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Abstract In parametric spline interpolation, the real-time
parameter update is a crucial step which will directly affect
the processing performance such as the feed rate fluctua-
tion, the contour error, the online computational effort, etc.
The use of Taylor approximation interpolation method to
identify the next interpolate point will cause large feed rate
fluctuation due to the accumulation error and the truncation
error, which will affect the machining quality. As there is no
accurate analytic expression between the parameter u and
arc length S and the mapping between them is nonlinear,
and in order to reduce the feed rate fluctuation and light
computation requirement for online interpolation, the paper
first samples the tool path with step parameter and Gauss
integration, with the sampled points being in the coordinate
system defined by parameter u and arc length S. Then, the
sampled points are fitted into the guide curve with the use
of the biarc fitting method, and the analytic expression
between parameter u and arc length S is established. The
biarc so derived can be used to realize a fast NURBS
interpolation and the simulation results validate the reli-
ability and effectiveness of the proposed method.

Keywords Biarc . Guide curve . Gauss integration .

Feed rate fluctuation . NURBS interpolation

1 Introduction

Traditional machining methods can no longer meet the
requirements for today’s modern manufacture which is

expected to provide diversified, flexible, and efficient
machining for workpieces in complicated shapes. There-
fore, the past several decades have witnessed the rapid
development and the wide application of the numerical
control (NC) machining technique which can provide a
perfect solution for the complex, precise, and different
machining requirement parts in a small batch. So this
technique radically revolutionized manufacturing engineering.
A typical NC machining is implemented in three steps [1, 2],
as shown in Fig. 1.

Firstly, the geometrical shape of the part is constructed in a
CAD system. The common CAD-integrated software for
commercial use includesAutoCAD,CATLA, Pro/ENGINEER,
Unigraphics, etc.

Secondly, the NC machining command is achieved by
the CAM system, and the tool path for the cutter is
generated according to the tool path scheme. Then, the
cutter contact points are generated by approximating with
small line segments, and the cutter location (CL) points are
gained with tool radius offset from CL points. Finally, post-
processing converts the CL points into a G code program
for NC machining.

Thirdly, by loading the G code program into the machine
tool controller (CNC) for execution, the motor is driven by
the output order through the servo unit.

The tool path trajectory in the form of small line
segments is quite common in surface machining, but some
practical problems are related to it:

1. Linearization of curves would result in a large amount of
small line segments and approximate errors. The more
complicated the surface is, the less approximate errors are
allowed. A large amount of information is needed to be
dealt with, which is time-consuming and brings troubles
of storage and communication to the CAD/CAM system.
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2. The tool path trajectory has discontinuous first and
second derivatives on the junction of each G01
segment, which results in a rough tool path. In high-
speed machining, the unsmooth tool path trajectory will
affect the continuity of the feed rate and acceleration of
the cutter and brings about abrupt changes in the
motion direction and applied force. Inevitably, torque
saturation and excitation of the machine tool’s structur-
al modes may occur, which have the effect of degrading
the positioning accuracy and part quality and wearing
the tool.

3. The frequent program processing in the CNC system
will consume a lot of time and makes it hard to realize
high speed.

4. When machining the intricate parts, the displacement
defined by the NC code segment is so small that the
cutter moving at high speed may cause an overshoot
error or an undershoot error.

With the shortcomings listed above, the small line
segment is not the best choice for tool path trajectory.
Some researchers take it into consideration to display
modeling of CAD to make service for NC machining when
constructing a uniform model. From the perspective of NC
machining, researchers propose to directly use the CAD

0

model as the tool path trajectory; that is, the curves in CAD
0

are suitable for tool paths, such as simple tool offset, the
light computational effort, etc., which can directly input the
CNC system (CAD

0
, see Fig. 1). Deng [3] proposed to

build the digital model for the free-formed surface which is
expressed in data point sets and presented the
corresponding modeling method—the self-organizing
curve/surface fitting method. By introducing the concept
of self-organization into the modeling for surface and NC
machining, the modeling and the machining process are
unified, with the former serving for the latter. STPE-NC [4]
is a programming language based on manufacturing
features. It covers the description of all the machining
processes for workpieces and all the operations from the
original models to the finished products. It provides rich
information to the CNC system and allows the two-way

exchange of information about the geometric features
between CNC and CAX. However, these proposed methods
are often designed for machining specific parts rather than
for general application. In order to make full use of the
existing modeling methods and spline interpolation techni-
ques by which parametric spline interpolation has been
proven to be superior over linear and circular interpolation
in terms of providing a smoother and a more continuous
motion, we generate facing numerical control machining
tool path trajectory (see Fig. 1) by fitting a large number of
small line segments after post-processing into the spline
tool path trajectory. The spline tool path trajectory of the
proposed method has the following advantages:

1. As compared with small line segments, the generated
spline tool path trajectory ensures machining precision
as it closely follows the concaves and convexes of the
part, minimizes the contour error, and restores to the
greatest extent the shape designed by CAD.

2. The spline interpolation simplifies the G code without
the need to transmit data to the CNC at high speed. And
the information input into the NC in G code only
relates to the control point, node vector, weight factor,
process technical information, etc.

3. The generated tool path is smooth and provides a basis
for the high-speed and high-precision NC machining,
especially the mould processing. The workpiece ma-
chined in this way has a smooth surface and high
quality.

The continuous feed rate modulation capability is crucial
to the spline interpolation. In real-time interpolation, the
feed rate may be constrained by a lot of factors, such as the
shape of curve/surface, the kinematic characteristics of
machine tool, the machining techniques, etc. Therefore, it is
important to make the feed rate develop smoothly on
condition that the machining precision is guaranteed. In-
depth studies have been done into the spline interpolation,
but the spline interpolation [5, 6] that has been made
possible so far would cause a large feed rate fluctuation due
to truncation error. In order to reduce the feed rate
fluctuation, the NURBS interpolators are developed by
regulating the feed rate using parameter compensatory [7,
8]. A number of parametric interpolators have been
developed by taking into consideration the adaptive feed
rate, a confined chord error, etc., constraints [9–12]. Yong
and Narayanaswami [13] analyzed the feed rate with a full
consideration of contour errors and the deceleration/
acceleration ability of the machine tool. By utilizing off-
line methods to optimize the feed rate-sensitive regions, a
feed rate profile is obtained and applied to control the feed
rate in real-time interpolation. By considering the kinematic
characteristics of the machine tool, Wang and Yau [14]
conducted a feed rate planning with CSB criteria and

'CAD

Fig. 1 Flowchart for NC machining
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generated an optimized tool path trajectory to realize the
continuous feed rate. Heng and Erkorkmaz [15] designed
an interpolator which can control the feed rate smoothly
with only a slight feed rate fluctuation.

The main cause for the unsmooth feed rate is the lack of
accurate analytic expression between the parameter u and
arc length S, which makes it hard to calculate the next
interpolate point, and the lack of information about arc
length makes it hard to plan the feed rate or control the
motion of the cutter. Based on the above considerations, the
sampled points are first gained from the tool path trajectory
with the step parameter and Gauss integration. The

coordinate of parameter u and arc length S is established
by calculating the arc length between two sampled points
with the Gauss integration. Then, the sampled points are
fitted into the biarc guide curve to direct the real-time fast
NURBS interpolation.

2 Biarc guide curve

2.1 The arc length between two consecutive sampled points

The spline curve is not the arc length parametric curve, so
its arc length is hard to be accurately calculated. One
common solution to parameterize the spline curve is to
approximate the arc length by chord length. In order to
calculate the arc length, an adaptive approach is used and
the error tolerance is given [16]. This paper uses the Gauss
integration to calculate the arc length. The Gauss integra-
tion is an efficient calculation method of high precision,
computational stability, and convergence, which is often
applied in engineering numerical calculations for the
integration with hard to get analytic solution. The Gauss
integration with N nodes can be expressed as:

Z 1

�1
f ðxÞdx �

Xn
k¼0

Akf ðxkÞ ð1Þ

More nodes lead to high computation precision, and the
value of node xk and weight factor Ak is a lookup table
(refer to [17]). Here, let n=3, x1 ¼ �0:7745967, x2 ¼ 0,
x3 ¼ 0:7745967, and correspondingly A1 ¼ 0:555556,
A2 ¼ 0:888889, A3 ¼ 0:555556. Let the tool path trajectory
be CðuÞð0 � u � 1Þ, and two consecutive points C(ui) and
C(ui + 1) correspond to the parameter interval ½ui; uiþ1�.
According to the differential geometry, the arc length
between two consecutive sampled points can be derived
with Gauss integration, which is expressed as follows:

l ¼
Z uiþ1

ui

C
0 ðuÞ�� ��du ð2Þ
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Fig. 2 Biarc curve
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Let u ¼ uiþ1�ui
2 t þ uiþ1þui

2 and substitute it into Eq. 2 as
follows:

l ¼ uiþ1 � ui
2

Z 1

�1
C

0 ðuiþ1 � ui
2

t þ uiþ1 þ ui
2

Þ
��� ���dt ð3Þ

Let the step parameter Δu ¼ uiþ1 � ui. With the step
parameter and Eq. 3, and suppose m+1 sampled points,
we can calculate the coordinate of points ðui; SiÞ; ði ¼
0; 1; :::;mÞ whose coordinate components are the parameter
u and arc length S.

2.2 The fitting of biarc guide curve

After the coordinate of the sampled points (ui, Si) on the
whole tool path C(u) are listed, the most crucial step is the
use of a biarc guide curve to facilitate real-time spline

interpolation. The biarc guide curve is actually the result of
fitting the sampled points (ui, Si) into the curve with biarc.
The biarc is characterized by a lot of simple but important
features, such as the geometrical invariability, the ease of
implementation, and the G1 continuity on the junction
points. It is well known that there are two types of biarc
models: the C-shaped and the S-shaped biarcs, as shown in
Fig. 2. The derivation given here is applicable to both types
of biarcs. For ease of presentation, we describe the biarc
model using a local coordinate system. In the formulation
of the curve-fitting problem, a global coordinate system is
needed. The conversion from one coordinate system to
another is easily achieved by direct transformation.

When ab < 0, two circular arcs have similar flexure,
constituting a C shape, while when ab > 0, two circular
arcs have opposite flexure, constituting an S shape. In a
local coordinate system, the center and radius of biarcs can
be expressed as follows [18]:

Radius of the left circle :

R1 ¼ L sinðW þ q
2

þ aÞ=ð2 sinW
2

sin
q
2
Þ

Coordinate of the center of the left circle :

xA ¼ �R1 sin a; yA ¼ R1 cos a

Radius of the right circle :

R2 ¼ �L sinðq
2
þ aÞ=ð2 sinW

2
sin

W� q
2

Þ
Coordinate of the center of the right circle :

xB ¼ L� R2 sin b; yB ¼ R2 cos b

ð4Þ
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Fig. 5 Spatial curve
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Fig. 4 Asteroid-shaped curve

Table 2 Configuration of the spatial curve

NURBS

Numbers 10

Order 4

Knot vectors [0 0 0 0 1/7 2/7 3/7 4.2/7 5/7 5.4/7 1 1 1 1]

Control points (3,2,0.2) (3,3,0.5) (4,8,2.5) (5,4.5,3) (6,0.75,3) (7.5,0.2,4)
(5,5,5) (6.5,3,6) (12,2.5,4.5) (15,0.5,0.75)

Weights [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Table 1 Configuration of the asteroid-shaped curve

NURBS

Numbers 11

Order 3

Knot vectors [0 0 0 0.1110 0.2220 0.3330 0.4440
0.5550 0.6660 0.7770 0.8880 1 1 1]

Control points (4,6) (2.5,4) (0,4) (2,2) (1.5,0) (4,1.5)

(6.5,0) (6,2) (8,4) (5.5,4) (4,6)

Weights [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

600 Int J Adv Manuf Technol (2012) 58:597–605



Coordinate of the common point of tangent:

xP ¼ L sinðW þ q
2

þ aÞ cosðq
2
þ aÞ= sinW

2

yP ¼ L sinðW þ q
2

þ aÞ sinðq
2
þ aÞ= sinW

2

ð5Þ

where W ¼ b � a, θ is the central angle of the left arc, and
W − θ is that of the right arc. Let the counterclockwise
direction be positive; then, the positive circle corresponds to
the positive central angle and the negative circle to the negative
central angle.�p < q < p, and when ab < 0, q ¼ �a; when
ab > 0, q ¼ 2a �W=4. L is the length of segment AB.

Once the biarc guide curve is generated, we can establish
the direct correspondence between the parameter u and arc
length S, which can improve the efficiency of the real-time
calculation for the next interpolate point without the
truncation error or accumulation error. In the meantime,
the biarc gives a detailed information about the arcs, based
on which we can conduct a feed rate planning with taking
constraint conditions into consideration, such as the shape

of surface/curve, the kinematic characteristics of machine
tool, etc. In this way, the feed rate can be controlled
accurately and the machining precision can be guaranteed.

3 The generation of NURBS tool path and the contour
error

3.1 Definition of NURBS tool path

Piegl and Tiller [19] are an authority on NURBS modeling.
The definition of NURBS tool path is similar to the
definition of NURBS curve in the CAD system. Let the
knot vector U ¼ fu0; u1; :::; unþpþ1g, the weight factor
W ¼ fw0;w1; . . . ;wng, and the control point Pið0 �
i � nÞ. The tool path for the NURBS of order p is:

CðuÞ ¼
Pn
i¼0

Ni;pðuÞwiPi

Pn
i¼0

Ni;pðuÞwi

¼ AðuÞ
wðuÞ 0 � u � 1 ð6Þ

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Path length S(mm)

pa
ra

m
et

er
 u

Fig. 6 Guide curve of the asteroid-shaped curve
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Fig. 7 Feed rate fluctuation (Vref=30 mm/s)
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Fig. 8 Contour error (Vref=30 mm/s)
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Fig. 9 Feed rate fluctuation (Vref=100 mm/s)
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The primary function Ni;pðuÞ can be calculated by the
following recurrence relations:

Ni;0 ¼
1 ui � u � uiþ1

0 otherwise

(

Ni;pðuÞ ¼ u� ui
uiþp � ui

Ni;p�1ðuÞ þ uiþpþ1 � u

uiþpþ1 � uiþ1
Niþ1;p�1ðuÞ

ð7Þ

The first derivative and second derivative of the tool path
C

0 ðuÞ and C
0 0ðuÞ are calculated respectively as:

C
0 ðuÞ ¼ A

0 ðuÞ � w
0 ðuÞCðuÞ

wðuÞ ð8Þ

C
0 0 ðuÞ ¼ A

0 0 ðuÞ � 2w
0 ðuÞC0 ðuÞ � w

0 0 ðuÞCðuÞ
wðuÞ ð9Þ

Among which, A
0 ðuÞ;A0 0 ðuÞ;w0 ðuÞ;w0 0 ðuÞ can be quickly

calculated with the Cox–de Boor algorithm.

3.2 Contour error

The increment of parameter u in each sampling period is
calculated in real time, and this parameter value is
mapped on the coordinates for the tool path trajectory to
make the machining proceed continually. There is no
radial error throughout the interpolation process. Howev-
er, in one sampling period, the use of the small line
segment to approximate the interpolate curve would give
rise to the contour error, which can be approximately
considered as the chord error. In order to ensure the
machining precision, the chord error must be controlled
under certain tolerance in the machining. As shown in
Fig. 3, there are two common approaches to calculate
the chord error. The first approach, as shown in Fig. 3a,
is to approximate the distance from the midpoint of the
curve to the midpoint of the chord line as the chord error
[20].

di ¼ p
ui þ uiþ1

2

� �
� pðuiÞ þ pðuiþ1Þ

2

����
���� ð10Þ
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Fig. 10 Contour error (Vref=100 mm/s)

Table 3 Simulation results of the asteroid-shaped curve [16]

Methods Feed rate fluctuation rate Contour error (μm)

Max. RMS Max. RMS

Vref=30 mm/s First-order approximation 0.066315 0.022007 2.433003 0.537127

Second-order approximation 0.015246 0.002480 2.455950 0.534861

The proposed guide interpolation 0.006279 0.001085 2.425250 0.520550

Vref=100 mm/s First-order approximation 0.247550 0.072906 27.274738 6.313128

Second-order approximation 0.142023 0.026364 29.457224 6.008556

The proposed guide interpolation 0.041551 0.007143 28.578412 6.202869
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Fig. 11 Guide curve of the spatial curve
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The second approach is to exploit the curvature at the
previous interpolate point to calculate the chord error, as
shown in the equation below:

di ¼ ri �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i �

Li
2

� �2
s

ð11Þ

Among which, ρ (millimeters) is the curvature radius at the
previous interpolate point, which equals to the reciprocal of
the curvature κ, that is, ρ=1//κ; L (millimeters) can be
approximately seen as a desired interpolate length in one
sampling period, the local curvature of which can be
derived by the following equation:

Ki ¼
dCðuÞ
du � d2CðuÞ

du2

��� ���
dCðuÞ
du

��� ���3
u¼ui

ð12Þ

After making a comparison between the aforementioned
two approaches, it can be found that the first approach is

not suitable for the real-time interpolate calculation because
it has to calculate the interpolate points and the midpoints
of the interpolate points before calculating the chord error,
and it has to redetermine the interpolate points if a given
chord error is violated. As for the second approach, the
calculation for the curvature of the previous interpolate
point can be conducted simultaneously with the calculation
for interpolate point, and the machining precision can be
guaranteed by directly adjusting the feed rate. Therefore,
the paper chose the second approach (as shown in Fig. 3b)
to calculate the chord error.

4 Simulation

The simulation is conducted in MATLAB7.0 with PC basic
frequency of 2.0 GHz. The first-order and second-order
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Fig. 12 Feed rate fluctuation (Vref=30 mm/s)
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Fig. 13 Contour error (Vref=30 mm/s)
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Fig. 15 Contour error (Vref=100 mm/s)
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Fig. 14 Feed rate fluctuation (Vref=100 mm/s)
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Taylor approximation interpolation methods are used for
comparison with the interpolation method based on the
biarc guide curve (called hereafter as guide interpolation)
generated by a step parameter Δu ¼ 0:005. The rate of
speed fluctuation di ¼ Vs� Cðuiþ1Þ�CðuiÞk k=Ts

Vs
. The NURBS

curves [19], both asteroid-shaped curve in Fig. 4 and
spatial curve in Fig. 5, are selected as the tool path
trajectory, the curve parameters for which are listed in
Tables 1 and 2, respectively. To simplify, the desirable feed
rates are set as Vref ¼ 30and100mm=s and the sampling
period Ts ¼ 0:002s. The simulation is divided into three
groups: the first-order and second-order Taylor approxima-
tion interpolation methods and the proposed guiding
interpolation. For simplicity, they are denoted as first,
second, and proposed in the picture, respectively.

For the asteroid-shaped NURBS curve, Fig. 6 demon-
strates the biarc guide curve and Figs. 7, 8, 9, and 10 give
the feed rate fluctuation and the contour error involved in
three interpolation approaches, respectively; Table 3 shows
the simulation results. As for the spatial curve, the
generated biarc guiding curve is shown in Fig. 11; the feed
rate fluctuation and the contour errors involved in three
interpolation approaches are listed in Figs. 12, 13, 14, and
15, and the simulation results are shown in Table 4.

For each interpolation computation, the first-order Taylor
interpolation needs to calculate the first derivative and
curve coordinate once, and the second-order Taylor inter-
polation needs to calculate curve coordinate and the first
and second derivatives once; however, the proposed method
only needs to calculate the curve coordinate, square root for
next parameter.

As seen from the simulation results, compared with
the first-order and second-order Taylor expansion meth-
ods, the proposed method only has a slight feed rate
fluctuation and perfectly complies with the arc as
parameter for interpolation. As for the proposed interpo-
lation algorithm, it has established an accurate mapping
relationship between the arc and the parameter. When the
tool arrives at a region of great curvature, the speed will

not fluctuate violently. The first- and second-order Taylor
approximation methods, in contrast, would cause a large
feed rate fluctuation due to the truncation error, and the
contour error brought by the proposed interpolation
method is similar to or smaller than that brought by the
first- and second-order Taylor approximation methods.
What is more is that the guide curve gives detailed
information about the arc length, which helps plan the
feed rate for the moving cutter and controlling the
motion of the cutter.

5 Conclusion

After a brief introduction of the spline interpolation of
NC machining, the paper pointed out that the real-time
parameter update is a crucial step which will directly
affect the processing performance and the weakness of
the Taylor approximation interpolation methods, such as
the truncation error and the failure to plan the feed rate
of the tool path trajectory, because of the lack of arc
length information. Based on this, the paper proposed a
novel real-time interpolation method based on a biarc
guide curve for NURBS tool path trajectory. The working
principle of this newly proposed algorithm is as follows:
First, the sampled points are achieved by step parameter
and Gauss integration from the interpolation curve and
then fitting the sampled points into a guide curve by the
biarc fitting, which helps calculate the next interpolate
point in real time and to plan the feed rate. Simulation is
carried out to test the performance of the proposed
method, and the results show that the proposed method
has high stability and precision, which saves computation
effort and is easy to be realized.

Acknowledgment The authors would like to thank the support of
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National Important Science and Technology Specialized Fund (grant
nos. 2009ZX04009-011 and 2009ZX04009-021).

Table 4 Simulation results of the spatial curve

Methods Feed rate fluctuation rate Contour error (μm)

Max. RMS Max. RMS

Vref=30 mm/s First-order approximation 0.115966 0.017070 4.983108 0.426685

Second-order approximation 0.029663 0.002420 4.322127 0.419637

The proposed guide interpolation 0.017277 0.000946 4.172228 0.370061

Vref=100 mm/s First-order approximation 0.389948 0.059666 28.805416 4.475131

Second-order approximation 0.159905 0.017736 20.819668 3.780699

The proposed guide interpolation 0.088043 0.008002 20.041845 3.714444
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