is used to indicate its fitness. During the
iterations of the algorithm, empires compete to possess
more colonies. Empires with more power have higher
possibility to possess more colonies, and empires with less
power will gradually lose their colonies. When all the
colonies are possessed by a single imperialist, the
algorithm terminates. The main steps of ICA are described
as follows.

1. Assimilation. When a colony is possessed by an
imperialist, it will move to the imperialist to achieve a
new place in the solution space. This process is called
assimilation. With respect to discrete optimization
problems, assimilation of ICA is achieved by crossover
operation and mutation operator [29].

2. Imperialistic competition. Since all empires try to possess
more colonies to increase their power, imperialistic
competition happens among empires to possess the
weakest colony of the weakest empire. The possibility
of an empire to possess a colony is determined by the
power of the imperialist and its colonies.

3. Elimination. Powerless empire will lose its colonies
during imperialist competition and elimination happens
when an empire loses all its colonies.

The workflow of the ICA is given in Fig. 2.
The procedure of ICA is described as follows.

Step 1 Initialize parameters of ICA.

Step 2 Randomly generate N, number of countries. Choose
Nimp number of best countries as imperialists and
determine their colonies according to their power.

Step 3 If termination criterion is not met, repeat the following
steps.

Step 4 Assimilation

Step 5 Imperialistic competition

Step 6 Revolution

Step 7 Elimination of powerless empires

4.2 Initial countries generation
4.2.1 Country representation

In this paper, a representation scheme that takes all the
flexibilities into consideration is proposed. Figure 3 shows
the encoding scheme of the part given in Fig. 1. As is
shown in Fig. 3, each country that represents a potential
solution to the process planning problem consists of two
substrings: the head string and the tail string. The head

@ Springer

820

Int J Adv Manuf Technol (2012) 59:815-828

Initialize parameters of ICA I

| Generate an initial population of countries |

| Construct the empires |

Assimilation

Imperialistic competition

—| Elimination of powerless empires |

Fig. 2 The workflow of the ICA

string contains manufacturing information about all the
operations needed to produce a part. The head string is
made up of operation sequence, machine sequence, tool
sequence, and TAD sequence. The length of the head string
equals the total number of operations in the network
representation described above. Note that some of the
operations may not be selected in the final process plan.
Whether an operation is to be selected or not is decided by
the tail string. The tail string consists of a sequence of
binary number. The length of the tail string equals to the
total number of ORs in the network representation of a part.
A number of 0 indicates that a left OR path is chosen and a
number of 1 indicates that a right OR path is chosen. In
Fig. 3, the length of head string and tail string equals 15
and 3, respectively. Each column of the head string
represents an operation. The first row indicates the
operation sequence. The second row is the machine
sequence which is used to specify with machine is selected
to perform the operation in the corresponding position of
operation sequence. The third row specifies the tool used
for each operation and the fourth row indicates the TAD
chosen for each operation. The head string contains
sequence flexibility represented by operation sequence,
machine flexibility by machine sequence, tool flexibility
by tool sequence, and TAD flexibility by TAD sequence.
And the tail string represents the process flexibility.

@ Springer

Since complex precedence constraints exist among
operations, it’s necessary to ensure the feasibility of
operation sequence. In the proposed ICA algorithm, a
constraints-handling algorithm is proposed to adjust infea-
sible solutions into feasible ones. The constraints-handling
algorithm is described in the following section.

4.2.2 Constraints-handling algorithm

Since various precedence constraints exist among opera-
tions, initial process plans that are generated randomly or
produced by crossover and mutation operator may be
infeasible. In this paper, the constraints-handling algorithm
proposed by Tseng [39] is adopted to adjust infeasible
solutions into feasible ones. This algorithm firstly con-
structs a binary-tree structure based on the precedence
relationships among operations. And the feasible solution is
obtained by inorderly traversing the binary tree. Notations
used in the algorithm are given as follows [39].

P A process plan that is made up of operations sequence.
g, The operation in the /th position of the process plan P
r Root node point
! Leaf node point

The constraints adjusting algorithm is described as
follow.

Step 1 Set h=2.
Step 2 Set g;’s corresponding operation at root node point
R.
Step 3 Set g,,’s corresponding operation at leaf node point
/, and decide the precedence relationship of » and /.
1. If p.=1, operation | should be machined before
operation .
(a) If r’s left child node point is not empty, then set
r’s left node point at the new root node point r
and repeat Step 3.
(b) If 7’s left child node point is empty, then insert / at
r’s left node point. Set A=h+1 and go to Step 4.
2. If p,,=0, there is no precedence constraints between
operation 7 and /.
(a) If r’s right node child node point is not empty,
then set 7’s right node point at the new root node
point » and go to Step 3.
(b) If ’s right child node point is empty, then insert / at
r’s right node point. Set #=A+1, and go to Step 4.
Step 4 If h=m, go to Step 5; otherwise go to Step 2.
Step 5 List feasible solutions according to the inorder
traversal rank and stop the algorithm.

The example given in Fig. 1 is used here to illustrate the
constraints-handling algorithm. To apply the algorithm, the
precedence matrix of operations C must be predetermined.
As is shown in Fig. 4, a number of 1 at the ith row and jth

Int J Adv Manuf Technol (2012) 59:815-828

821

Fig. 3 The encoding scheme of

head string

the part given in Fig. |

tail string

104

312|115 136 (8 |14

11]0]1

operation sequence

2120213

3(3(4(2(6(46(5/5/6]6

~4———— machine sequence ———————»=

12255

T\T\7T(414\3|4(7|5|4/4

column indicates that operation i must be performed after
operation j.

Suppose there is an infeasible operation sequence:13, 5,
14,2, 4, 3, 12, 10, 6, 11, 15, 1,9, 7, 8

Figure 5 shows the construction of the binary tree of the
infeasible operation sequence.

Operation 13 is set as the root node first.

For operation 5, since Cs;3=0, which means that there
exists no precedence constraints between operation 5 and
operation 13, so operation 5 is placed at the right leaf of
operation 13.

For operation 14, since C314=0, operation 14 should be
placed at the right leaf node of operation 13. Since there
exists an operation 5 at the right leaf node operation 13,
operation 5 becomes the new root node and the value of
Cs.14 is checked. Since Cs;4=0, operation 14 is placed at
the right leaf node of operation 5.

O2 O3 O4 Os

0

Os O7

0

Og O9 O1o0 O11 O12 O13 O14 O1s

=]
=]

O1

©C 0O OO0 OO K —=iIHrEIMEEHOO
O O O O OO+ HKHH=HOOOO

O O O O O O H H H H H OO O O
©C O OO0 O O HFHFHOOO O

O O O O O O +H H H OO O O O O
O O O O O O+ OO O o O o o

O O O O O O+ OO O O o o oo
S O O O O O O o o oo o oo

= o= = O O 00 00 00 OO0
= O +H O O O O O O O O O o O O
= = O O O O O O O O O O © O O
_H O O O O O O O O O o o o oo
_H O O O O O O O O O O O o o o
SO O O O O O O O O O o o o oo

Fig. 4 A number of 1 at the ith row and jth column

- tool sequence -
XXX [4X|Z |Z|-Z | X |X |-Z |Z [+Z|+Z|-y |-y
B TAD sequence >

For operation 2, since Cy3,=0 and Cs,=1, operation 2
should be placed at the left leaf node of operation 5.

Following the similar steps described above, a binary
tree can be constructed. The feasible operation sequence is
obtained by inorderly traversing the binary tree.

4.2.3 Objective evaluation

The example part given in Fig. 1 consists of five flexibilities,
and the TWC equals to the weighted sum of MC, TC, MCC,
TCC, and SCC.

4.3 Initial empires construction

Using the encoding scheme described above, a number
of countries can be generated randomly and evaluated.
To start the algorithm, some best countries are selected as
the imperialists. Suppose the size of initial population is
Npop» the number of imperialists is N, and the number of
colonies i8 Neol(Npop = Nimp + Neot). To divide the colo-
nies among the selected imperialists, the normalized cost
of each imperialist must be computed using the following
formula.

C, = max(¢;) — ¢, (12)

Where ¢, is the cost (makespan) of nth imperialist, and
C,, is its normalized cost. The colonies are distributed
among imperialists based on their normalized power. The
normalized power of each imperialist is defined by

G
Pn = | SWom &

- 13
21 G "

@ Springer

822

Int J Adv Manuf Technol (2012) 59:815-828

Fig. 5 The construction of the
binary tree of the infeasible
operation sequence

NULL @

Infeasible operation sequence

NULL NULL @

NULL NULL NULL

NULL NULL NULL @

NULL NULL NULL
@ NULL

NULL

NULL NULL

Constructed binary tree

@WOOWOOOOOOOO®OO®E

Then, the number of colonies of an empire will be
NC,, = round(p,, - Neo) (14)
An imperialist with its corresponding colonies construct
an empire.

4.4 Assimilation

Assimilation happens between an imperialist and its
colonies and is accomplished by the following steps.

4.4.1 Moving colonies of an empire toward the imperialist

The movement of a colony to its imperialists is accom-
plished by crossover and mutation operator.

e Crossover

Two-point crossover operator is used in this paper and is
illustrated in Fig. 6. The procedure of the crossover is
described as follows.

Crossover of the head string:

Step 1 Select two crossover points randomly.
Step 2 Copy the elements after the first crossover points
and before the second crossover points of the

@ Springer

Feasible operation sequence

imperialist to the same positions of the new colony.
Delete these elements from the colony.

Copy the remaining elements of the colony to the
undetermined positions of the new colony sequen-
tially as they appear in the colony.

Step 3

Crossover of the tail string:

Step 1 Select two crossover points randomly.

Step 2 Copy the elements after the first crossover points
and before the second crossover points of the
imperialist to the same positions of the new colony.
Delete these elements from the colony.

Copy the remaining elements of the colony to the
undetermined positions of the new colony sequen-
tially as they appear in the colony.

Step 3

e Mutation

Swap and Insert are used as the mutation operator. As is
shown in Fig. 7, the mutation operator consists of mutation
of the head string and mutation of the tail string.

Mutation of the head string includes swap, insert, and
operation mutation.

Choose two random elements of the head
string and exchange their positions.

Swap

1 2\2\5:7 77]4[4]3]4]7]5]4 1]

Int J Adv Manuf Technol (2012) 59:815-828 823
) YI - WI swap i@rt v
‘]:2‘10‘4}_12‘“_5“36‘85_]4_15“?“ 01 [Tl [Em]s 268 457]9] [1]o]1]
p223bbpr46556M
[1]2]2]5]7]7]7]4]4[3]4]7[5]4]4]
|

‘+x-+x‘+x‘+x§-z -2‘-2 -x‘-x‘-z‘-z?z +z‘-y -y
b RN
[1]2]10]4 [RSTR2IST8] 6 |8 [14[15]7]9] [1 [0]
12]2]2]3 [SHBHSN2NGI 4 655]6]6]
[1]2]2 |
i
Fd | N v
(1 [10]2 1037 4 J12]14]57 6 [18] 8 | 7]9 [15] |1 [0] o
4153 13 I3 2 I 6616 9]
(3] [0 7 7 2 4445
2o

[: Imperialist C: Colony N: New colony y: Crossover point

-z ?+z-+z‘ -y --y

C

..}r +X

Fig. 6 Two-point crossover operator

Insert Choose a random element of the head
string and insert it to another randomly
selected position.

Operation Randomly choose an element of the head

mutation string and replace its machine, tool, and

TAD with alternative machine, tool, and
TAD.

Note that mutation of the head string may result in
infeasible solutions, and the constraints-handling algorithm
is applied to the infeasible solutions to adjust them into
feasible ones.

Mutation of the tail string indicates the act of changing a
randomly determined element of the tail string to its
opposite value.

4.4.2 Exchanging positions of an imperialist and a colony

After moving toward the imperialist, a colony may reach a
position with lower cost than that of imperialist. In this
case, the colony will become the imperialist in the current
empire and vice versa. In the following iterations, colonies
in the empire will move to the new imperialist.

+x[x[x4x -z |-z |z | x | x|z |z [tz]+z] y |y |

|
after mutation

|1 [&10]2] 3 [ER]STYI3]i2] 6 | 8 [14]15]7]9
H H H ' 'Ba B30
[1 1502 BN 7 [3 [« 5 [4]4]

[+ [+ [= S22 - | -z [z v [|

Fig. 7 The mutation operator consists of mutation of the head string
and mutation of the tail string

4.5 Imperialistic competition

In ICA, all empires compete to take possession of more
colonies besides their current colonies. The imperialistic
competition gradually brings about a decrease in the power
of weaker empires and an increase in the power of powerful
ones. To model this competition among imperialists, the
weakest colony of the weakest empire is freed from its
current imperialist and waited to be possessed by all
empires. During the competing process, each empire will
have a likelihood of taking possession of the freed colony
based on their total power, that is, empires with more total
power will be more likely to possess it.

The total power of an empire is determined by the power
of the imperialist and that of its colonies, that is, the
equation of total cost is:

T.C., = ¢,(imperialist,) + o - mean(c,(colonies of empire,,))
(15)

Where T.C.,, is the total cost of the nth empire and « is a
positive number that is in the range of [0, 1]. Different
value of « indicates the weight of the cost of the imperialist
on the total cost of an empire.

The normalized total cost is computed by

N.T.C., = max(T.C.;) — T.C., (16)

WhereT.C.,andN.T.C.,are total cost and normalized
total cost of nth empire, respectively. Then the possession
probability of each empire is given by

T.C.,
Pp, =]{;v —C (17)
Zi:mip N.T.C.;
P = [ppl,sz, ’ app«/lmp:| (18)

@ Springer

824

Int J Adv Manuf Technol (2012) 59:815-828

Then, a vector with the same size as P is created with
each of its element uniformly distributed random numbers.

R:[I”l,l"z,"',}"]\]imp]l”[NU(O,l) (19)

Then, a vector D is formed by simply subtracting R from
P.

D=P—-R= [DI,DL"'?DMmp] 20)

The empire whose relevant index in D is biggest will
take possession of the freed colony.

4.6 Revolution

Revolution indicates that the weakest colony of the weakest
empire is replaced by a random solution [29].

4.7 Elimination

When an empire loses all of its colonies, it will be
eliminated from the population.

5 Experiments and discussions
5.1 Experimental design and parameter setting

In this section, performance of the proposed ICA in the
optimization of process planning with various flexibilities is
validated through three experiments using benchmark
problems taken from literature. Benchmark problems of
experiments 1 and 2 were proposed by Kim et al. [2] and
Seok Shin et al. [3], respectively. Details of these problems
are available in Kim [40] and Seok Shin et al. [41] and are
omitted here. Experiment 3 consists of five extensively
studied problems taken from literature. These three sets of
experiments involve process planning problems with
various flexibilities: Experiment 1 considers process plan-
ning with machine flexibility, process flexibility, and
sequence flexibility; experiment 2 represents process
planning with machine flexibility, tool flexibility, process
flexibility, and sequence flexibility; and experiment 3
indicates process planning with machine flexibility, tool
flexibility, TAD flexibility, and sequence flexibility.

For experiments 1 and 2, performance of ICA is
evaluated and compared with that of GA and SA. We
implemented the GA and SA by following the works of Li
et al. [1] and Ma et al. [9]. Preliminary experiments have
been conducted to determine the optimal values of the
parameters of GA and SA. Parameters of GA were set as
follows: population size Ng,=50, crossover rate P.=0.8,
mutation rate P,,=0.1, maximum number of generations

@ Springer

Ngen=1,000 and roulette wheel selection was used as the
selection scheme. For each generation of GA, the best
individual is saved directly to the next generation. Param-
eters of SA were set as follows: Initial temperature 7T},;=
1000.0, ending temperature 7.,4=0.01, annealing rate R,=
0.99, the number of iterations for each level of temperature
Niev=5. Note that both the GA and ICA used the same
crossover and mutation operators described above. SA used
the same mutation operator of ICA to generate neighbor-
hood solutions.

Parameters of ICA include the total number of countries,
Npop, the total number of empires, Ny, the weight oo and
the maximum number of iterations, N,,,. To determine the
appropriate values of these parameters, preliminary turning
experiments were conducted, and computational results
showed that the following parameter setting could result in
good balance between computational time and efficiency:
Npop=50, Nimp=4, x=0.6, Npnax=500. All the algorithms
implemented in this paper were developed in C++ and run
on a personal computer with a 2.0 GHz Intel Core2 Duo
CPU.

5.2 Experiment 1

Experiment 1 consists of 18 parts with different number
of operations. In this experiment, three flexibilities
including machine flexibility, process flexibility, and
sequence flexibility are taken into consideration. Com-
putational results are shown in Table 1. For each
problem, 20 independent runs are conducted, and the
best, worst, and mean machining costs are reported. In the
table, the first column denotes the problem number and
the second the total number of operations (70) for each
problem. The MCCI in this experiment is set to 30. It can
be seen from Table 1 that ICA outperformed GA and SA
in all problems with respect to the best and mean
machining cost.

5.3 Experiment 2

Experiment 2 consists of 18 parts with different number
of operations. In this experiment, three flexibilities
including machine flexibility, tool flexibility, process
flexibility, and sequence flexibility are considered. The
experimental results are shown in Table 2. The experi-
ment is repeated 20 times for each problem, and the best,
worst, and mean machining costs are reported. In the
table, the first column denotes the problem number and
the second the total number of operations (70) for each
problem. The MCCI and TCCI are set to 30 and 20,
respectively. It can be seen from Table 2 that the proposed
ICA gives more competitive results in all problems when
compared with GA and SA. Note that, in this experiment,

Int J Adv Manuf Technol (2012) 59:815-828 825
Table 1 Computational results
of experiment 1 No. TO GA SA ICA
Best Worst Mean Best Worst Mean Best Worst Mean
1 8 197.0 197.0 197.0 197.0 197.0 197.0 197.0 197.0 197.0
2 14 187.0 192.0 187.4 187.0 187.0 187.0 187.0 187.0 187.0
3 19 198.0 321.0 237.6 163.0 231.0 194.0 163.0 193.0 178.6
4 16 269.0 293.0 270.2 269.0 269.0 269.0 269.0 269.0 269.0
5 18 124.0 159.0 142.6 124.0 154.0 139.2 124.0 124.0 124.0
6 20 220.0 280.0 241.8 190.0 250.0 220.7 190.0 190.0 190.0
7 21 206.0 236.0 210.8 206.0 236.0 213.5 206.0 206.0 206.0
8 20 148.0 148.0 148.0 148.0 148.0 148.0 148.0 148.0 148.0
9 20 164.0 227.0 189.4 140.0 198.0 166.4 140.0 164.0 142.5
10 11 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0
11 9 119.0 179.0 141.5 119.0 149.0 125.0 119.0 119.0 119.0
12 18 307.0 367.0 3335 307.0 337.0 323.5 307.0 307.0 307.0
13 18 133.0 163.0 137.7 133.0 163.0 140.5 133.0 133.0 133.0
14 13 127.0 157.0 131.5 127.0 128.0 127.1 127.0 127.0 127.0
15 15 156.0 216.0 180.0 156.0 186.0 159.0 156.0 156.0 156.0
16 21 147.0 164.0 149.5 147.0 164.0 148.7 147.0 147.0 147.0
17 22 167.0 197.0 173.2 167.0 222.0 169.7 167.0 167.0 167.0
18 17 182.0 242.0 209.3 182.0 212.0 197.5 182.0 182.0 182.0

another flexibility, that is, tool flexibility, is taken into
consideration compared with experiment 1. Computational
results in Table 2 confirm the proposed ICA’s effectiveness
in solving process planning with various flexibilities.

5.4 Experiment 3

Experiment 3 consists of five problems
numbers of operations. In this experiment,

with various
the impact of

Table 2 Computational results

of experiment 2 No. TO GA SA ICA

Best Worst Mean Best Worst Mean Best Worst Mean
1 16 627 717 648.0 630.0 663.0 640.5 627 631 629.2
2 20 413 488 450.6 409.0 487.0 440.3 409 428 417.4
3 18 667 798 738.1 604 759 650.4 603 638 648.8
4 20 657 759 717.9 617 709 668.6 613 660 645.6
5 15 417 512 461.9 371 451 398.1 371 379 376.8
6 22 539 636 582.3 524 551 535.3 521 524 522.3
7 11 335 372 352.1 334 355 339.1 334 334 334.0
8 12 357 393 372.4 366 393 374.8 357 366 361.1
9 21 469 615 558.5 432 550 510.9 432 498 467.3
10 14 355 502 4453 355 461 403.3 350 417 388.8
11 13 334 433 386.3 283 439 356.9 283 352 332.8
12 17 418 566 498.7 396 533 447.7 396 456 435.8
13 21 252 374 314.2 233 305 263.2 229 237 232.2
14 18 311 368 337.8 293 352 328.4 284 309 294.1
15 18 429 502 465.4 429 481 448.3 421 437 432.0
16 15 450 545 502.6 411 470 440.1 411 411 411.0
17 19 485 626 556.2 449 583 497.7 377 463 436.8
18 20 594 719 664.4 515 622 576.6 504 601 569.8

@ Springer

826

Int J Adv Manuf Technol (2012) 59:815-828

Table 3 Computational results of problem 1 in experiment 3

Table 5 Computational results of problem 3 in experiment 3

ICA TS* SA? GA? PSO® ICA SA?
Codition (a) Condition (a)
Mean 2527.5 2609.6 2668.5 2796.0 2680.5 Minimum 743.0 833.0
Maximum 2530.0 2690.0 2829.0 2885.0 — Condition (b)
Minimum 2525.0 2527.0 2535.0 2667.0 2535.0 Minimum 1,198.0 1,288.0
Codition (b) #Results are taken from [9]
Mean 2090.0 2208.0 2287.0 2370.0 —

Maximum 2090.0 2390.0 2380.0 2580.0 —

Minimum 2090.0 2120.0 2120.0 2220.0 —

#Results are taken from [10]

®Results are taken from [12]

different objectives and different manufacturing conditions
in actual shop floor on the results of process planning were
studied. The performance of ICA was compared with some
existing algorithms including GA, SA, TS, and PSO
developed for the process planning problem.

5.4.1 Problem 1

Problem 1 is taken from Li et al. [1]. It has 20 operations,
and the following two conditions are considered.

(a) All machines and tools are available, and w;,—w; in
Eq. 11 are set as 1;

(b) All machines and tools are available, and w,=ws=0, w;=
w3=w,=1;

It can be seen from Table 3 that ICA obtained new better
solutions under condition (a) and condition (b). The
robustness of ICA under the two conditions is better than
that of GA, SA, TS, and PSO.

5.4.2 Problem 2

The second part used by Li et al. [10] consists of 14
operations. Two conditions are considered for studies on
this part.

Table 4 Computational results of problem 2 in experiment 3

ICA TS?* SA® GA*®

Codition (a)

Mean 1,328.0 1,342.0 1,373.5 1,611.0

Maximum 1,328.0 1,378.0 1,518.0 1,778.0

Minimum 1,328.0 1,328.0 1,328.0 1,478.0
Codition (b)

Mean 1,170.0 1,194.0 1,217.0 1,482.0

Maximum 1,170.0 1,290.0 1,345.0 1,650.0

Minimum 1,170.0 1,170.0 1,170.0 1,410.0

#Results are taken from [10]

@ Springer

(a) All machines and tools are available, and w;,—w; in
Eq. 12 are set as 1;

(b) All machines and tools are available, and w,=ws;=0, w;=
wi3=w,=1;

Table 4 shows that the proposed ICA can provide
competitive results on two conditions.

5.4.3 Problem 3

The third part presented by Ma et al. [9] consists of nine
features and 13 operations. The following two conditions
are considered for studies on this part.

1. All machines and tools are available;
2. Machine 2 is down;

Table 5 shows that ICA outperforms SA in both
condition (a) and condition (b). And new better solutions
are achieved.

5.4.4 Problem 4

The fourth part is presented by Guo et al. [12] to test the
efficiency of PSO on process planning problem. This part
consists of 11 features and 14 operations. Only the
condition that all machining resources are available is
considered. Table 6 shows that ICA outperforms GA, SA,
and PSO in this problem.

5.4.5 Problem 5
This part is used by Zhang et al. [7] to test GA’s capability
and flexibility of handling process planning problems under

different requirements. It contains 19 machining features
and a total number of 23 operations. In this paper, the

Table 6 Computational results of problem 4 in experiment 3

ICA PSO* SA? GA?
Mean 1,364.1 1,430.0 1,447.4 1,459.4
Minimum 1,357.0 1,361.0 1,421.0 1,381.0

*Results are taken from [12]

Int J Adv Manuf Technol (2012) 59:815-828

827

following four conditions were considered to compare the
performance of ICA and GA. Following the work of Zhang
et al. [7], 60 trials were conducted for each condition.

1. Minimizing the total weighted cost.

The average machining cost over 60 trials is 1,741;
the minimum machine cost is 1,739, and the maximum
machining cost is 1,749. The frequency of the
machining cost (1,739) is much higher than that of
other cost.

2. Minimizing the number of machine changes only.

All the 60 trials find a process plan with zero
machine changes.

3. Minimizing the number of setup changes only.

All the 60 trials find a process plan with zero setup
changes.

4. Minimizing the number of tool changes only.

All the 60 trials find a process plan with zero tool
changes.

6 Discussions

It can be seen from the computational results of the above three
experiments that ICA has advantages over existing approaches
in solving the process planning problems with various
flexibilities. In both experiment 1 and experiment 2, ICA
shows better efficiency and robustness compared with GA and
SA. In experiment 3, the performance of ICA was compared
with that of GA, SA, TS, and PSO; experiments on different
problems indicate that ICA is superior to these existing
algorithms in computational effectiveness and efficiency.

7 Conclusions

This paper discusses the process planning problem in which
various flexibilities are considered. Optimization of process
planning is a NP-hard problem and efficient heuristic
algorithms should be proposed to obtain near-optimal sol-
utions with reasonable computational cost. In this paper, we
first concentrated the process planning problem with various
flexibilities. Then, a novel metaheuristic algorithm, that is,
ICA was utilized to find near-optimal solutions. The perfor-
mance of the proposed ICA was validated over three experi-
ments using benchmark problems taken from literature and
also compared with many other algorithms developed for the
optimization of process planning in the literature. Computa-
tional results show the efficiency of the algorithm. In future,
the proposed ICA could be employed to solve some other
industrial optimization problems. In addition, process plan-
ning problem with various flexibilities considered in this
paper could be applied in industrial applications.

Acknowledgment This research is supported by the State Key
Program of National Natural Science of China (Grant No. 51035001),
National Natural Science Foundation of China (Grant NO. 50825503),
and National Natural Science Foundation of China (Grant No.
50875101).

Reference

1. Li WD, Ong SK, Nee AYC (2002) Hybrid genetic algorithm and
simulated annealing approach for the optimization of process
plans for prismatic parts. Int J Prod Res 40(8):1899-1922.
doi:10.1080/00207540110119991

2. Kim YK, Park K, Ko J (2003) A symbiotic evolutionary algorithm
for the integration of process planning and job shop scheduling.
Comput Oper Res 30(8):1151-1171

3. Seok Shin K, Park J-O, Keun Kim Y (2011) Multi-objective FMS
process planning with various flexibilities using a symbiotic
evolutionary algorithm. Comput Oper Res 38(3):702-712

4. Liu X+, Yi H, Ni Z-h (2010) Application of ant colony
optimization algorithm in process planning optimization. Journal
of Intelligent Manufacturing (in press)

5. Leo A, Hongchao Z (1989) Computer-aided process planning: the
state-of-the-art survey. Int J Prod Res 27(4):553

6. Marri HB, Gunasekaran A, Grieve RJ (1998) Computer-aided
process planning: a state of art. Int J Adv Manuf Technol 14
(4):261-268. doi:10.1007/b£01199881

7. Zhang F, Zhang YF, Nee AYC (1997) Using genetic algorithms in
process planning for job shop machining. Evol Comput IEEE
Transac 1(4):278-289

8. Qiao L, Wang X-Y, Wang S-C (2000) A GA-based approach to
machining operation sequencing for prismatic parts. Int J Prod
Res 38(14):3283-3303

9. Ma GH, Zhang YF, Nee AYC (2000) A simulated annealing-based
optimization algorithm for process planning. Int J Prod Res 38
(12):2671-2687

10. Li WD, Ong SK, Nee AYC (2004) Optimization of process plans
using a constraint-based tabu search approach. Int J Prod Res 42
(10):1955-1985. doi:10.1080/00207540310001652897

11. LiL, Fuh JYH, Zhang YF, Nee AYC (2005) Application of genetic
algorithm to computer-aided process planning in distributed
manufacturing environments. Robot Comput-Integr Manuf 21
(6):568-578

12. Guo Y, Mileham A, Owen G, Li W (2006) Operation sequencing
optimization using a particle swarm optimization approach. Proc
Inst Mech Eng, Part B: J Eng Manuf 220(12):1945-1958

13. Salehi M, Tavakkoli-Moghaddam R (2009) Application of genetic
algorithm to computer-aided process planning in preliminary and
detailed planning. Eng Appl Artif Intell 22(8):1179-1187

14. Shao X, Li X, Gao L, Zhang C (2009) Integration of process
planning and scheduling—a modified genetic algorithm-based
approach. Comput Oper Res 36(6):2082—2096

15. Leung CW, Wong TN, Mak KL, Fung RYK (2010) Integrated
process planning and scheduling by an agent-based ant colony
optimization. Comput Ind Eng 59(1):166—180

16. Li X, Gao L, Shao X, Zhang C, Wang C (2010) Mathematical
modeling and evolutionary algorithm-based approach for integrated
process planning and scheduling. Comput Oper Res 37(4):656—667

17. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive
algorithm: an algorithm for optimization inspired by imperialistic
competition. In: Evolutionary Computation. CEC 2007. IEEE
Congress on, p 2007. pp 4661-4667

18. Atashpaz-Gargari E, Caro L (2007) Designing an optimal PID
controller using Colonial Competitive Algorithm. In: First Iranian
Joint Congtress on Intelligent and Fuzzy Systems

@ Springer

http://dx.doi.org/10.1080/00207540110119991
http://dx.doi.org/10.1007/bf01199881
http://dx.doi.org/10.1080/00207540310001652897

828

Int J Adv Manuf Technol (2012) 59:815-828

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Atashpaz-Gargari E, Hashemzadeh F, Lucas C (2008) Designing
MIMO PIID controller using colonial competitive algorithm:
applied to distillation column process. In: Evolutionary Compu-
tation, 2008. CEC 2008. (IEEE World Congress on Computational
Intelligence). IEEE Congress on. pp 1929-1934

Gargari EA, Hashemzadeh F, Rajabioun R, Lucas C (2008) Colonial
competitive algorithm: a novel approach for PID controller design in
MIMO distillation column process. Int J Intell Comput Cybern 1
(3):337-355. doi:10.1108/17563780810893446

Rajabioun R, Atashpaz-Gargari E, Lucas C (2008) Colonial
competitive algorithm as a tool for Nash equilibrium point
achievement. In: Gervasi O, Murgante B, Lagana A, Taniar D,
Mun Y, Gavrilova M (eds) Computational science and its
applications—ICCSA 2008, vol 5073. Lecture Notes in Computer
Science. Springer Berlin, Heidelberg, pp 680-695. doi:10.1007/
978-3-540-69848-7 55

Khabbazi A, Gargari EA, Lucas C (2009) Imperialist competitive
algorithm for minimum bit error rate beamforming. Int J Bio-
Inspir Comput 1(1/2):125-133. doi:10.1504/1JBIC.2009.022781
Forouharfard S, Zandiech M (2010) An imperialist competitive
algorithm to schedule of receiving and shipping trucks in cross-
docking systems. Int J Adv Manuf Technol 51(9):1179-1193.
doi:10.1007/500170-010-2676-5

Kaveh A, Talatahari S (2010) Optimum design of skeletal
structures using imperialist competitive algorithm. Comput Struct
88(21-22):1220-1229

Lucas C, Nasiri-Gheidari Z, Tootoonchian F (2010) Application of
an imperialist competitive algorithm to the design of a linear
induction motor. Energy Convers Manag 51(7):1407-1411
Nazari-Shirkouhi S, Eivazy H, Ghodsi R, Rezaie K, Atashpaz-
Gargari E (2010) Solving the integrated product mix-outsourcing
problem using the imperialist competitive algorithm. Expert Syst
Appl 37(12):7615-7626

Sarayloo F, Tavakkoli-Moghaddam R (2010) Imperialistic com-
petitive algorithm for solving a dynamic cell formation problem
with production planning. In: Huang D-S, Zhao Z, Bevilacqua V,
Figueroa J (eds) Advanced Intelligent Computing Theories and
Applications, vol 6215. Lecture Notes in Computer Science.
Springer Berlin, Heidelberg, pp 266-276. doi:10.1007/978-3-642-
14922-1 34

Sayadnavard MH, Haghighat AT, Abdechiri M Wireless sensor
network localization using imperialist competitive algorithm. In:
Computer Science and Information Technology (ICCSIT), 2010
3rd IEEE International Conference on, 2010. pp 818-822

@ Springer

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Shokrollahpour E, Zandieh M, Dorri B (2010) A novel imperialist
competitive algorithm for bi-criteria scheduling of the assembly
flowshop problem. Int J Prod Res 49(11):3087-3103

Moghimi Hadji M, Vahidi B (2011) A solution to the unit
commitment problem using imperialistic competition algorithm.
Power Syst, IEEE Trans on PP 99:1-1

Bagher M, Zandieh M, Farsijani H (2010) Balancing of stochastic
U-type assembly lines: an imperialist competitive algorithm. The
International Journal of Advanced Manufacturing Technology: 1—
15. doi:10.1007/s00170-010-2937-3

Niknam T, Taherian Fard E, Pourjafarian N, Rousta A (2011) An
efficient hybrid algorithm based on modified imperialist compet-
itive algorithm and K-means for data clustering. Eng Appl Artif
Intell 24(2):306-317

Abdechiri M, Faez K, Bahrami H (2010a) Adaptive imperialist
competitive algorithm (AICA). In: Cognitive Informatics (ICCI).
9th IEEE International Conference on, p 2010. pp 940-945
Abdechiri M, Faez K, Bahrami H (2010b) Neural network
learning based on chaotic imperialist competitive algorithm. In:
Intelligent Systems and Applications (ISA). 2nd International
Workshop on, p 2010. pp 1-5

Bahrami H, Faez K, Abdechiri M (2010) Imperialist competitive
algorithm using chaos theory for optimization (CICA). In:
Computer Modelling and Simulation (UKSim). 12th International
Conference on, p 2010. pp 98-103

Duan H, Xu C, Liu S, Shao S (2010) Template matching using
chaotic imperialist competitive algorithm. Pattern Recognit Lett
31(13):1868-1875

Karimi N, Zandieh M, Najafi AA (2010) Group scheduling in
flexible flow shops: a hybridised approach of imperialist compet-
itive algorithm and electromagnetic-like mechanism. International
Journal of Production Research (in press)

Ho YC, Moodie CL (1996) Solving cell formation problems in a
manufacturing environment with flexible processing and routing
capabilities. Int J Prod Res 34(10):2901-2923

Tseng HE (2006) Guided genetic algorithms for solving a larger
constraint assembly problem. Int J Prod Res 44(3):601-625.
doi:10.1080/00207540500270513

Kim YK (2003) A set of data for the integration of process
planning and job shop scheduling. http:/syslab.chonnam.ac.kr/
links/data-pp&s.doc.

Test-bed problems for multi-objective FMS process planning
using multi-objective symbiotic evolutionary algorithm. (2010)
http://syslab.chonnam.ac.kr/links/MO_FMS PP _MOSEA.doc.

http://dx.doi.org/10.1108/17563780810893446
http://dx.doi.org/10.1007/978-3-540-69848-7_55
http://dx.doi.org/10.1007/978-3-540-69848-7_55
http://dx.doi.org/10.1504/IJBIC.2009.022781
http://dx.doi.org/10.1007/s00170-010-2676-5
http://dx.doi.org/10.1007/978-3-642-14922-1_34
http://dx.doi.org/10.1007/978-3-642-14922-1_34
http://dx.doi.org/10.1007/s00170-010-2937-3
http://dx.doi.org/10.1080/00207540500270513
http://syslab.chonnam.ac.kr/links/data-pp&s.doc
http://syslab.chonnam.ac.kr/links/data-pp&s.doc
http://syslab.chonnam.ac.kr/links/MO_FMS_PP_MOSEA.doc

	Optimization of process planning with various flexibilities using an imperialist competitive algorithm
	Abstract
	Introduction
	Literature review
	The process planning problem
	Process planning problem representation
	Objectives

	The proposed imperialist competitive algorithm
	Frame work of imperialist competitive algorithm
	Initial countries generation
	Country representation
	Constraints-handling algorithm
	Objective evaluation

	Initial empires construction
	Assimilation
	Moving colonies of an empire toward the imperialist
	Exchanging positions of an imperialist and a colony

	Imperialistic competition
	Revolution
	Elimination

	Experiments and discussions
	Experimental design and parameter setting
	Experiment 1
	Experiment 2
	Experiment 3
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

	Discussions
	Conclusions
	Reference

