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Abstract This paper addresses job scheduling problems
with parallel machines. To satisfy customers better in a
manufacturing company, meeting due dates has been an
important performance metric. Besides the numerous other
factors affecting due date satisfaction, the splitting of a job
through parallel machines can contribute to the reduction of
production lead time, resulting in less job tardiness against
their due dates. Thus, this paper presents heuristic algo-
rithms for minimizing total tardiness of jobs to meet their
due dates in a manufacturing shop with identically
functioning machines. The algorithms take into account
job splitting and sequence-dependent major/minor setup
times. The performance of the proposed heuristics is
compared with that of past three algorithms in the literature.

Keywords Parallel machine scheduling - Due date -
Sequence-dependent major/minor setup times -
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1 Introduction

Scheduling problems on multiple parallel machines have
been proved to be NP-hard [4]. Consequently, it is unlikely
that a polynomial-time optimization scheduling algorithm
for their solutions will be developed. In addition, job
splitting greatly increases the complexity of scheduling
problems. This paper will present heuristic algorithms that
produce near-optimal schedules to minimize total job
tardiness with identically functioning parallel machines in
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consideration of job splitting and major/minor setup times.
A job is allowed to be split into sub-batches, and the sub-
batches can be processed on different machines. However,
all sub-batches of a job are constrained to be completed at
the same time. The synchronization of sub-batch comple-
tion times on parallel machines is a reasonable production
practice because allowing for the unequal completion times
of sub-batches may incur carrying higher work-in-process
inventories, longer flow times, and a more complicated
shop floor control [10]. This operational policy is also
employed on the ground that no matter how early sub-
batches of a job are finished, meeting the job due date is
determined by the finish time of a sub-batch to be
completed last.

Interest in setup times has been evident in the literature
that delineates applications diversified to different manu-
facturing industries [6, 9, 13, 14, 16, 18]. Two different
treatments for handling setup times can be observed in the
literature: sequence-dependent or independent setup times.
Research associated with sequence-dependent setup times
indicates that setup times vary, depending upon the
sequence of jobs to be processed on a machine. On the
other hand, research on sequence-independent setup times
assumes that the same setup times are supposed to be
incurred regardless of the sequence of jobs processed on a
machine. So [16] and Wittrock [18] introduced the concept
of minor and major setup times. While a minor setup time
is incurred on a machine when switching a job to another in
the same part family, a major setup time is required to
process the job if its part family is different from the part
family which the previous job on the machine belongs to.

As processing methods are improved through the efforts
of continuous improvement and as more advanced auto-
matic machines (e.g., numerically controlled machines) are
used on the shop-floor, setup times could have been
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dramatically reduced. The reduced setup times allow for
splitting a job into small sub-batches; the sub-batches can
then be simultaneously processed on more than one
machine. Consequently, job splitting becomes a promising
production practice to meet the due dates of orders or to
shorten production flow time wherever the job splitting can
be justified. Wittrock [18] and Rajgopal and Bidanda [13]
developed heuristic algorithms for splitting a job through
identical machines to minimize makespan in consideration
of both job splitting and major/minor setup times. Rajgopal
and Bidanda also designed two other algorithms to account
for minimizing the average flowtime of parts. They assume
that major setup times are identical for all part families and
minor setup times are the same for all part types. Xing and
Zhang [19] investigated job splitting in parallel machine
scheduling and presented a linear programming formulation
for minimizing makespan with sequence-independent setup
times. Yalaoui and Chu [20] reported a two-stage heuristic
for minimizing makespan in the presence of job splitting
and sequence-dependent setup times. Tahar et al. [17]
improved the two-stage heuristic by incorporating a linear
programming-based improvement at the second stage.
Beraldi et al. [2] studied a parallel machine scheduling
problem to minimize total setup cost with sequence-
dependent setup costs and job splitting. They developed a
new decomposition heuristics based on rolling horizon and
fix-and-relax approaches.

Considering the current inclination in a manufacturing
strategy towards just-in-time (JIT), the performance
measure of total job tardiness in light of on-time delivery
for better customer satisfaction is more appealing in the
customer-focused competitive market. Balasubramanian et
al. [1] attempted to minimize total weighted job tardiness
in parallel machine environments in which several jobs
can be processed on a machine at the same time but
jobs of different families cannot be processed together.
Radhakrishnan and Ventura [12] and Mason et al. [11]
considered the sum of tardiness and earliness of jobs as a
performance measure to realize JIT in parallel machine
scheduling problems. Chen [3] developed a heuristic for
minimizing total job tardiness with sequence- and
machine-dependent setup times.

When job splitting was considered in the scheduling
problems, few other researchers than Serafini [14], Kim et
al. [7, 8], Logendran and Subur [10], and Shim and Kim
[15] included the due date factor into the scheduling
problems. Serafini dealt with a parallel machine scheduling
problem with job splitting encountered in scheduling looms
in a textile factory. He developed an efficient method using
network flow techniques to minimize maximum weighted
job tardiness in textile weaving operations with multiple
uniform looms. He assumed that switching time for
weaving from one article to another on the same loom is
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ignorable. Kim et al. [7] proposed a simulated annealing
approach that minimizes total job tardiness with sequence-
dependent setup times. The scheduling scheme proposed by
Kim et al. [8] was designed for minimizing total job
tardiness with sequence-independent setup times. Their
scheme consists of two phases: the first for obtaining an
initial solution without considering job splitting, and the
second for improving the initial solution by splitting a job
to sub-batches (i.c., sub-job) and rescheduling the sub-
batches by using the combinations of job/sub-batch
selection rules and machine selection rules. Logendran
and Subur addressed the simultancous completion of sub-
batches of each job with dynamic job releases and machine
availability considerations. However, a job is allowed to be
split into two sub-batches in their model. They presented a
heuristic that identifies an initial solution by composite
dispatching rules and improves the solution using tabu
search to find the best solution. Shim and Kim developed a
branch and bound algorithm to minimize total job tardiness
and demonstrated that the algorithm solves problems of
moderate sizes with a reasonable computation burden.

2 Heuristics
2.1 Problem description

The multiple parallel machines scheduling problem dis-
cussed here have M identical machines and N (>M) jobs,
each of which has small to medium batch sizes. While a
minor setup time is needed on a machine to process jobs in
the same part family as the previous one, a relatively
significant amount of major setup time is required to switch
from a job in a part family to another in a different part
family. Furthermore, the major setup times are dependent
upon the sequence of part families on machines. No setup
time is necessary to process parts or workpieces in the same
job. Although jobs do have different processing time
requirements, it is assumed that processing time for parts
of a job is the same over different machines.

The parallel machine scheduling algorithm presented in
this research consists of two parts: (1) sequencing jobs to
determine which job should be processed first and (2)
splitting a job to sub-batches and assigning the sub-batches
to machines. Section 2.2 will describe three different job
sequencing algorithms. Then Section 2.3 will present a
heuristic, called SPLIT, for splitting a job to sub-batches
and then allocating the split sub-batches to machines with a
rationale of saving setup times and balancing workload on
machines. Algorithm SPLIT is embedded in the job
sequencing algorithms because the start times and comple-
tion times of jobs predicted by SPLIT are used for
sequencing jobs.
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Algorithm SPLIT treats processing of discrete parts as a
continuous process, which allows a fraction of a part on a
machine. Consequently, the completion time of a job
calculated by the algorithm might not be exactly the same
as that in an actual production. Therefore, after jobs are
scheduled on the machines with the job sequencing
algorithms and SPLIT, a refinement task is necessary for
switching the manufacturing process back to the original
discrete process by removing a fraction (if any) of a part
which might have been created by SPLIT. Section 2.4 will
present the refinement algorithm.

The following is a list of notations used throughout this

paper:

N Number of batch jobs (part types).

M Number of identical parallel machines.

F Number of part families.

b; Batch size of job i.

t; Time required to process a workpiece of job i.
d; Due date of job i.

F@i) Part family type of job i.

Sy Major setup time required to switch part family

H' to part family H.
S; Minor setup time required to switch to job i.
A Set of unscheduled jobs.
A(k)  k-th job in set 4.
L(j)  Last job assigned to machine j.
ST;; Starting time of job i on machine ;.
ET; Ending time of job i.
J; Set of machines to process job i.

2.2 Job sequencing
2.2.1 Heuristic 1 (slack-based heuristic)

The procedure presented in this section sequences jobs
based on their “slack times,” i.e., the amount of time left
from completion of jobs to their due dates. The predicted
completion time of a job is calculated by using algorithm
SPLIT which determines the allocation of a job onto
machines and the completion time of the job. The algorithm
of heuristic 1 is as follows:

Set A={1, ..., N}, L(j)=0 (j=1,...M), (=1, ...,
M), and ET=0.

Perform the allocation procedure, SPLIT, with a
batch job A(k) to determine machines to process A
(k) and to estimate the completion time of A(k) for
k=1, .4

Calculate the slack time (SLACK 4)) of A(k) by
SLACKA(k) = dA(k) — ETA(k) for k = 1, ceny |A|
Select job i* with the least slack time and allocate
it to machines as determined by the allocation
procedure.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5. Update A=4—{i*} and L(j)=i* for j € J» and
reset all information of jobs in 4.
Step 6. Repeat steps 2—5 until 4 becomes ¢.

2.2.2 Heuristic 2 (dynamic scheduling window-based
heuristic)

This heuristic algorithm divides a scheduling horizon into
small scheduling time buckets, or “scheduling windows,”
and then creates a schedule of jobs within each scheduling
window. The division of the entire scheduling horizon into
small scheduling windows attempts to obviate the possibil-
ity that jobs with early due dates will be processed late, or
that jobs with late due dates will be processed too early.
Since there will be significant setup time involved to switch
from one part family to another, the algorithm will group
jobs based on their part families and then determine a
sequence of the part families. Once the part families are
sequenced, jobs in each part family will be scheduled,
based on the ratio of due date to workload.

Suppose that the entire scheduling horizon is divided
into 7 number of windows, X.(r = 1, ..., T). The time span
for each window varies and is determined by assigning a
similar amount of work to all scheduling windows. A
procedure for dividing a scheduling horizon to scheduling
windows is described in Appendix 1. The algorithm of
heuristic 2 is as follows:

Step 1. Divide the entire scheduling horizon into T
scheduling windows by the procedure described
in Appendix 1.

Step 2. Set r=1.

Step 3. Group jobs in X, by their part families.

Step 4. For each part family K in X, calculate the sum of
due date per workload (SDDW) of jobs in K by
D oierdif (si 4+ bi x ;).

Step 5. Select a part family with the smallest SDDW
among unassigned part families.

Step 6. Make a sequence of jobs in the part family in
ascending order of due date per workload (i.e.,
d,'/(Si + b,‘ X li) for _]Ob l)

Step 7. Assign the jobs using the allocation procedure,
SPLIT, described in Section 2.2.

Step 8. Repeat steps 4—6 until all part families in X, are
scheduled.

Step 9. Repeat steps 2—7 by increasing » by one until all

scheduling windows are considered.

2.2.3 Heuristic 3 (estimated latest starting time-based
heuristic)

In this heuristic algorithm, jobs are sequenced, based on the
estimated latest starting time calculated by the algorithm
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SPLIT. The latest starting time of job i is estimated under
assumptions that (1) M/2 (or (M+1)/2 if M is odd) number
of machines will be assigned to process the job and (2)
setup time required for the job on all assigned machines
will be calculated by (2 xs; + (XxSkr())/(F —1))/2
where Ks are part family types different from F(7), and F is
the total number of different part families. The algorithm of
heuristic 3 is as follows:

Step 1. Estimate latest starting times (LST),) of job i (i=1,
..., N) by
bi x t ( Z<S[><’F(i)
X 1 K(K#F(i)
di— | = 2xsi+——77—|/2
il o s el K
where, m is M/2(or (M+1)/2) if M is even (odd).
Step 2. Sort jobs in ascending order of LST,.
Step 3. Allocate the sorted jobs on machines using the

SPLIT until all jobs are assigned.

2.3 Job splitting and assignment to machines (algorithm
SPLIT)

From a rationale of saving setup times and balancing machine
workload, algorithm SPLIT is developed in this research to
split a job into sub-batches and then allocate them to
machines. Sub-batches of a job that are split among machines
will be finished at the same time. Two decision issues in the
job allocation problem pertaining to trade-off between job
splitting and setup time savings are: (1) the maximum total
setup time (MST,) allowed for job i and (2) an allowed ratio
of setup time to total processing time (RST;) on each
machine. The first issue is concerned with the amount of
total setup time to be spent on a job, compared to the total
processing time needed for the job in the entire production.
When job setup time is high, it is unlikely that the job will be
split and processed on many machines, unless it is extremely
urgent. The second issue deals with justifying the setup time
required for a job on a machine, compared to the total
processing time spent on that machine. Suppose that the
setup time of a job and processing time of a part of that job
on a machine are 20 and 3 min, respectively. In such a
situation, it would not be advantageous to set up a machine
to process just a few parts of the job. MST; and RST; for job i
would be calculated as follows:

MST; = max(max (Sg()), r(i)) + 8i, @ X b X t;) (1)
J

RST; = 1,1fmax(SF(L(,))p(,>) + 5 > ﬁ X b; X t;
’ (2)

= B, otherwise

where, o« and 3 are coefficients with a range of [0, 1].
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In addition to reducing setup time requirements in job
splitting, the algorithm SPLIT attempts to prevent a
machine from being assigned to processing less than a
part-worth work of a job. (It should be remembered that the
SPLIT treats processing of discrete parts as a continuous
process, allowing a fraction of a workpiece to be processed
on a machine.) Thus, although it is allowed to process a
fraction of a part on the machine at the first phase of
scheduling, the total work of the job on the machine has to
be at least a part (see step 10 of the SPLIT.)

While restricting setup time requirements within the
limits described above, the SPLIT also tries to balance work
among machines. First, it attempts to assign a new job i to a
machine with the least workload (see step 2 of the SPLIT).
If the machine (called machine ;) requires a major setup
time, the SPLIT will search for another machine which has
completed a job in the same part family as that of the new
job i. If it finds such a machine (called machine ;*) and
Sewgy.ri) + ETrg) > ETy+), it will assign job i to machine
j* instead of machine ;. (See step 7 of the SPLIT.)

The algorithm SPLIT is as follows:

Step 1.
Step 2.

Set J;=¢ and total setup time required for job i=0.
[Balancing workload] Sort machines in the ascend-
ing order of ET,; for j=1, ..., M, and create a set,
B, which includes machines in the sorted order.
Set r=0.

Set r=r+1.

Select machine j which is the rth machine in B.
Set 7o to be » and go to step 7 if the part family
type of job i is not the same as that of L(j).
Otherwise, go to step 8.

[Saving setup time and balancing workload] Search,
by increasing ro by 1 at a time, for a machine such
that the last job on the machine belongs to the same
part family as job 7. If such a machine is not found,
reset 7 to be ry and go to step 8. Otherwise, let j*
and 7* be the machine number and the index of the
order corresponding to the machine. If Sg(7j)) #(;) +
ETyj) > ETy+ or no job has yet been assigned to
machine j*, then reset » to 7* and j to j*. Go to
step 8.

Decide setup time required for job i on machine j

by

Step 3.
Step 4.
Step 5.
Step 6.

Step 7.

Step 8.

SETUP = s; if jobi belongs to the same part family as L(j),

=5+ SF(L(‘/'))‘F(I') otherwise.

Step 9. Estimate total processing time (TPT) for job i on

machine j by
TPT:b,X[llfJ,:qb
= |Ji| x {ET; — (ET(; + SETUP) }/
(|Ji| + 1) otherwise.
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The second equality shown above is to split job
i currently allocated to |J;| number of machines to
|/;] + 1 machines which include machine j. (Refer
to Appendix 2 for details of the second equality.)
[Validation of processing a job on a machine] Go to
step 14 if TPT of job i is less than its unit
processing time of #. Otherwise, go to step 11.

Step 10.

Step 11. Calculate TST' = TST + SETUP.

Step 12. Calculate MST; and RST; using Eqgs. 1 and 2 if
Ji=9.

Step 13. [Checking appropriateness of job splitting in light

of setup time requirements] If TST < MST; and
SETUP < RST; x TPT, then (a) add machine j to
J;, (b) update TST = TST" and ET; = ET;;)+
TPT + SETUP, (c) eliminate machine ; from B,
and (d) set r=r—1.

Step 14. Terminate this procedure if B=¢.
Step 15. Go to step 4 if » < |B].
Step 16. Go to step 3 if machine j was removed from B in

step 13. Otherwise, terminate this procedure.

The above steps will determine (1) the allocation of job i to
machines and (2) the start time and completion time of the
job. This information will be fed into the job sequencing
algorithms described previously.

2.4 Refinement algorithm

Since the SPLIT algorithm attempts to split the processing
time of a job through calculation using the continuous
process concept for discrete parts, it is most likely that a
fraction of a part would be assigned to a machine. Thus,
this refinement algorithm removes the fraction of a part of a
sub-batch from the machine and augments it to the sub-
batch on the other machine. The essence of this procedure
is as follows:

1. If only a fraction of a part of a job is assigned to a
machine, the job will be removed from the machine to
save setup times.

2. Fractional parts of a job will be first rounded off; then, if
the total number of parts is greater than the batch size of
the job, the fractional parts will be trimmed from
machines with heavy workloads one at a time. If it is
less than the batch size, the fractional parts will become
full part(s) and added to machines with small workloads.

Following is the procedure for the refinement algorithm.

Step 1. Sort jobs in ascending order of starting times:
o1, .-y Oy, ..., Oy, Where o, stands for rth job in
that order.

Step 2. Set r=0.

Step 3. Set r=r+1 and i be a job index corresponding to

O~

Step 4. Calculate the number of workpieces (W ;) of job i

to be processed on machine j (j € J;) by

Finish time — Start time

ij —

Processing time

Step 5. Perform a following fraction-rounding procedure
for all machines in J;:

If W;;<1, then remove machine j from J;.

Otherwise, obtain a fraction of W, ;:
fij = W;j — Trunc (W;;), where Trunc(W; ) stands
for the largest integer no greater than W, ;.
Update the number of workpieces to be processed
on machine j (j € J;) as follows: If f;;<0.5,
then W;; = Trunc (W;;). Otherwise, W;; =
Trunc (W;;) + 1.
Adjust the total number of workpieces (X;W; ) of
job i when it is greater or less than the batch size
of b; as follows with workload balancing in mind:

Step 6.

Step 7.

If YW, > b;, then remove a workpiece one by
one from heavily loaded machines as compared
with the other machines in J; until X, reaches
b;.

If X;W;; < by, then add a workpiece one by one to
less-loaded machines as compared with the other
machines in J; until X;W; » reaches b;.

Step 8. Update starting and finishing times of job 7 and the
other jobs to be processed later on the machines
in J;.

Step 9. Go to step 3 until » becomes N.

3 Analysis of performance
3.1 Statistical analyses and calibration

An empirical testing approach to evaluating the three
proposed heuristic algorithms was employed, running the
algorithms on 12 sample problems. The problems were
selected by changing the number of families (5, 10, and
15) and the number of parallel machines (3, 5, 8, and
12). Five instances were created for each problem. The
SPLIT job allocation algorithm involves two parameters,
« and {3, which are used for calculating the maximum
total setup time allowed for jobs and an allowed ratio of
setup time to processing time on each machine, respec-
tively. The effects of the two parameters on the
performance of the SPLIT algorithm were investigated
by changing the values (0.05, 0.1, 0.15, 0.2, 0.3, 0.4, and
0.5). Another parameter indicating the number of
scheduling windows involved in heuristic 2 (dynamic
scheduling window-based heuristic) was also tested with
five different window numbers (three to seven scheduling
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windows). Thus, a full factorial design of experiments
with 20,580 test runs was set up as follows:

Factors Levels  Level values
1. Number of families 3 5, 10, 15
2. Number of parallel 4 3,5,8,12
machines
3. Parameter o 7 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5
4. Parameter f3 7 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5

5. Heuristic algorithms 7 HI1, H2 3 W-7 W), H3

where, Hk means heuristic &, and kW stands for & number
of windows.

To generate the number of jobs in each family, the batch
size of jobs, the major and minor setup times, and the
processing times of jobs for each instance, the following
scheme was adapted from [15] with a slight modification:

Number of part types in a part family, uniformly
distributed over [1, 10]

Batch size (number of workpieces) of a part type,
uniformly distributed over [30, 90]

Major setup times, uniformly distributed over [20, 50]
Minor setup times, uniformly distributed over [1, 10]
Processing times, uniformly distributed over [2, 10].

The minute was used as a time unit. For the purpose of
convenience, the time unit will be omitted throughout this
paper. The due dates of jobs were generated from a due date
generation scheme proposed by Dogramaci and Surkis [5].
The scheme distributes due dates uniformly between

Px(1—1—R/2)and (1 — 7+ R/2),

where, T is a mean tardiness factor, R is a due date range
parameter, P is calculated by

(ZN:bi xti—&—NxMx}i:l XF: Siv/(2xF x (F— 1))+M><2N:s,»/2>/M

t=1 t'=t+1

while a larger value of 7 generates tighter due dates, a larger
R spreads the due dates wider. In this experiment, R and 7
were set to 1.0 and 0.5, respectively. The heuristic
algorithms were programmed in Java and run on a personal
computer with a Pentium CPU.

Analysis of variance for the numerical results obtained
from the design of experiments revealed that all five factors
shown above have significant effects on the performance
measure of total job tardiness at the significance level of
0.01. In addition, Tukey’s studentized range test was
conducted to identify which algorithm performs better than
the others. The result in Table 1 indicates that heuristics 1
and 3 perform better than heuristic 2, and the two
algorithms are not significantly different at the significance
level of 0.05. Although heuristic 2 divides the entire
scheduling horizon into small scheduling windows to

Table 1 Tukey’s studentized range test for heuristic algorithms

Tukey grouping Mean of total job tardiness Heuristics (W)

A 18,936.7 H2 (3)
B 17,135.2 H2 (4)
C 15,776.3 H2 (5)
D 14,615.0 H2 (6)
E 14,2342 H2 (7)
F 12,393.6 HI

F 12,107.4 H3

Heuristic algorithms with the same Tukey grouping letter are not
significantly different at the significant level of 0.05
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prevent jobs with early (late) due dates from being
processed late (too early), it causes more major setup times
required because part families in each scheduling window
are scheduled separately from those in the other scheduling
windows. Thus, the lengthened production flow times of
jobs seem to result in worse performance in meeting due
dates than the other two heuristic algorithms. To see how
parameters o and 3 affect the performance of heuristics 1
and 3, mean total job tardiness was calculated for each
parameter combination. The result is shown in Fig. 1. From
the figure, it is recommended that the values in ranges of
[0.05, 0.15] and [0.1, 0.2] be used for parameters « and f3,
respectively. This experiment suggests («=0.1, 3=0.15) as
an optimal combination.

3.2 Performance comparison

We conducted two experiments for performance compari-
son. When job splitting and the synchronization of sub-
batch completion times are considered in the scheduling
problem, few other researchers than Logendran and Subur
[10] included the due date factor into the scheduling
problem. However, Logendran and Subur allow a job to
be split into two sub-batches in their model, which will
construct schedules with larger total job tardiness than those
of the proposed heuristics that allow splitting a job into
arbitrary number of small sub-batches. Therefore, the first
comparison was conducted with two algorithms developed
by Kim et al. [8] and Lee and Pinedo [9]. The two existing
algorithms do not accommodate job synchronization con-
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Fig. 1 Mean total job tardiness obtained from heuristics 1 and 3 over
parameters « and f3

straint. If our heuristics shows performance comparable to
the two algorithms through the experiment, then the
efficiency of our heuristics will be verified.

Kim et al. allow multiple job-splitting, but considers only
sequence-independent setup times. On the other hand, the
algorithm developed by Lee and Pinedo, which is called
apparent tardiness cost with setup (ATCS), is designed to
reflect sequence-dependent setup times in the scheduling, but it
does not consider job splitting. Kim et al. presented a variant of
ATCS, denoted as modified ATCS (MATCS) in their paper,
which allows job splitting so as to demonstrate the perfor-
mance efficiency of their algorithm. Among two dozens of
dispatching rule combinations suggested by Kim et al., we
chose two combinations: methodl with JS2 job/sub-job
selection rule and MS3 machine selection rule, and method2
with JS1 job/sub-job selection rule and MS3 machine selection
rule. The selected combinations demonstrated the best perfor-
mance in their experiment (refer to p. 4539 of [8] for further
information). Hereafter, we abbreviate the two dispatching
combinations as method1-JS2-MS3 and method2-JS1-MS3.
For the comparison experiment, we considered two cases: one
with sequence-independent setup times and the other with
sequence-dependent setup times. The former compares the
performance of the proposed heuristic algorithms, method1-
JS2-MS3, method2-JS1-MS3, and MATCS, while the latter
tests the proposed heuristic algorithms and MATCS. For each
case, 12 scheduling problems were considered by changing
part family size (5, 10, and 15) and the number of machine
size (3, 5, 8, and 12). Five instances were created for each
problem. Thus, the total number of problem instances was 60
for each case. The computational times were within a few
seconds, so we do not report the times in this paper. Based on
the experiment result in Section 3.2, parameters « and 3 were
set to 0.1 and 0.15, respectively.

Table 2 gives the experimental results. For each
algorithm, the performance measures are the ratio of best
solution to the total problem instances and the mean of
relative deviations to the best solutions of all instances. As
shown in Table 2, when sequence-independent setup times
were considered, heuristic 3 demonstrated the best perfor-
mance: it accounts for 56.67% of the best solutions, and its
mean relative deviation is 13.95% for the entire instances.
However, the mean relative deviation (19.31%) of heuristic
1 is not so different from that of heuristic 3 compared to the
deviations of the other three algorithms. Method2-JS1-MS3
showed the worst performance in this case. Similar result
can be observed for the case of sequence-dependent setup
times. Heuristic 3 generated the best solutions for 60% of
the 60 instances, while MATCS failed to generate any
single best solution. The results of the two cases are
interesting in that, even the constraint of job completion
time synchronization is not imposed on method1-JS2-MS3,
method2-JS1-MS3, and MATCS, the performance of the
algorithms is not as satisfactory as that of the heuristics
presented in this paper.

For the same problem instances in the previous exper-
iment, we conducted the second experiment that compares
the performance of the proposed heuristics with simulated
annealing (SA) approach with job splitting [7]. We
modified the objective function of the approach so that
the sub-batch completion times of a job are as close to
equal as possible. In specific, the modified objective
function is a weighted sum of total job tardiness and
penalty for the violation of the synchronization constraint.
We considered two weights (0.5 and 0.9) for the penalty.
The more weight is given to the penalty, the tighter the
constraint is enforced. In the previous experiment, heuristic
3 showed the best performance. So, the performance
measure of this experiment was defined the relative total
job tardiness to heuristic 3. Also, computation time was
measured. The results of the experiment are summarized in
Table 3. In the table, the performance of SA is the average
of results for the two penalty weights. As shown in the
table, SA showed better performance only in the case of
sequence-independent setup with 36.83% violation of the
synchronization constraints. Furthermore, its execution time
was 4.45 h on average while heuristic 3 took 1 ms. From
the observation, we conclude that the proposed three
heuristic algorithms show good performance results with
short computation times.

4 Conclusions
Much attention has been paid to reducing setup times for

the newly emerging manufacturing strategies of product
flexibility and on-time delivery. Reducing setup time allows

@ Springer



332

Int J Adv Manuf Technol (2012) 59:325-333

Table 2 Performance compari-
son results (x=0.1, 3=0.15)

Optimum Ratio (mean relative deviation)

Sequence-independent setup (%)

Sequence-dependent setup (%)

Heuristic 1
Heuristic 2
Heuristic 3
Method1-JS2-MS3
Method2-JS1-MS3
MATCS

Each solution of heuristic 2 was
obtained after five scheduling
window sizes (3, 4, 5, 6, and 7)
were tested

25% (19.31)
3.33% (93.62)

33.33% (7.93)
6.67% (75.9)

56.67% (13.95) 60% (4.4)
10% (252.61) N/A
1.67% (255 95) N/A

3.33% (944.36) 0% (364.88)

for splitting a production job into small batches and then
processing a job on more than a machine simultaneously at
a manufacturing workstation with multiple identically
functioning machines. Thus, this research addressed job
scheduling problems with identical machines considering
job splitting, major/minor setup times, and due dates. Three
heuristic algorithms (slack-based heuristic, dynamic sched-
uling window-based heuristic, and estimated latest starting
time-based heuristic) were developed to minimize total job
tardiness. Algorithm SPLIT which is embedded into the
above three heuristics was also presented in this research to
divide a job into sub-batches and then assign them to
machines. The primary function of the algorithm is to split
a job to more than one machine while limiting total setup
times required and balancing the workloads of machines.

The performance of the heuristics was evaluated by
varying the number of part families, the number of
machines, and parameter values. The statistical analysis
for the performance results showed that slack-based
heuristic (heuristic 1) and estimated latest starting time-
based heuristic (heuristic 3) are not significantly different in
their performance. The two heuristics performed better than
dynamic scheduling window-based heuristic (heuristic 2).
The parameters, o« and 3, had significant effects on total job
tardiness, and the values in [0.05, 0.15] and [0.1, 0.2] are
recommended for « and {3, respectively. Finally, throughout
comparison experiments with three past algorithms, it was
demonstrated that the performance of the proposed heu-
ristics was better than that of the three algorithms.

Appendix 1. A procedure for dividing a scheduling
horizon into scheduling windows

The following describes a procedure for dividing a
scheduling horizon to 7 number of scheduling windows:

Step 1. Calculate the sum of minor setup and total
processing requirements of jobs by using
E,’(S,' + bl' X l,').

Step 2. Calculate the average workload (AWL) in each
scheduling window by dividing the sum by T.

Step 3. Set r=0.

Step 4. Set r=r+1.

Step 5. Assign a job with the earliest due date to X, and
repeat it until the total minor setup and process-
ing time of jobs in X, reaches AWL.

Step 6. Continue steps 4 and 5 until all jobs are assigned

to one of the scheduling windows.

Appendix 2. Description of splitting a job onto machines

Supposing that job i has currently been split to |J;|
number of machines as shown in Fig. 2a, algorithm
SPLIT calculates the amount of work for job i to be
processed on another machine, called machine j. When
job i is processed on machine j, the work for job i after
the time of ET,;,+SETUP that is currently allocated to |
Ji| number of machines needs to be split to (|J;] + 1)

Table 3 Performance comparison between the proposed heuristics and simulated annealing (SA) approach

Relative total job tardiness to heuristic 3 (mean computation time) Ratio of synchronization constraint violation

Sequence-independent setup Sequence-dependent setup Sequence-dependent setup (%) Sequence-independent setup (%)

Heuristic 1 106.46% (51 ms) 105.92% (113 ms) 0 0
Heuristic 2 134.08% (1 ms) 134.43% (1 ms) 0 0
Heuristic 3 100% (1 ms) 100% (1 ms) 0 0

SA 96.76% (4.45 h) 104.67% (4.67 h) 36.83 38.71

Each solution of heuristic 2 was obtained after five scheduling window sizes (3, 4, 5, 6, and 7) were tested
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(a)
1st M/C Wi
|Jil-th M/C Wi
T
ETi
SetupTime E= ProcessingTime
(b)
1st M/C =
|Jil-th M/C Wi
(IJ1+1)-th M/C m
| | T
ETLG) ET7 ETi

Fig. 2 Tllustration of job split: a job i is split to |J;| number of
machines and b job i split to (|/;| + 1) number of machines. ET}is a
new ending time of job i, which is calculated by ET,; + || x
{ET: — (ETy; + SETUP) }/([Ji| + 1)

machines. Thus, the TPT required for job i on machine j
will be:

TPT = | x {ET, — (ETy; + SETUP) } /(1] + 1)

Figure 2b illustrates the system status after job i is split
to (|/;] + 1) machines. It should be noted that TPT can have
any sign (i.e., minus, zero, and plus). If TPT is less than the
time for processing a workpiece of job 7, it is not
appropriate to process job i on machine j. Step 10 of the
algorithm SPLIT tests the condition for the appropriateness
of splitting job i to (|/;] + 1) machines from |J;].
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