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Abstract Process planning and scheduling are two of the
most important functions involved in manufacturing pro-
cess and they are actually interrelated; integration of the
two is essential to improve the flexibility of scheduling and
achieve a global improvement for the performance of a
manufacturing system. In order to facilitate the optimization
of process planning and scheduling simultaneously, a
mathematical model for the integrated process planning
and scheduling (IPPS) is established, and an improved
genetic algorithm (IGA) is proposed for the problem. For
the performance improvement of the algorithm, new initial
selection method for process plans, new genetic represen-
tations for the scheduling plan combined with process plans
and genetic operator method are developed. To verify the
feasibility and performance of the proposed approach,
experimental studies are conducted and comparisons are
made between this approach and others with the makespan
and mean flow time performance measures. The results
show that the proposed approach on IPPS has achieved
significant improvement in minimizing makespan and
obtained good results for the mean flow time performance
measure with high efficiency.
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1 Introduction

Process planning and scheduling are two important manu-
facturing planning activities which can greatly affect the
performance of manufacturing systems. These two func-
tions are interrelated for both process planning and
scheduling involve assignment of resources. However,
conventionally, these functions are performed separately
and sequentially. The process plan has to be prepared first;
scheduling will then be performed to allocate manufactur-
ing resources according to the process plan [1]. This
sequence methodology does not take into account the
flexibility of process plan which is essential for manufac-
turing system and always directly influence the perfor-
mance of scheduling. Meanwhile, it may also bring some
other problems, such as objective conflicting between the
process planning and scheduling, unbalance for production
machines and the infeasibility for process plan after it has
been sent to productions systems for the manufacturing is
dynamic in nature.

In response to these problems, Chryssolouris et al. [2]
first proposed the idea to integrate the process planning and
scheduling. In recent years, the integrated process planning
and scheduling (IPPS) has been extensively researched over
the viewpoint of framework and model [3–7], system
building [8, 9], optimization approaches [10–16], and so
on. The results of these researches show that the integration
of the two functions may bring significant improvements
to the efficiency of the manufacturing facilities through
elimination or reduction in scheduling conflicts, reduction
of flow time and work-in-process, improvement of
production resources utilization, and adaptation to irregu-
lar shop floor disturbances [10, 11]. Therefore, the
integration of process planning and scheduling is essential
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to achieve a global improvement for the performance of a
manufacturing system.

The IPPS problem discussed in most of these papers
and will be discussed in this paper can be defined as:
given a set of N jobs which are to be processed on M
machines with alternative operations sequences and
alternative machines for operations, find an operations
sequence and corresponding machines sequence for each
job and a schedule in which operations on the same
machines are processed such that it satisfies the prece-
dence constraints and it is optimal with respect to some
relevant criteria, e.g., minimum makespan and minimum
mean flow time.

These optimization criteria are the same as those for
conventional scheduling; however, the process of integrated
optimization is to determine the scheduling plan for all
jobs and process plan for each job collaboratively from
the view of manufacturing systems, which is different
from the conventional optimization method that optimize
process planning and scheduling separately and locally.
The result of the integration is to help the schedule
planners to determine more optimal scheduling plans and
assist the process planers to determine the final process
plan (including chosen operations, machine for each
operation, and the sequence of operations) for each job
that will be passed on to the production systems from
some alternative process plans simultaneously. The final
chosen process plan is the optimized one for the
manufacturing systems but it may not be the best one
for the process planning.

The remainder of the paper is organized as follows.
Section 2 summarizes the related work of the problem. The
problem of IPPS is discussed in Section 3. Section 4 gives
the improved genetic algorithm (IGA) for the IPPS. In
Section 5 the experiments are conducted and results are
discussed. The conclusions are given in Section 6.

2 Related work

The IPPS defined in this paper is a nondeterministic
polynomial time-hard problem and it is always difficult to
find perfect solutions in reasonable time. Therefore, it
inspires a lot of scholars to create new approaches for the
problem. Agent- and algorithm-based methods are the two
main approaches for it.

Agent-based approach has been widely used for the
problem. Lim and Zhang [12, 13] constructed a multi-
agent-based framework for the IPPS problem. This frame-
work can also be used to optimize the utilization of
manufacturing resources dynamically as well as provide

a platform on which alternative configuration of manu-
facturing systems can be assessed. Wong et al. [14–16]
proposed an online hybrid agent and an online multi-agent
method in their serial articles and they also incorporated an
ant colony algorithm to optimize the problem [17]. Shukla
et al. [18] conceptualized a bidding-based multi-agent
system for the problem, the proposed architecture consists
of various autonomous agents capable of communicating
(bidding) with each other and making decisions based on
their knowledge; meanwhile, they gave a new paradigm by
taking the tool cost as a dynamic quantity for the
integration optimization. Li et al. [19] utilized the commu-
nication mechanism of agent and the optimization function
of genetic algorithm to solve the problem. The agent-based
approach can always optimize the process planning and
scheduling simultaneously for the communication and
cooperation essence of agent, but it is always with low
efficiency; for the communication and negotiation between
agents, it should take long time especially for large-scale
problems.

Algorithm-based method is another important mecha-
nism for the integrated problem. Weintraub et al. [20]
presented an algorithm incorporated with tabu search
procedure to reduce maximum lateness for the problem.
Tan et al. [21] developed a linearized polynomial mixed-
integer programming method for IPPS. Li and McMahon
[22] proposed a simulated annealing-based algorithm to
determine the process plans and scheduling simulta-
neously. Li et al. [23] used a hybrid method for the IPPS
problem. Except for these algorithms, the evolutionary
algorithm is a very popular algorithm-based approach that
has been used for the problem by different scholars such as
Shao et al. [10, 24], who proposed an improved frame-
work and a modified genetic algorithm for the integration
problem. However, the algorithm seldom deliberate the
sequencing flexibility of process plan, which is essential
for a manufacturing system, while generating the process
plan from the flexible process plan network. Moon et al.
[25–27] presented an advanced process planning and
scheduling model for multiplant and used an evolutionary
algorithm to solve the model with different objectives.
Kim [28] used a distributed cooperation evolution method
referred to as symbiotic evolutionary algorithm (SEA) to
optimize the process planning and scheduling problem
simultaneously.

The main focus of our work is to formulate a mathemat-
ical model that incorporates the machine selection and
operation sequencing in process planning and the deter-
mination of their schedule and to develop an IGA with
new initial selection method for process plans, new
genetic representations for the scheduling plan combined
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with process plans, and genetic operator method to
optimize the IPPS with the makespan and mean flow
time performance measures.

3 Integration of process planning and scheduling

3.1 Representation of flexible process plans

The flexible process plans are normally generated by
machine substitutability, operation substitutability, and
sequencing substitutability [29]. Machine substitutability
relates to the possibility of performing an operation on
alternative machines with possibly distinct processing times
and costs. Operation substitutability is determined by the
possibility of producing the same manufacturing feature
with alternative operations or sequences of operations.
Sequencing substitutability corresponds to the possibility
of interchanging the sequence in which manufacturing
operations required are performed.

Flexible process plans can be described by Petri
network [30], operation relationship graph ORG [31],
AND/OR network graph and so on [32]. The AND/OR
network graph is adopted in this paper. There are six node
types in the network: starting node, operation node, ending
node, OR node, AND node, and JOIN node (see Fig. 1). A
starting node and an ending node are dummy ones and,
respectively, indicate the start and the completion of the
manufacturing process of a job. An operation node
represents an operation which contains the alternative
machines that can perform the operation and corresponding
processing times required for the operation. The arrows
connecting the nodes represent the precedence relation
between them. OR nodes are used in order to describe
operation substitutability. Only one of the OR-links (the
links connected by an OR node are called OR-links) needed
to be traversed. An operation path that begins at an OR-link
and ends as it merges with the other paths is called an OR-
link path. The end of the OR-link path is denoted by a JOIN
node. AND nodes are used in order to describe sequencing
substitutability that the sequence of operations in different
AND-link path can be interchanged while satisfying the
precedence constraints in the same AND-link path. An
AND-link path is an operation path that begins at an
AND-link (the links connected by an AND node are
called AND-links) and ends as it merges with the other
paths to a JOIN node.

Figure 1 shows two jobs alternative process plan
networks (jobs 1 and 2), in the network of Fig. 1b, paths
{6, 7, 8, 9}, {6, 7, 10, 9} and {11, 12, 13} are three OR-
link paths of OR node 1. An OR-link path can definitely

contain the other OR-link paths, e.g., paths {8} and {10} in
Fig. 1b {1, 2, 5, 3, 4, 6, 7, 8, 9, 15, 17, 16, 18, 19, 20} can
be one of the feasible process plans while taking AND-link
path and OR-link path into account.

3.2 The mathematical model

The scheduling in the integrated model is often assumed as
job shop scheduling, and the following assumptions are
made [24, 28].

1. Job preemption is not allowed and each machine can
handle only one job at a time.

2. All jobs are simultaneously available at time zero.
3. The different operations of one job cannot be processed

simultaneously.
4. After a job is processed on a machine, it is immediately

transported to the next machine on its routing, and the
transportation time is ignored.

5. Setup times for the operations on the machines are
independent of operation sequence and are included in
the processing time.

In order to ease the description of the integrated model
and related algorithm in this paper, the notations and
formations in this paper are defined as follows.

Notations

M The total number of machines
N The total number of jobs
i The index for the job
j The index for the process plan
k The index for the operation
m The index for the machine
Ni The total number of process plans of job i
Nij The total number of operations in the jth

alternative process plan of job i
ai The index for AND node of job i
ori The index for OR node of job i
s The number of near optimal process plans

selected for integrated optimization
oijk The kth operation in the jth alternative process

plan of job i
oik The kth operation of job i
omijk The kth operation in the jth alternative process

plan of job i performed on machine m
pmijk The processing time of omijk
OAai The operation set in the AND link paths split

from ai
xmijk 0,1variable, equals to 1 if Oijk is manufactured on

machine m, otherwise equals to 0;
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xij Equals to 1 if the jth process plan of job i is
selected, otherwise equals to 0

Mijk The alternative machine set for Oijk

Mik The alternative machine set for Oik

mijk The chosen machine of oijk in a scheduling
plan
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Fig. 1 Flexible process plan networks. a Flexible process plan network of job 1. b Flexible process plan network of job 2
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ui The total number of operations in the longest of
process plan(s) of job i

fi A middle integer number equals to
fi ¼ Roundðui10Þ þ 1

esmijk The earliest start time of omijk
ecmijk The earliest complete time of

omijk ,ec
m
ijk ¼ esmijk þ pmijk

ci The earliest complete time of job i
di The due date of job i
acmijk The allowed start time of omijk
[i_s,
i_e]m

an idle area of machine m, i_s is the start time of
the idle area, i_e is the end time of the idle area

Om The operation set that manufactured on machine
m (the sequence of different operations is
determined) and defined as Om ¼ fomijkg; 1 �
m � M ; 1 � i � N ; 1 � j � Ni;

Nori The total number of OR node in the process plan
network of job i

Nai The total number of AND node in the process
plan network of job i

W An arbitrary large positive number

Define “=>” as the precedence relation notation, it
means operation oi1j1k1 precedes oi2j2k2 if exist oi1j1k1 ¼>

oi2j2k2 ; 8i1; i2 2 ½1;N �; 8j1 2 ½1;Ni1 �; 8j2 2 ½1;Ni2 �; 8k1 2 ½1;
Ni1j1 �; 8k2 2 ½1;Ni2j2 �.

This paper summarizes the main objectives as follows.

The objective of minimizing makespan can be defined
as:

f1 ¼ max
8i2½1;N �

ðciÞ ð1Þ

The objective of minimizing mean flow time can be
defined as:

f2 ¼ min
1

N

XN
i¼1

ci ð2Þ

The objective of minimizing the maximum of lead time
can be defined as:

f3 ¼ min ð max
8i2½1;N �

ðmaxðdi � ci; 0ÞÞÞ ð3Þ

The objective of minimizing the maximum tardiness
time can be defined as:

f4 ¼ minð max
8i2½1;N �

ðmaxðci � di; 0ÞÞÞ ð4Þ

The objective of minimizing the mean tardiness can be
defined as:

f5 ¼ min
1

N

XN
i¼1

maxððci � diÞ; 0Þ ð5Þ

The objective of maximizing resource utilization can
be defined as:

f6 ¼ max

PM
m¼1

P
oijk2Om

pmijk

max
i2½1;N �

ðciÞ

0
BBB@

1
CCCA ð6Þ

The objective of minimizing the total load of machines
can be defined as:

f7 ¼ min
XM
m¼1

X
oijk2Om

pmijk

0
@

1
A ð7Þ

The objective of maximize the balance of machines can
be defined as:

f8 ¼ min
XM
m¼1

j
X

oijk2Om

pmijk �
1

M

XM
m¼1

X
oijk2Om

pmijk j ð8Þ
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Fig. 3 Individual of scheduling plan integrated with process plan
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Fig. 4 Crossover for two chromosomes
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These objectives are subjected to the following
constraints.

esm
0

ijk 0 � xij � xm
0

ijk 0 � esmijk � xij � xmijk þW � ð1� xijÞ þW � ð1� xm
0

ijk 0 Þ � pm
ijk
� xij � xmijk ;

8i 2 ½1;N �; 8j 2 ½1;Ni�; 8k 0; k 2 ½1;Nij�; 8m0 2 Mijk 0 ; 8m 2 Mijk ; oijk ¼> oijk 0 :

ð9Þ

esmi2j2k 2 � xi2j2 � esmi1j1k1 � xi1j1 þW � ð1� xi2j2Þ � pmi1j1k1 � xi1j1 ; 8i1; i2 2 ½1;N �; 8j1 2 ½1;Ni1 �; 8j2 2 ½1;Ni2 �;

8k1 2 ½1;Ni1 j1 �;8k2 2 ½1;Ni2 j2 �; 8oi1j1k1 ; oi2j2k2 2 Om;m 2 ½1;M �; omi1j1k1 ¼> omi2j2k2

ð10Þ

XNi

j¼1

xij ¼ 1; 8i 2 ½1;N � ð11Þ

X
m2Mijk

xmijk ¼ 1;8i 2 ½1;N �;8j 2 ½1;Ni�; 8k 2 ½1;Nij� ð12Þ

esmijk � xij � xmijk � 0;8i 2 ½1;N �; 8j 2 ½1;Ni�;8k 2 ½1;Nij�;8m 2 Mijk

ð13Þ
ðoi2j2k2 ¼> oi1j1k1Þ ^ ðoi1j1k1 ¼> oi2j2k2Þ ! false
8i1; i2 2 ½1;N �; 8j1 2 ½1;Ni1 �; 8j2 2 ½1;Ni2 �; 8k1 2 ½1;Ni1 j1 �; 8k2 2 ½1;Ni2 j2 �:

ð14Þ

ci � di; 8i ¼ ½1;N � ð15Þ

Formula (9) is the operation constraints indicating two
operations of a job cannot be manufactured simultaneously,
and the constraints (10) means a machine cannot manufac-
ture two operations at the same time. Constraint (11)
expresses only one alternative process plan can be selected
for job i. Constraints (12) means only one machine for each
operation should be selected. Constraint (13) ensures that
the start time of each operation should be either positive or
zero. Constraint (14) indicates that there is only one
precedence relation between two operations in a scheduling
plan. Constraint (15) is the due date constraints for each
job. This paper tends to minimize the performance measure
of makespan and mean flow time.

4 Improved genetic algorithm

The genetic algorithm has been widely used for the
combination optimization problem and also been used for
the IPPS problem [10, 23, 25–27] for it is easy to realize
and can obtain good result with high efficiency. In order to
improve the performance of the genetic algorithm, an
improved genetic algorithm is proposed for the IPPS based
on the mathematical model. The main flow of the algorithm
for IPPS in this paper mainly includes three steps as follows.

1. Generating alternative process plans and constructing
the process plan network for each job in CAPP system
according to the ideal resource information of job shop.

2. Generating s process plans, in which 1 process plan is
the shortest one and the s-1 process plans are the near
optimal ones, by the initial selection method for process
plans and sent them to scheduling system. The shortest
process plan is the one that every operation in the process
plan chooses the machine with shortest processing time
and every OR-link path with minimum operation nodes.

3. Applying the IGA to determine the process plan
(selected from the s near optimal process plan) for
each job and the scheduling scheme simultaneously for
the production system.

2,3 2,2 1,1 2,3 2,2 1,1 2,2 2,3 2,2 1,1 1,1 2,3 1,1 2,2 2,3 2,2 2,2 1,1 2,2 2,3 2,2 2,2 1,1 2,3 2,22,2 1,1 2,2 1,1 2,2 2,2 1,1 2,3 2,21,1 1,1P1

2,3 3,2 1,1 2,3 3,2 1,1 3,2 2,3 2,3 1,1 1,1 2,3 1,1 3,2 3,2 3,2 3,2 1,1 3,2 2,3 3,2 3,2 1,1 2,3 3,23,2 1,1 3,2 1,1 3,2 3,2 1,1 2,3 3,21,1 1,1O1

Fig. 5 Mutation for chromosome

Table 1 Experimental results of experiment 1

Lee [30] Leung [34] Wong [17] IGA

Makespan 439 390 380 360
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The initial selection method for process plans, genetic
representations for the scheduling plan combined with
process plans, genetic operator, and decoding of IGA for
IPPS are described in the following.

4.1 Initial selection method for process plans

In order to generate a feasible and near-optimal initial
individual for process plan from the process plan network
that can include all the possible combination, this paper
proposes an initial process plan selection method to
generate the s-1 near optimal individuals from all existing
feasible process plans as the following algorithm.

Step 1: Parse the OR-link and AND-link path from the top
down based on the process plan network and
generates an initial string L0 with each operation
choosing a machine with the shortest processing
time. Then the cell in L0 is made up of operation
number and the chosen machine number.

Step 2: Adjust positions of nodes in AND-link paths.

Step 2.1: Find the positions of operations in the link
paths of ai; 1 � ai � Nai AND node to
construct an operation set as PSai :¼
fps1; ps2; :::g, and record the first node
for all its links as A :¼ foik ; oiðk�1Þ=2OAai ;

oiðk�1Þ ¼> oikg. Meanwhile, generate a new
empty string L with the same length as L0,
and copy all the cells of L0 except the cells
at the positions in PSai to L.

Step 2.2: Choose a node oik having no predecessors
randomly from A and locate it at the first
empty position in L, then update A:=A/{oik}.
If oik exists direct immediate successor
operation oi(k+1), oiðkþ1Þ 2 OAai , update
A:=A∪{oi(k+1)}. Iterate this step until all
the operations in the AND-link paths
already have been located in the string L.

Step 2.3: Set L0:=L, ai=ai+1. If ai ¼ Nai , go to Step 3;
otherwise, return to Step 2.1.

Step 3: Choose a discrimination integer number randomly
for each OR node to form a Nori substring named
as OR section and append it to L.

Step 4: Choose an operation oik randomly from L and alter
its machine to another one from Mik, ifjMik j �.
1. Set fi= fi−1, if fi≥1 return to Step 4, otherwise
terminate.

The 1 shortest individual process plan can also be
generated by the algorithm, the difference is that the
choosing of OR-link path in Step 3 can only be restricted
to the path with minimum operation nodes, and the
fluctuation of machine in Step 4 is not needed.

The initial selection method takes all the possible
flexibility of process plan into consideration and it can
easily obtain different near-optimal process plan by the
fluctuation of OR-link path or operation machines. This is
different from other initial algorithm that seldom considers
sequencing substitutability [19, 23] or to repeat the
generating process for each initial process plan [25–27].
Figure 2 is an example of generating an initial individual L
for job 3. First generating a string L0 and get the positions
of operations (3, 4, 5, 6; marked with red) in the AND-link
paths. Then update the first node set A repeatedly. While the
OR nodes has two links, and the discrimination integer
number can be chosen from [1, 2], the only gene in
substring of OR section is chosen 1 that means the 1-link
path including operation 7 is chosen. The cell marked with
yellow in L is the operation with changed machine from 11
to 1 (marked with red) and its processing time is changed
from 39 to 40 correspondingly.

4.2 Encoding and decoding of integrated schedule plan

The individual chromosome in the population is encoded
by operation-based method, which is represented by the
permutation of job number and its related chosen process
plan. Therefore, each cell in individual constructs a gene as
a data structure which is made up of two positive integer
numbers. The first one, which can be selected from [1, s], is

Fig. 6 Gantt chart for
experiment 1

Table 2 The comparison of makespan and mean flow time

IGA Jain [36] Wong [15]

Makespan Mean flow time Makespan Mean flow time Makespan Mean flow time

5,998 3,992 6,456 4,216 6,574 4,240
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the number of the chosen process plan for the job
represented by the second number in the same gene, and
the second one is the number of a job. The first number
should be the same for these genes with the same job
number. Each individual in the population is an integrated
plan that combines the process plan and scheduling plan
information together by the above representation method.
The appearances frequency of a job number is determined
by the corresponding chosen process plan encoded by the
first number in each gene. The length of the individual may
be inconsistent for the number of the valid operations (all
the operations except the operations in the non-chosen OR-
link paths for each job) in different process plans may be
different (the length of OR-link path may be different for
the OR node). In order to ensure chromosomes in the
population with the same length, allotting ui cells for each
job i, 1≤ i≤N previously, therefore, the length of each
chromosome is len ¼ P

i2½1;N �
ui for the IPPS with N jobs.

Figure 3 is an example of the individual for jobs 1 and 2
in Fig. 1, and the chosen process plan for jobs 1 and 2 is 1
and 2, respectively. For the number of operation in the
longest process plan(s) of job 1 is 12 and job 2 is 16;
therefore, the length of the integrated plan is equals to 28.

Bierwirth et al. [33] presented the procedures of
decoding the permutations into semi-active, active, non-
delay, and hybrid schedules. The active decoded is adopted
in this paper. Assumed that the j th,, 1≤ j≤Ni process plan
has been chosen for job i, 1≤ i≤N, and the machine for each
operation has also been determined, then the decoding can
be described as the following algorithm.

Step 1: Determine the operation, machine and the
corresponding time for each gene in turn for
the selected chromosome based on these chosen
process plans and the job number. If the number
of valid operations for the chosen process plan of
job i is less than ui, then decode the operation
number, machine number, and the corresponding
time as 0 for the frequency of the job number
that exceed the number of valid operations in
the chosen process plan. Figure 3 shows an
individual of this example, in this example,
supposed the process plan 1 of job 1 choosing
the second OR-link path (including operation 12
and 13) and the process plan only includes 11
operations which is less than its maximum
operations 12, then the operation number, machine
number, and the corresponding time are decoded as
0 for the gene marked with red.

Step 2: Construct the set of all valid operations
Z ¼: omijk j1 � i � N ;

n
1 ≤ j ≤ Ni , 1 ≤ k ≤ Ni j ,

1 � m � M ; pmijk 6¼ 0gbased on the permutation
sequence of the selected chromosome.

Step 3: Select the first operation omijk from Z and compute
the allowable starting time for the operation:
as m

ijk ¼ ecijðk�1Þ, ecijðk�1Þ is the completion time
of the pre-operation of omijk for the same job, it is
initialized as 0 if it is the first operation of a job.

Step 4: Scan and check the idle area [i_s, i_e]m for omijk in
turn, if there is maxðasmijk ; t sÞ þ pm

ijk
Þ � i e, then

the earliest starting time of omijk can be set as
esmijk ¼ maxðasmijk ; t sÞ, ecmijk ¼ esmijk þ pmijk . If there

Fig. 7 Gantt chart of experiment 2 (makespan=5,998, mean flow time=3,992)

Table 3 The comparison of the results of operations sequences

Job Moon [27] (makespan=16) MGA [10] (makespan=14) IGA (makespan=14)

1 1 (M2)–2 (M2) 1 (M1)–2 (M2) 1 (M2)–2 (M2)

2 3 (M4)–4 (M5) 3 (M4)–4 (M5) 3 (M4)–4 (M5)

3 5 (M1)–6 (M3)–7 (M2) 7 (M2)–5 (M2)–6 (M3) 5 (M1)–6 (M4)–7 (M2)

4 8 (M3)–9 (M4) 8 (M3)–9 (M4) 8 (M3)–9 (M4)

5 10 (M1)–11 (M3)–12 (M1)–13 (M5) 12 (M3)–10 (M1)–11 (M1)–13 (M5) 12 (M3)–10 (M1)–11 (M1)–13 (M5)
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is no idle area satisfying this condition: esmijk ¼
max ðasmijk ; tmðomi1j1k1ÞÞ (assumed omi1j1k1 is the pre-
operation of omijk performed on the same machine
m, and tmðomi1j1k1Þis the available time of machine
m which equals to the completion time of omi1j1k1 ).
If asmijk � tmðomi1j1k1Þ, update ecmijk ¼ asmijk þ pmijk ,
tm ¼ ecmijk and asijðkþ1Þ applying the formula in step
3, meanwhile, add a new idle area ½i s; i e� ¼
½tmðomi1j1k1Þ; asmijk � for m. Otherwise, for asmijk <
tmðomi1j1k1Þ, update ecmijk ¼ tmðomi1j1k1Þ þ pmijk , tm ¼
ecmijk , and asij(k+1) applying the formula in step 3.

Step 5: Update Z :¼ Z=fomijkg. If Z≠∅, go to step 3.
Otherwise, terminate.

The above decoding method is to decode the chromo-
some from the first gene to the last one in turn and try to
utilize the idle area of each machine. In the above
procedure, the starting time and completion time of all the
operations in the chromosome are determined and it is a
scheduling plan for the shop.

4.3 Initial population and fitness evaluation

The initial population is generated based on the encoding
principle as described in the generic representation
method. The optimization objectives in this study are
makespan and mean flow time, which have been defined
in formula (1) and (2), respectively, and they are subjected
to (9)–(15).

4.4 Operators of improved genetic algorithm

It is vital to develop good operators that can effectively
match with the problem and efficiently lead to excellent

individuals in the population. Reproduction, crossover, and
mutation are the main three type operators of GA algorithm

Reproduction The tournament selection method is used for
reproduction operation. Tournament selection involves
running several “tournaments” among a few individuals
chosen at random from the population. The tournament
selection approach allows a tradeoff to be made between
exploration and exploitation of the gene pool [10].
Selection pressure can be easily adjusted by changing the
tournament size.

Crossover The procedure of crossover is as follows. Two
empty chromosome O1, O2 are initialized first, and an
integer number in [0, 1] is chosen randomly. If the chosen
number is 0, then the genes with even job number in one of
parent (P1) are passed on to the same positions as in the
offspring (O1). These elements are removed from the other
parent (P2) and the remaining elements are copied into the
undetermined positions in the offspring in the same order as
they appear in P2. The other offspring (O2) is made up of
genes with even job numbers in one of parent (P2), these
elements are removed from the other parent (P1), and the
remaining elements are passed on to the undetermined
positions in the offspring in the same order as they appear
in P1. If the randomly chosen number is 1, only has to
exchange even and odd for generating O1 and O2. Figure 4
is an example of the crossover and the randomly generated
number is 0, where in order to express clearer, two P1s and
P2s are figured out.

Mutation The mutation includes job position mutation and
process plan mutation. Two-point mutation is used as the
mutation operator for job position mutation and one-point
mutation is used as the mutation operator for process plan
mutation in this study. The mutation operator of the selected
chromosome is operated as follows. Two genes are chosen
randomly from the selected chromosome and then mutate
the two genes by exchange the two positions. The mutation
of process plan is carried out by choosing a mutation point
randomly in the chromosome and then alter the process
plan number to another new one in the range of [1, s], after
this, altering each gene with the same job number as the
mutated gene to the new chosen number. The mutation
example is indicated in Fig. 5. The two genes marked with
yellow are mutated by exchange their positions and the

Fig. 8 Gantt chart of experiment 3 (makespan=14)

Fig. 9 Gantt chart of
experiment 4 (makespan=33)
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process plan number of job 2 (marked with red) is mutated
from 2 to 3 to generate a new offspring O1.

5 Experimental studies and discussions

The proposed IGA algorithm procedure is coded in JAVA
and implemented on a Dell Precision T7400. In order to
illustrate the effectiveness and performance of the
method, five problems instances are carried out. The

parameters of IGA for the experiments 1–4 are set:
population for makespan and mean flow time is 200,
tournament size is 2, probability of crossover operation is
0.8, probability of mutation operation is 0.15, probability
of reproduction is 0.1, and termination number is 50 and
the s is chosen as four in this paper based on some initial
experiments.

5.1 Experiment 1

Experiment 1 has been adopted from Lee et al. [30], is
constructed with five jobs and three machines. Each job has
four operations to be performed and each operation can be
done on one or more machines with respective processing
times. The makespan is used as the objective. The data has
also been used by Wong [17] and Leung et al. [34] in which
the IPPS has been optimized by agent-based ant colony
optimization algorithm. Table 1 shows the experimental
results and the comparisons with other methods, the data in
the column Lee, Leung and Wong are from [30, 34] and
[17], respectively. Figure 6 is the Gantt chart (always used
to express the scheduling result) for experiment 1 obtained
by IGA.

Table 5 Results and comparisons of best makespan

Problem Number of jobs Job number SEA HA IGA Low bound

1 6 1, 2, 3, 10, 11, 12 428 427 427 427

2 6 4, 5, 6, 13, 14, 15 343 343 343 343

3 6 7, 8, 9, 16, 17, 18 347 345 344 344

4 6 1, 4, 7, 10, 13, 16 306 306 306 306

5 6 2, 5, 8, 11, 14, 17 319 322 304 304

6 6 3, 6, 9, 12, 15, 18 438 429 427 427

7 6 1, 4, 8, 12, 15, 17 372 372 372 372

8 6 2, 6, 7, 10, 14, 18 343 343 342 342

9 6 3, 5, 9, 11, 13, 16 428 427 427 427

10 9 1, 2, 3, 5, 6, 10, 11, 12, 15 443 430 427 427

11 9 4, 7, 8, 9, 13, 14, 16, 17, 18 369 369 368 344

12 9 1, 4, 5, 7, 8, 10, 13, 14, 16 328 327 312 306

13 9 2, 3, 6, 9, 11, 12, 15, 17, 18 452 436 429 427

14 9 1, 2, 4, 7, 8, 12, 15, 17, 18 381 380 386 372

15 9 3, 5, 6, 9, 10, 11, 13, 14, 16 434 427 427 427

16 12 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15 454 446 433 427

17 12 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18 431 423 415 344

18 12 1, 2, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17 379 377 364 306

19 12 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18 490 476 450 427

20 12 1, 2, 4, 6, 7, 8, 10, 12, 14, 15, 17, 18 447 432 429 372

21 12 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18 477 446 433 427

22 15 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 534 518 491 427

23 15 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18 498 470 465 372

24 18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 587 544 532 427

Table 4 IGA parameter

Parameters Values

Population for makespan 600 (22, 23, 24 is 500)

Population for mean flow time 800 (22, 23, 24 is 600)

Tournament size 2

Chosen process plans s 4

Probability of crossover operation 0.8

Probability of mutation operation 0.15

Probability of reproduction 0.1

Termination number 100
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5.2 Experiment 2

The data of experiment 2 are generated by Chryssolouris
et al. [35] and the data constructed with 10 jobs and nine
machines. The data has also been used by Wong et al. [15]
and Jain et al. [36]. Table 2 is the comparison of method in
Wong et al. [15] and Jain et al. [36] with makespan and
mean flow time when taking mean flow time as its
objective. The results of IGA win both for mean flow
time and makespan. Figure 7 is the Gantt chart for
experiment 2.

5.3 Experiment 3

Experiment 3 has been adopted from Moon et al. [27], and
the data constructed with five jobs and five machines, and
the number of operations in each jobs ranges from two to
four. The best makespan 14 is obtained by MGA [10]. The
comparison of the results of operations sequences with EA
in Moon [27] and MGA in [10] are given in Table 3; the
data in the column Moon and MGA are from [27] and [10],
respectively. Figure 8 is the Gantt chart for the problem
obtained by IGA.

5.4 Experiment 4

Experiment 4 use the data in Sundaram and Fu [37], which
consists of five jobs and five machines. The obtained result
by IGA is 33 as shown in Fig. 9. This compares with the
value of 38 generated by Sundaram and Fu [37] with
heuristic approach, 33 obtained by Palmer [38] with
simulated annealing algorithm

5.5 Experiment 5

Large-scale IPPS problems are considered in the simulation
experiment 4. The benchmark problem set used for
experiment 5 have been reported in [39]. These problems
are more complex as they involved 18 parts with various
combinations of flexibility levels and 15 machines. Kim et
al. [28] constructed 24 testbed problems with the 18 parts;
meanwhile, they proposed a SEA to solve the problems
efficiently. Since the 18 parts 24 testbed problems are able
to reflect practical manufacturing situations of various
complexities, therefore, the 24 testbed problems are chosen
as benchmark cases and 10 trials of simulation are carried
out for each problem that is the same as SEA. The results

Table 6 Results and comparisons of average makespan

Problems SEA (CPU time (s)) SGA (CPU time (s)) IGA (CPU time (s)) Best Improved rate (%)

1 437.6 (61) 436.7 (11) 427 (11) IGA 2.4

2 349.7 (69) 361.2 (11) 344.5 (11) IGA 1.4

3 355.2 (81) 373.1 (10) 351.0 (11) IGA 1.2

4 306.2 (66) 322.7 (8) 307.4 (8) SEA −0.4
5 323.7 (64) 324.0 (8) 309.8 (8) IGA 4.3

6 443.8 (73) 448.1 (13) 427 (13) IGA 3.8

7 372.4 (69) 397.6 (9) 372.7 (9) SEA −0.1
8 348.3 (67) 384.5 (16) 357 (17) IGA −2.5
9 434.9 (73) 429.0 (9) 427 (9) IGA 1.8

10 456.5 (136) 453.5 (17) 431.6 (17) IGA 5.6

11 378.9 (166) 400.2 (17) 379.7 (16) IGA −0.2
12 332.8 (143) 347.5 (13) 323.7 (13) IGA 2.7

13 469.0 (161) 463.5 (19) 442.8 (19) IGA 5.6

14 402.4 (151) 434.7 (15) 415.3 (16) SEA −3.2
15 445.2 (156) 431.3 (14) 427.4 (14) IGA 3.9

16 478.8 (334) 465.0 (23) 449.4 (23) IGA 6.1

17 448.9 (435) 452.2 (22) 426.0 (23) IGA 5.1

18 389.6 (357) 390.8 (20) 373.6 (20) IGA 4.1

19 508.1 (418) 497.0 (28) 471.3 (28) IGA 7.2

20 453.8 (384) 465.5 (26) 446.6 (26) IGA 1.6

21 483.2 (392) 476.3 (25) 447.8 (24) IGA 7.3

22 548.3 (1,033) 534.2 (27) 508.1 (27) IGA 7.3

23 507.5 (1,017) 497.8 (26) 477.8 (26) IGA 5.8

24 602.2 (1,623) 587.8 (40) 548.5 (39) IGA 8.9
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are compared with the performance of SEA and the hybrid
algorithm (HA) [23]. The IGA parameters for these
problems are given in Table 4.

Table 5 shows the best result of makespan, and the
comparisons between the proposed IGA, SEA in [28], and
HA (tabu search combined with genetic algorithm) in [23].
The data in the column of SEA and HA are adopted from
[28] and [23], respectively. In order to give a clearer

comparison result for the algorithm, taking the maximum of
the shortest process plans in each case as the low bound of
the makespan. The results in Table 5 shows that only one
solution (problem 14) of IGA is worse than SEA and HA
and a few solutions of GA are equal to SEA, almost
solutions (17 problems) of IGA are better than the other
methods. In addition, the solutions of problems 1–10 and
15 are equals to its low bound.

Table 7 Results and comparison of mean flow time

Problems SEA (CPU time (s)) SGA (CPU time (s)) IGA (CPU time (s)) Best

1 318.9 (57.5) 325.4 (16) 313.3 (15) IGA

2 287.7 (68.0) 300.3 (14) 292.2 (14) SEA

3 304.8 (81.3) 312 (14) 307.8 (18) SEA

4 251.3 (65.7) 263.5 (12) 258.7 (13) SEA

5 280.3 (66.8) 270.5 (10) 263.5 (12) IGA

6 384.7 (75.4) 389.0 (18) 382.3 (20) IGA

7 314.1 (68.1) 323.9 (14) 317.4 (17) SEA

8 295.2 (67.0) 309.2 (13) 305.3 (16) SEA

9 298.9 7 (71.8) 300.6 (13) 292.7 (18) IGA

10 349.2 (133.8) 361.3 (24) 356.4 (27) SEA

11 312.9 (163.3) 329.4 (23) 318.6 (29) SEA

12 279.6 (150.5) 283.1 (18) 278.6 (25) IGA

13 387.0 (156.0) 386.9 (35) 383.2 (32) IGA

14 346.9 (149.5) 355.9 (23) 351.6 (27) SEA

15 316.1 (155.9) 327.8 (25) 319.7 (27) SEA

16 359.7 (339.) 369.4 (51) 364.5 (47) SEA

17 364.7 (438.7) 370.0 (53) 368.1 (61) SEA

18 322.5 (355.6) 323.3 (32) 316.3 (40) IGA

19 406.4 (416.6) 400.5 (73) 396.5 (73) IGA

20 372.0 (337.7) 383.7 (51) 371.7 (75) IGA

21 365.4 (364.7) 373.4 (51) 365.3 (57) IGA

22 417.8 (1,007.6) 427.4 (43) 415.3 (34) IGA

23 404.7 (999.3) 408.7 (37) 399.7 (35) IGA

24 452.9 (1,597.2) 456.9 (79) 447.6 (78) IGA

SEA symbiotic evolutionary algorithm, IGA improved genetic algorithm
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Fig. 10 Convergence curves for the problems 10 and 24. a Convergence curves for problem 10. b Convergence curves for problem 24
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For the purpose of comparison, this paper also carries
out the experiment for the no integrated situation for which
only one shortest process plans for each job has been
passed on to IGA, named as SGA. Tables 6 and 7 shows the
average result of makespan and mean flow time, respec-
tively. The comparisons between the proposed IGA, SEA in
[28], SGA, and the CPU time for each problem are also
included in the two tables.

From the result of Table 6, we can see that the average of
makespan obtained by IGA are superior to SEA in most of
the case except for the problems 4, 7, and 14. The improved
rate indicates that the IGA can obtain greater scope of
improvement while the scheduling scale increased. The
average result of 1, 2, 4, 6, 7, and 15 reach or near to its
low bound; it proves that the algorithm can achieve good
average result. Additionally, it indicates that the algorithm
has good robustness. The results of SGA show that it is
difficult to obtain better result for the no integrated model
by comparing to the integrated IGA.

Table 7 shows the IGA has no obvious superiority from
the comparison results but still there 13 cases superior to
SEA for the 24 cases. Meanwhile, it has obvious advantage
to the no integrated situation SGA. For the algorithm are
implemented on different computers, it is difficult to
compare the efficiency of different algorithms. However,
the CPU time of IGA in Tables 6 and 7 indicates that the
algorithm is efficient even for the problem of 24 with 18
jobs and 300 operations taking only 39 and 78 s,
respectively, to obtain a near-optimal result.

Figure 10 gives the convergence curves of a run for
problems 10 and 24 with the objective of makespan and
mean flow time. The curves of makespan in Fig. 10a, b are
generated by the value of makespans 60 80. The conver-
gence curves show that the proposed IGA obtains 427 (low
bound) makespan for the problem 10 with 15 iterations and
544 for the problem 24 with 62 iterations. Meanwhile, it
only takes 72 iterations to obtain the 338.3 mean flow time
for the problem 10, and 75 iterations to obtain the 442.2
mean flow time for the problem 24. It indicates that the
algorithm can converge to a relative optimal solution with
little iteration especially for makespan.

6 Conclusions

In order to improve the flexibility of scheduling and
achieve a global improvement for the performance of a
manufacturing system, a mathematical model and an
improved genetic algorithm have been developed in this
study to facilitate the integration of process planning and
scheduling and to optimize and determine both process plan
and scheduling plan simultaneously. To improve the
optimization performance of the proposed approach, new

initial selection method for process plans; new genetic
representations for the scheduling plan combined with
process plans and genetic operator schemes have been
developed. The initial selection method keeps the shortest
process plan for each job to ensure the scheduling has the
possibility to reach the low bound. Meanwhile, the
integrated scheduling algorithm taking multi-optimal pro-
cess plans but not all process plans as input to improve the
flexibility of scheduling with smaller search space. Five
experimental studies have been carried out to compare this
approach with other previous methods and the no integrated
model. The experiments and comparison results show that
the algorithm has achieved significant improvement in
minimizing makespan and obtained good results for the
mean flow time performance measure with high efficiency.
It verifies that this research is necessary and effective for
the objective of makespan and mean flow time.

Further work can be conducted through the following
three aspects:

1. The scheduling problem may be interrupted by new
added orders, breakdowns, shortage of material and
tooling, quality problems, machine unavailability, over/
under estimation of machining time, and so on; an
important further research issue is to extend the
mathematical models and algorithm to these situations
and make it more practical to the manufacturing
workshop.

2. This paper only tried to minimize the makespan and
mean flow time; additional performance measure such
as the objectives defined by formula (3)–(8) should also
be carried out.

3. The coordination and cooperation mechanisms and
framework for the integrated problem should also be
conducted in the further research.
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