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Abstract This paper deals with the deep drawing of metal
cups using the Marform process. Using this technique,
higher limiting drawing ratios can be obtained compared
with the conventional deep drawing process. The analytical
model of the process is presented initially, followed by the
finite element simulations using ABAQUS software. A new
friction model based on local contact conditions is
presented and used in the finite element (FE) simulations
of the process. Compared with traditional Coulomb friction
model, the results of the FE simulations with the new
friction model showed good correlation with experimental
results. The results showed that the maximum thinning
occurs at the punch profile portion, and by increasing the
forming pressure, thinning of the sheet metal propagates from
the punch profile portion to the side wall. At low forming
pressures, wrinkles appear in the flange, whilst at higher
pressures, fracture is the main defect of the Marform process.
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Nomenclature
Roman symbols
An Nominal contact area (m2)
Ar Real contact area (m2)
Ff Friction force (N)
Fn Normal load (N)
Fstmax Maximum static friction force (N)
Ft Tangential load (N)
g Elasticity of the springs in SLS model (Pa)

h Separation (m)
h Punch stroke (m)
K1 Ratio of the forming pressure in the blank holder

portion to the average forming pressure
K2 Ratio of the forming pressure in the side wall of

the blank to the average forming pressure
n Density of asperities (m−2)
P Pressure (Pa)
r0 Instant outside radius of deformed blank (m)
r1 Distance from axis of punch to boundary of

forming radius portion and flange (m)
rp Punch profile radius (m)
R0 Initial radius of blank (m)
R2 Radius of punch (m)
t Thickness of blank (m)
y0 Distance from neutral surface of blank at flange to

boundary of forming radius portion and side wall (m)
z Surface height (m)

Greek symbols
β Mean radius of asperity (m)
ε Strain
v Poisson’s ratio
ηd Viscosity of dashpot in SLS model (Pa s)
δn Normal approach (m)
δt Tangential displacement (m)
8(t) Creep compliance function (Pa−1)
y(t) Stress relaxation function (Pa)
ρd Forming radius of neutral surface at angle of 8 (m)
81 Angle of contact between deformed blank and punch

(deg)
μ Coefficient of friction
μc Coulomb coefficient of friction
qðsÞ Normalized Gaussian height distribution
σs Standard deviation of the asperity heights (m)
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σ8 Meridian stress (Pa)
σθ Circumferential stress (Pa)
σr1 Radial stress at boundary between forming radius

portion and flange (Pa)
σe Average yield stress of blank material (Pa)

1 Introduction

Marform process is a technique for deep drawing of sheet
metals with a rubber die. It was developed by the Glen L.
Martin Company in the USA [1] to apply the inexpensive
tooling of the Guerin process to the deep drawing
operation. It is most suitable for the drawing of cups with
high drawing ratios and the forming of wrinkle-free shrink
flanges. As shown in Fig. 1, this process uses a thick rubber
pad and a form block similar to the Guerin process [2], with
the additional independent blank holder plate and a
hydraulic cylinder with a pressure-regulating valve.

The rubber pad in this process is kept inside a container
attached to the press ram. The thickness of the rubber pad is
normally 1.5–2 times as thick as the total depth of the cup,
including trim allowance. A throw sheet is usually used
between the rubber and the blank to protect the rubber pad
from scratching or scoring. The throw sheet could be either
cemented to the rubber pad or just laid over the blank. The
punch is fixed to the press table. The pressure-regulating
valve controls the pressure applied to the blank through the
blank holder during the process.

The process starts with the blank being clamped between
the rubber pad and blank holder plate above the punch. As

the press ram moves down, the rubber pad starts to deform
and, together with an appropriate blank holder pressure,
pushes the blank to the punch and forces it to draw and take
the shape of the punch. During the process, the pressure-
regulating valve releases fluid at a controlled rate to provide
proper blank holder force. The blank holder pressure must
be high enough to avoid wrinkling of the flange. On the
other hand, a too high blank holder pressure increases the
necessary ram force, which may cause tearing in the blank.
Therefore, the blank holder pressure should be regulated
properly between these two opposite effects.

There are very few research on the Marform process
available in the literature. Fukuda and Yamaguchi [3]
carried out an experimental and theoretical analysis of the
process. They reported that a drawing ratio of 2.76 could be
achieved using the Marform process. In another work,
Fukuda et al. [4] carried out first-stage drawing and redrawing
experiments using the Marform process and studied the effect
of forming pressure, blank thickness and pressure path on the
process. They introduced a so-called S character-type pressure
path which makes the drawing operation more successful.
Venkatesh and Goh [5] introduced a simplified mathematical
model for cup drawing using the Marform process. They used
a factorial experimental design to obtain the mathematical
model and found that the blank thickness is the major factor
affecting the limiting drawing ratio of the Marform process.
Browne and Battikha [6] carried out an experimental study of
the rubber pad forming process to investigate the capabilities
of the process and optimize the process parameters. The effect
of the key process parameters on the Guerin and Marform
processes was discussed in this paper to produce a defect-free

Fig. 1 Schematic drawing of
the Marform process
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product. Thiruvarudchelvan [7] developed a software on
sheet metal and tube forming processes using flexible
pressure-carrying media which illustrates the advantages and
disadvantages of different forming processes including the
Marform technique.

In the present work, an analytical analysis has been
carried out followed by finite element (FE) simulations to
investigate the effect of the key process parameters on deep
drawing of sheet metals using the Marform technique. To
the best of the authors’ knowledge, this is the first time that
an FE analysis of the Marform process is presented.
Moreover, a new friction model for rubber/metal contact
is presented in this paper, which allows the determination of
coefficient of friction as a function of local contact
conditions such as roughness, rubber characteristics and
contact pressure. Such a comprehensive friction model is
used in the FE simulation of the Marform process rather
than the often used Coulomb friction model. The relation-
ship between the thickness distribution, punch stroke,
forming pressure and forming limit diagram during the
drawing operation is presented in this paper. Comparison
between the results obtained by the FE simulations and the
experimental results are carried out.

2 Theoretical analysis of the Marform process

The analytical model presented in this section is based on
the work of Fukuda and Yamaguchi [3]. They considered a
volume element at the forming radius portion of the blank,
as shown in Fig. 2. The equilibrium equations of the force
components acting on this volume element are shown in the
figure. The dimensional reference diagram of the cup is
shown in Fig. 3. Assuming that the friction coefficient is
constant and the blank thickness does not change during the

process and considering the blank material as a perfectly
plastic solid, they could derive the following equation:

dðs8=s
»
eÞ

d8
¼ s8

s»
e

� �
cos8þ mR K2 ðP=s»

eÞ ðr=R2Þ = ðt=R2Þ
ðs8=s

»
e � 1Þ sin8þ K2ðP=s»

eÞðr=R2Þ=ðt=R2Þ
ð1Þ

where σe is the average yield stress of the blank material;
σ8 and σθ are the meridian and circumferential stresses,
respectively; t is the thickness of the blank; P is the average
forming pressure; K2 is the ratio of forming pressure in the
side wall of the blank to the average forming pressure; ρd is
the forming radius of neutral surface at angle of 8; μR is the
coefficient of friction between rubber and sheet metal; R2 is
the radius of punch; and s

»
e ¼ 2seffiffi

3
p . Considering the

geometrical relationship together with Eq. 1, the following
relations can also be obtained:

dðr=R2Þ
d8

¼ � ðs8=s
»
eÞ ðr=R2Þ cos8

ðs8=s
»
e � 1Þ sin8þ K2ðP=s»

eÞðr=R2Þ=ðt=R2Þ
ð2Þ

dðy=R2Þ
d8

¼ ðs8=s
»
eÞ ðr=R2Þ sin8

ðs8=s
»
e � 1Þ sin8þ K2ðP=s»

eÞðr=R2Þ=ðt=R2Þ
ð3Þ

Solving Eqs. 1, 2 and 3 using numerical methods, one
can obtain the profile and the stress at the forming radiusFig. 2 Volume element at the forming radius portion

Fig. 3 Dimensional reference diagram of the cup
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portion of blank. To solve these equations numerically, the
following initial values can be used:

8 ¼ 0 ; s8=s
»

e ¼ sr1=s
»

e ; r=R2 ¼ r1=R2 ; y=R2 ¼ 0

dðs8=s
»
eÞ

d8
¼ sr1

s»
e

� �
1þ mRK2ðP=s»

eÞðr1=R2Þ=ðt=R2Þ
K2ðP=s»

eÞðr1=R2Þ=ðt=R2Þ
dðr=R2Þ

d8
¼ � ðsr1=s

»
eÞ

K2ðP=s»
eÞ = ðt=R2Þ

;
dð y=R2Þ

d8
¼ 0

ð4Þ
The term sr1=s

»
e in Eq. 4 can be expressed as:

sr1

s»
e

¼ ln
ðr0=R2Þ
ðr1=R2Þ þ

K1ðmR þ mmÞ ðP=s»
eÞ ððr0 � r1Þ=R2Þ

ðt=R2Þ
� K1ðP=s»

eÞ
ð5Þ

where μm is the coefficient of friction between the blank
and the blank holder and K1 is the ratio of forming pressure
in the blank holder portion to the average forming pressure.
The term K1ðP=s»

eÞ on the right-hand side of Eq. 5
indicates the influence of the pressure acting radially on
the periphery of the blank.

Assuming that the total area of blank is unchanged
during drawing, the following correlations can be achieved
for the angle of contact between the deformed blank and the
punch 81 (see Fig. 4), the punch stroke h and the instant
radius of blank r0. For the case of 81≤90°, they can be
expressed as follows:

h=R2 ¼ y0=R2 þ ðrp=R2Þ ð1� cos81Þ ð6Þ

r0
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� �2

¼ R0

R2

� �2
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R2

� �2
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R2

� �2

� 2
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r

R2

rd
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d8

� 2
rp
R2

� �
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R2

� �
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� �

ð7Þ

After the side wall is formed, Eq. 7 becomes:

r0
R2
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R2
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� 2
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� �
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� �
p
2
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R2

� �� �
� 2

R2
ðh� y0 � rpÞ

ð8Þ

where ρp=rp+ t/2 and rp is the punch profile radius. R3=
R2+ t/2 and r1 is the distance from the axis of punch to the
boundary of forming radius portion and flange, as shown
in Fig. 3. R0 is the initial radius of blank and y0 is the
distance from the neutral surface of blank at flange to the
boundary of forming radius portion and side wall.

Equations 1, 2 and 3 can be solved simultaneously using
numerical techniques such as Runge–Kutta method to
obtain values for s8=s

»
e , r/R2, y/R2 and ρd/R2. The initial

values given by Eq. 4 can be determined by selecting, in an
arbitrary manner, the values of r0/R2 and r1/R2.

On the other hand, we have the following geometrical
relationship in the practical drawing process:

r81 ¼ R2 � rp þ rp sin81 ð9Þ
Therefore, the numerical calculations should be repeated

until the value of r81 obtained by solving the differential
equations agrees with the value calculated from Eq. 9. By
changing the value of r1/R2 at small intervals during the
numerical calculations, the reliable value of r1/R2

corresponding to a fixed value of r0/R2 can be achieved,
and so the coordinate (r/R2, y/R2) can be determined.

3 Analysis of friction between rubber and blank

In a metal forming process, the conditions in all different
contacts are very different. For most forming simulations,
the value of coefficient of friction is assumed to be
constant, neglecting the fact that friction depends on a
large number of parameters, e.g. the micro-geometry, the
macro-geometry, the lubricant and the operational parame-
ters: velocity, temperature and normal load [8]. Often,
several metal forming simulations with different values of
the friction coefficient have to be carried out before the
simulation gives acceptable results. It is clear that these
kinds of simulations have no predicting power and that a
friction model based on local contact conditions is needed
[9].

Due to the high contact pressure between the blank and
the rubber ring in the Marform process, the friction has a
great effect on the forming force and forming limit of the
blank. Therefore, it is very important to know the
coefficient of friction at the contact surface between theFig. 4 Forming radius portion profile

494 Int J Adv Manuf Technol (2012) 59:491–505



blank and the rubber pad as a function of contact pressure.
In this section, a multi-asperity friction model between
viscoelastic asperities and a rigid flat under combined
normal and tangential loading conditions is developed for
rubber/metal contact, taking into account the viscoelastic
behaviour of rubber and local contact conditions.

3.1 Coulomb friction model

The easiest and probably the most well-known friction
model is the Coulomb friction model. This friction model is
widely used to describe the friction in mechanical contacts,
although it greatly oversimplifies the frictional phenomena.
In this model, the ratio between the friction force and the
normal force, defined as the coefficient of friction, is
considered to be constant. The Coulomb friction model can
be formulated as:

Ff ¼ mcFn ð10Þ

where μc is the Coulomb coefficient of friction, Ff is the
friction force and Fn the normal load in the contact.

3.2 Multi-asperity friction model for rubber/metal contact

When two solids are pushed together, they do not make
atomic contact everywhere within the apparent contact
area, and contact happens only on peak asperities of
surfaces [10]. To model the contact between rough
surfaces, it is required to find out the contact parameters
between the pair of asperities carrying the load. For two
elastic spherical asperities loaded by a normal force, Fn,
Hertz’s [11] theory is the basic theory for specifying the
radius of the contact circle, the pressure and the normal
approach. For the case when a tangential force, Ft, is
subsequently applied, the tangential displacement of
asperities and the shear stress within the contact can be

achieved by Mindlin’s [12] theory. He described the
contact region as a stick area in the centre of contact
between a pair of asperities bordered by an annulus area of
micro-slip across the edge of the contact. Johnson [13]
presented a solution for this micro-slip region.

Rubber materials show both elasticity and viscous
resistance to deformation. These materials can hold the
elastic strain energy partially and at the same time dissipate
energy by continuing the deformation [9]. Rubber materials
can be modelled using springs and dashpots connected in
series and/or in parallel. A dashpot connected in parallel
with a spring, shown in Fig. 5a, is called a Voigt element. If
deformed, the force in the spring is supposed to be
proportional to the elongation of the assembly, and the
force in the dashpot is supposed to be proportional to the
rate of elongation of the assembly. If a sudden tensile force
is applied to the Voigt model, some of the work done in the
assembly is dissipated in the dashpot and the rest is stored
in the spring.

A dashpot connected in series with a spring is called
Maxwell element and is shown in Fig. 5b. In this model, if
a sudden tensile force is applied, the total displacement of
the element is the sum of the displacements of the spring
and the dashpot. In fact, the response of rubber to stress or
strain change is a combination of both mentioned models
(see Fig. 5c). The response is always time-dependent and
involves both the elastic storage of energy and viscous loss.

The standard linear solid (SLS) model provides a good
explanation of both stress relaxation and creep behaviour.
Stress relaxation is the time-dependent decrease in stress
under constant strain at constant temperature. For the SLS
model, the generalized Hook’s equation is:

hd g1
�"þ g1 g2 " ¼ hd

�s þ ðg1 þ g2Þ � s ð11Þ

where g1,g2 are the elasticity of springs, ηd is the viscosity
of the dashpot, ε is the strain and σ is the stress.

Fig. 5 Mechanical models rep-
resenting the response of visco-
elastic materials: a Voigt model,
b Maxwell model, c SLS model
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At constant stress equal to σ0, and by solving Eq. 11
with respect to the strain ε, we reach the creep compliance
function 8(t) as:

8ðtÞ ¼ "ðtÞ
s0

¼ 1

g1
þ 1

g2
½1� expð�t

T2
Þ� ð12Þ

where T2 ¼ hd
g2

is the retardation time.
In the same way, the stress relaxation function y(t) can

be achieved by considering the strain constant and is equal
to ε0 in Eq. 11:

yðtÞ ¼ sðtÞ
"0

¼ g1
g1 þ g2

½g2 þ g1 expð�t

T2
Þ� ð13Þ

where T2 ¼ hd
ðg1þg2Þ is the retardation time.

Surface roughness can be modelled as a set of spherical
asperities with the same radius where their heights follow a
Gaussian distribution (see Fig. 6). Three parameters for the
description of random rough surfaces are the average
asperity radius, β (spherical-shaped asperities); the asperity
density, n; and the standard deviation of the asperity
heights, σs. Based on the experiments of Greenwood and
Williamson [14], most surfaces have a value in the range of
0.03–0.05 for the product nβσs.

Hui et al. [15] presented a model for viscoelastic/rigid
contacts under several loading conditions such as constant
load test, load relaxation test and constant displacement rate
test. In their theory, analytical solutions are presented for
the real contact area and the total normal load. The case of a
viscoelastic rough surface which is normally loaded against
a rigid surface is considered in this paper.

3.2.1 Normal loading of viscoelastic/rigid multi-asperity
contact

For a certain separation h, the number of asperities in
contact at a certain separation can be determined by:

nc ¼ An n

Z1
h

qðsÞds ð14Þ

where An denotes the nominal contact area, s ¼ s
ss

is the
normalized asperity height, h ¼ h

ss
is the normalized

separation, and qðsÞ is the normalized Gaussian height
distribution which can be obtained as:

qðsÞ ¼ 1ffiffiffiffiffi
2p

p e�
s2

2 ð15Þ

Then, the real contact area can be calculated by:

Ar ¼ An n b ss p
Z1
h

ðs� hÞ qðsÞds ð16Þ

The total normal load can also be obtained as the sum of
all normal loads carried by the asperities in contact.

Fn ¼ An n b
1
2 s

3
2
s
8

3

1

fðtÞ
Z1
h

ðs� hÞ
3
2 qðsÞds ð17Þ

3.2.2 Tangential loading of viscoelastic/rigid multi-asperity
contact

In this section, we consider that the multi-asperity contact
presented in Section 3.2.1 is subsequently loaded by an
increasing tangential load. At a certain separation and for a
tangential load smaller than the force required starting
macro-sliding (maximum static friction force), the multi-
contact interface is composed of micro-contacts in the
partially slip regime and micro-contacts totally sliding.
Macro-sliding occurs if all contacting asperities are in the
fully sliding regime [12].

Bureau et al. [16] described a condition for an elastic
multi-contact interface which gives a critical asperity height
above which the micro-contacts are partially sliding. In
their work, a constant local friction coefficient is used for
all micro-contacts. Using Bureau’s method, the critical
asperity height for a viscoelastic multi-contact interface is:

dtvðtÞ ¼ dnðtÞ m ð2� nÞ ½1� ð1� Ft

m � Fn
Þ23 � ð18Þ

where δtv is the preliminary displacement and μ is the local
coefficient of static friction. Rearranging the factors in
Eq. 18, we will have:

1� dtvðtÞ
dnðtÞ m ð2� nÞ ¼ ð1� Ft

m � Fn
Þ23 ð19Þ

Fig. 6 Contact model of rough
surfaces
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The right-hand side of Eq. 19 is a positive real number
for Ft ≤ μ⋅Fn; so,

dtvðtÞ
m ð2� nÞ � dnðtÞ ð20Þ

The indentation depth of the asperity δn can be replaced
by (z − h). Then, the inequality 20 becomes

z � dtvðtÞ
m ð2� nÞ þ h ð21Þ

Therefore, from Eq. 21, the asperities having the height

sc � dtvðtÞ
m ð2� nÞ þ h ð22Þ

are in the fully sliding regime as they carry a tangential
force which is equal to or larger than the maximum
static friction force. The micro-contacts of which
heights satisfy the relation z≥sc are in the partially slip
regime.

The total tangential load carried by the multi-contact
interface is:

Ft ¼ Fstick þ Fslip ð23Þ

where Fstick is the sum of all tangential loads carried by the
micro-contacts which are not fully sliding. Deladi [17]
obtained the following equation for Fstick component:

FstickðtÞ ¼ An n ss
3
2
8

3

1

8ðtÞ b
1
2

Z1
sc

ðs� hÞ
3
2 qðsÞ m 1� 1� dt

ð2� nÞ ðs� hÞ m ss

� �3
2

" #
ds ð24Þ

The Fslip component is taken as the sum of all tangential
loads carried by the fully sliding micro-contacts:

FslipðtÞ ¼ An n ss
3
2
8

3

1

fðtÞ b
1
2

Zsc
h

ðs� hÞ
3
2 qðsÞ m ds ð25Þ

Obtaining the tangential load carried by the multi-
contact interface, the maximum static friction force can be
calculated as the sum of all tangential loads causing gross
sliding of all micro-contacts [17]. When this condition is
obeyed, the partially sliding component Fstick becomes zero
and the condition becomes:

Fstmax ¼ Fslip if Fstick ¼ 0 ð26Þ
Therefore, the static coefficient of friction is:

ms ¼
Fstmax

Fn
ð27Þ

The algorithm for calculating the maximum static
friction force and coefficient of static friction is depicted
in Fig. 7. Determining the micro-geometry, the nominal
area of contact and the material properties, the real area of
contact, Ar, and the normalized separation, h, can be
calculated using Eqs. 16 and 17. Then, by assuming a
tangential displacement, the critical height, sc, can be
obtained from Eq. 22. Next, the tangential loads carried
by each micro-contact can be calculated from Eqs. 24 and
25. If the partially stick component of the tangential force is
not zero, the tangential displacement should be increased
until all micro-contacts are fully sliding. This maximum

tangential displacement corresponding to the occurrence of
macro-sliding is the global limiting displacement. Finally,
the maximum static friction force is obtained and the static
coefficient of friction can be determined from Eq. 27.

Fig. 7 Algorithm for the calculation of coefficient of friction
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4 Finite element simulations

Many FE simulations are available in the literature for
conventional and hydrodynamic deep drawing processes
(see, e.g. [18–20]); however, there are no published
simulation results for deep drawing using the Marform
process. ABAQUS/Standard finite element code is used in
this paper to simulate the Marform process and predict
material deformation during forming. Due to the axisym-
metric character of the forming, only a 2D model was used
to reduce computation time. The punch and blank holder
were assumed to be rigid, and the blank was modelled as a
deformable material using CAX4R (a four-node bilinear
axisymmetric quadrilateral, reduced integration, hourglass
control) elements. The flexible rubber was modelled using
CAX4RH elements. The dimensions of blank and tools
used in the FE simulation are illustrated in Table 1. Penalty
contact interfaces were used to enforce the contact and the
sliding boundary condition between the blank and the tools.
The coefficient of Coulomb friction is fixed at 0.15 for
contact surfaces between blank and metallic tools. This
value is based on the results of friction analysis of rubber
pad forming process conducted previously by the authors
(see [8]). The coefficient of friction between rubber and
blank changes with contact pressure based on the model
presented in Section 3. The contact pressure-dependent
coefficients of friction are implemented to the model
through the contact property option of ABAQUS
programme. This option is used to introduce friction
properties into the mechanical surface interaction models.

The simulation begins with the punch in contact with the
blank. The flexible rubber then moves down to draw the
blank. The interfaces between the tools and the blank are
modelled using an automatic surface-to-surface contact
algorithm. The blank material is an ASTM-A36 structural
steel. The material properties for the blank were determined
from a tensile test performed on the blank material
according to the ASTM E 8M standard. The constitutive
behaviour of blank is described by an elastic–plastic model.
For the elastic part, Young's modulus of 210 GPa and
Poisson's ratio of 0.3 is used. For the plastic part, the

hardening model is assumed to be isotropic described by
the power law approach:

s ¼ K "n ð28Þ
where σ is the flow stress (MPa), ε is the total true strain
(dimensionless), K is the strength coefficient (MPa) and n is
the strain-hardening exponent (dimensionless). The material
properties of the ASTM-A36 structural steel are listed in
Table 2.

Natural rubber with Shore A hardness of 60, elastic
modulus of 59.65 MPa, Poisson's ratio of 0.49997 and
density of 1,200 kg/m3 is used as the flexible tool. A
compression test was carried out according to the ASTM
D575 standard to determine the material properties of
natural rubber. Both tensile and compression tests were
carried out using model 3367 INSTRON universal testing
machine. The stress–strain diagram of natural rubber under
compression is shown in Fig. 8. Rubber is made of an
isotropic, nonlinear, hyper-elastic, incompressible, strain
history-independent material. Hyper-elastic materials are
described in terms of a strain energy potential, W, which
defines the strain energy stored in the material per unit of
reference volume (volume in the initial configuration) as a
function of the strain at that point in the material [9].
Among several forms of strain energy potentials available
in ABAQUS, Ogden (N=3) strain energy is used for rubber
modelling. Ogden’s [21] material model has previously
been used with success to predict the behaviour of hyper-
elastic materials (see, e.g. [22]). The form of Ogden strain
energy potential is:

s ij ¼ @W

@"ij
ð29Þ

W ¼
XN
i¼1

2mi

a2
i

ðlai

1 þ l
ai

2 þ l
ai

3 � 3Þ þ
XN
i¼1

1

Di
ðJ el � 1Þ2i

ð30Þ
where W is the strain energy per unit of reference volume;
li is the deviatoric principal stretch which can be defined

Table 1 Dimensions of the tools for FE simulations

Parameters Values

Punch radius, R2 (mm) 14

Punch nose radius, rp (mm) 5

Blank initial radius, R0 (mm) 35

Blank initial thickness, t0 (mm) 1

Rubber height (mm) 45

Rubber radius (mm) 38

Table 2 Property specification of the ASTM-A36 structural steel

Parameters Values

Yielding stress, σyield (MPa) 245

Ultimate tensile stress, σult (MPa) 400

Young's modulus, E (GPa) 210

Poisson's ratio, v 0.3

Density, ρ (kg/m3) 7,800

Strain-hardening exponent, n 0.23

Hardening coefficient, K (MPa) 545
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by li ¼ J
�1
3 li; li is the principal stretch; J el is the elastic

volume ratio; and μi, αi and Di are temperature-dependent
Ogden constants. Compressibility can be defined by
specifying nonzero values for Di, by setting the Poisson's
ratio to a value <0.5, or by providing test data that
characterize the compressibility. We assumed a fully
incompressible behaviour for rubber with v=0.4997 and
Di equal to zero, and so the second expression in Eq. 30 can
be eliminated. To determine the strain energy density, W,
ABAQUS uses a least-squares fitting algorithm to evaluate
the Ogden constants automatically from experimental data.

5 Results and discussion

5.1 Coefficient of friction and FE simulations

The Alicona imaging infinite focus microscope (IFM 2.1)
was employed to determine the surface parameters of
natural rubber. Surface parameters in terms of density of
asperity n, mean radius of asperity β and standard deviation
of the asperity heights σs are the input parameters of the

friction model explained in Section 3. Figure 9 illustrates
the roughness profile along a selected line in the surface of
natural rubber. The geometrical parameters stated above can
be attained by these measurements using the Alicona
microscope.

The viscoelastic material parameters in terms of spring
elasticity, g1,g2, and dashpot viscosity, ηd, of the SLS model
are other input parameters of the friction model. The values
of viscoelastic material parameters used in the calculations
of the friction model are achieved from the stress relaxation
test of rubber. In a stress relaxation test, a compressive
strain at a constant rate within a very brief period of time is
applied on an unconstrained cylinder and the stress required
maintaining the compressive strain is recorded in time. The
test is performed according to the ASTM D 6048 standard.
Stress relaxation modulus as a function of time (see Eq. 13)
for natural rubber of Shore hardness A 60 is demonstrated
in Fig. 10. According to Eqs. 12 and 13, for t→0, we
obtain y(0) =8(0)−1 = g1, and for t→∞, we have
8ð1Þ ¼ yð1Þ�1 ¼ g1þg2

g1�g2 . The values of input parameters
for the calculation of the coefficient of friction as a function
of contact pressure are listed in Table 3.

Using the values of parameters in Table 3 as input values
for the friction model presented in Section 3, the coefficient
of friction between rubber and blank as a function of
contact pressure is calculated (see Fig. 11). It can be seen
from Fig. 11 that an increase in contact pressure decreases
the coefficient of friction. At low pressures, this decrease is
more important than at higher loads when the coefficient of
friction reaches a fairly stable level. This is in agreement
with the observation of Benabdallah [23] where experi-
mental work on some thermoplastics against steel and
aluminium showed a similar effect.

The distribution of von Mises stresses at the last stage of
the simulation is shown in Fig. 12. The maximum FE-
predicted von Mises stress for blank at the last step of the
forming process is 472.5 MPa. The distribution of von
Mises stress in natural rubber at the end of the process is
shown in Fig. 13. As illustrated in the figure, the maximum

Fig. 8 Stress–strain diagram of natural rubber under compression

Fig. 9 Roughness profile of natural rubber
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von Mises stress in the rubber is 18 MPa and occurs at the
punch nose region.

5.2 Pressure distribution at different potions of rubber pad

In the FE simulations, forming pressure was kept constant
during the process and was applied to the top of the rubber
die. A parametric study was carried out by changing the
values of rubber container diameter, D, and punch diameter,
dp. Forming pressure distributions in different regions of the
rubber die were measured using FE simulations.

Figure 14 shows the pressure distribution at different
portions of the rubber die as a function of D/dp. In this
figure, K represents the ratio of forming pressure at
different portions of the rubber die to the forming pressure
which is applied to the top of the rubber die during FE
simulation. As illustrated in the figure, the pressure at the
portions of the punch top and the blank holder are almost
same. On the other hand, the pressure distribution at the
side wall portion and forming radius portion are relatively
the same, but are always lower than the value at the punch
top and blank holder portions. The pressure at each portion
reaches a quite constant value after D

dp
� 3.

5.3 Results of analytical approach

Based on the analytical approach presented in Section 2,
numerical calculations were carried out using the dimen-
sions of the FE model listed in Table 1. The forming
pressure distributions were expressed by the approximate
values of K1=K3=1 and K2=0.8, which were obtained from
FE simulations as presented in Fig. 14.

Figure 15 shows the effect of forming pressure, P, on
variation of r1 at different angles of contact between the
deformed blank and the punch (see Fig. 4). As depicted in
the figure, the value of r1 decreases with increasing the

Fig. 10 Stress relaxation modulus as a function of time for natural
rubber

Parameters Values

n (m−2) 2.9 × 1011

β (μm) 0.525

σs (μm) 0.305

g1 (Pa) 8.93 × 107

g2 (Pa) 1.75 × 10−8

ηd (Pa s) 2.08 × 109

μ 0.4

Table 3 Values of the input
parameters for friction model

Fig. 11 Coefficient of friction between natural rubber and steel as a
function of forming pressure

Fig. 12 Distribution of von Mises stress at the last stage of the
process
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forming pressure. It shows that at lower pressures, the
bending radius between the cup wall and flange increases.
According to this figure, drawing of the cups with smaller
bend radius needs higher forming pressure.

Figure 16 shows the influence of forming pressure on the
outside radius of blank, r0. As illustrated in the figure,
before the side wall is formed completely, i.e. 81<90°,
forming pressure does not have a great effect on r0.
However, as the side wall is formed, i.e. 81=90°, the
influence of forming pressure becomes remarkable, and an
increase in forming pressure results in an increase in r0.

Figures 17 and 18 show the variations of r1 and y0 vs. r0
after the side wall is formed (81=90°) at different forming
pressures. Both values increase as r0 increases. An increase
in the value of forming pressure results in the decrease of r1
and y0. In other words, the larger the value of forming
pressure, the smaller the forming radius becomes.

Figure 19a illustrates the variation of the radius of
forming boundary, r1, vs. instant outside radius, r0, during
the Marform process with the forming pressure of 80 MPa.
According to Fig. 19a, in the beginning of the stroke, the
ratio of r0/R2 is large and r1/R2 is almost unity, i.e. the
workpiece is still flat. As the punch stroke increases, the
ratio of r0/R2 and r1/R2 decreases uniformly, indicating that
the blank is now pushed into the rubber die by the punch
until it reaches the state of r0/R2=2.2, where r1/R2 reaches
its maximum of 1.33. The variation of y0 vs. r0 during the
process with forming pressure of 80 MPa is shown in
Fig. 19b. According to the figure, y0 increases rapidly and
reaches its maximum value at the early stage of forming
and after that decreases constantly. In comparison, Fig. 19b
also shows that at r0/R2=2.2, the height of the forming
boundary achieves its maximum. As the punch stroke gets
bigger, the value of r1 and y0 decreases until the process is
over and the overall dimensions of r1 and y0 are achieved.

Fig. 14 Forming pressure at different portions of the rubber die

Fig. 13 Distribution of von Mises stress in natural rubber

Fig. 15 Influence of forming pressure on the deformation of the
forming radius portion

Fig. 16 Influence of forming pressure on the outside radius of blank
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The profile at the forming radius portion obtained from
analytical analysis is also presented in Fig. 19c. The results
are for the case of r0

R2
¼ 2:15 and forming pressure of

80 MPa.

5.4 Development of thickness strain

The effect of forming pressure and drawing ratio on the
thickness strain distribution of the drawn cup was investi-
gated using FE simulations. For fracture analysis, the
maximum tensile strain must not exceed the limit strain at
which localized necking occurs. Three different values of
forming pressure, i.e. 20, 50 and 70 MPa, were used in this
study. Figure 20 shows the effect of these forming pressures
on the thickness of the drawn cup. As can be seen in the
figures, the maximum thinning occurs at the punch profile
portion, where the blank is stretched excessively. It can also

be noted that as the punch stroke increases, the thinning of
the cup increases. The results show that using low forming
pressure such as 20 MPa, very deep drawn cups cannot be
reached as the workpiece fractures at 19-mm stroke and for
increasing the value of drawing ratio the forming pressure

Fig. 18 Variation of y0 vs. r0 after the side wall is formed at different
forming pressures

Fig. 17 Variation of r1 vs. r0 after the side wall is formed at different
forming pressures

Fig. 19 a Variation of the radius of the forming boundary r1 with the
instant outside radius r0. b Variation of y0 with the instant outside
radius r0. c Variation of y vs. r during the forming process
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should increase. On the other hand, a very high forming
pressure needs higher press capacity. Therefore, for achiev-
ing a defect-free drawn cup, these two effects should be
considered simultaneously and an optimized forming
pressure should be used. It can also be concluded from
the results that at low forming pressures, thinning is
concentrated at the punch profile portion. As the forming
pressure increases, thinning propagates from the punch
profile portion to the side wall. This is one of the
remarkable characteristics of the Marform technique which
helps draw cups with larger drawing ratio compared with
the conventional deep drawing process.

The effect of forming pressure on maximum thinning of
the blank at the punch profile portion is illustrated in
Fig. 21 for different punch strokes. As can be seen in the
figure, at low pressures, i.e. P≤40 MPa, the thickness
decreases rapidly at higher strokes, which leads to fracture.
At higher forming pressures, i.e. P≤50 MPa, the thickness
decreases uniformly throughout the operation and makes it
possible to achieve higher drawing ratios.

To validate the FE simulation of the process with
experimental results, a model is built for drawing of SPCE
sheet according to the geometry and properties reported in
[4]. The development of thickness strain in the drawn cup
with two forming pressures of 19.6 and 68.65 MPa and
different punch strokes are shown in Figs. 22, 23 and 24.
According to the figures, the FE simulations tend to predict

more thinning compared with the experimental results. The
results of the simulations show that using the new friction
model instead of the very often applied Coulomb’s friction
model has a significant effect on better prediction of
thickness distribution. The FE simulations showed that the
Coulomb friction model with μ=0.3 has the best match
with the experimental results. The maximum thinning at the
punch profile portion decreases from μ=0 to μ=0.3 and
after that increases due to excessive contact pressure and

Fig. 21 Variation of minimum thickness at punch profile portion vs.
punch stroke

Fig. 20 Development of thick-
ness strain at different forming
pressures for various punch
strokes
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frictional forces. According to Fig. 24, the FE prediction
error for thinning at the bend point of the drawn cup is <7%
using a new friction model, whilst the error increases to
12.5% using the Coulomb friction model with μ=0.3. It can
be seen that Figs. 22 and 23 also show the same trend, and
the results of FE simulations with the new friction model
and experimental works show a similar tendency and
correlate very well with each other in a series of conditions.

5.5 Forming limit diagram

The criteria for wrinkling and fracture of the workpiece are
based on the work of Wang et al. [24]. According to their
paper, the maximum compressive strain at the flange must
not exceed the limit strain at which wrinkling occurs. Based

on their analysis, the critical strain to onset wrinkles and
fracture depends on both geometric dimensions (thickness
and curvatures of sheet) and material properties (Young's
modulus, strength coefficient and strain-hardening expo-
nent). The mathematical formulations of the criteria are
available at [24]. Based on these equations, the forming
limit diagram of the ASTM-A36 structural steel was
obtained using FE simulations.

Forming limit diagram is determined by the appearance
of fracture and wrinkle of the cup at different forming
pressures. Figure 25 shows the forming limit diagram of the
ASTM-A36 structural steel in the case of constant forming
pressure during the Marform process. The drawn curves
separate the safe region from the unsafe region. Using this
figure, the relative proximity of wrinkle or fracture of the
blank can be determined and forming conditions can be
selected accordingly.

Fig. 25 Forming limit diagram

Fig. 24 Comparison of Experimental and FE results for the
development of thickness strain at P=68.65 MPa and punch stroke
of 25.5 mm

Fig. 23 Comparison of Experimental and FE results for the
development of thickness strain at P=68.65 MPa and punch stroke
of 6.5 mm

Fig. 22 Comparison of the experimental and FE results for the
development of thickness strain at P=19.6 MPa and punch stroke of
15.8 mm
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As can be seen in the figure, wrinkles appear for
relatively low pressures. At higher pressures up to
40 MPa, fracture is the main defect of the process. As the
forming pressure exceeds 40 MPa, higher drawing ratios
can be achieved without fracture by increasing the stroke up
to 30 mm. The difference between the forming limit
diagram prediction using the new friction model and the
Coulomb friction model is also illustrated in the figure.
According to the results of FE simulations, the new friction
model predicts a larger wrinkling region and a smaller
fracture region compared with the results of the Coulomb
friction model with μ=0.3.

6 Conclusions

In this paper, the deep drawing of sheet metals using the
Marform technique was investigated using analytical model
and finite element simulations. The main conclusions of
this research are as follows:

& An increase in contact pressure results in a decrease in
coefficient of friction between the rubber and the metal.
The coefficient of friction reaches a quite constant value
at higher normal pressures.

& Using the new friction model instead of the very often
applied Coulomb friction model has a significant effect
on the accuracy of FE simulations.

& At low forming pressures, thinning is concentrated at
the punch profile portion. As the forming pressure
increases, thinning propagates from the punch profile
portion to the side wall.

& Wrinkles appear in the cup at relatively low pressures.
At higher forming pressures, fracture is the main defect
of the process.

& Drawing of the cups with smaller bend radius needs
higher forming pressure.

& r1 and y0 increase rapidly and reach their maximum
values at the early stage of forming and after that
decrease constantly during the Marform process.
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