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Abstract To exactly execute a sharp corner in the tool-
path, the feedrate of a CNC machine must instanta-
neously drop to zero at that point. This constraint is
problematic in the context of high-speed machining,
since it incurs very high deceleration/acceleration rates
near sharp corners, which increase the total machining
time, and may incur significant path deviations (contour
errors) at these points. A strategy for negotiating sharp
corners in high-speed machining is proposed herein,
based upon a priori toolpath/feedrate modifications in
their vicinity. Each corner is smoothed by replacing a
subset of the path that contains it with a conic “splice”
segment, deviating from the exact corner by no more
than a prescribed tolerance ε, along which the square
of the feedrate is specified as a Bernstein-form polyno-
mial. The problem of determining the fastest traversal
of the conic segments under known axis acceleration
bounds can then be formulated as a constrained opti-
mization problem, and by exploiting some well-known
properties of Bernstein-form polynomials this can be
approximated by a simple linear programming task.
Some computed examples are presented to illustrate
the implementation and performance of the high-speed
cornering strategy.
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1 Introduction

Each axis of a Cartesian CNC machine is subject to
bounds on the magnitude of its acceleration, deter-
mined (at minimum) by the axis inertia and torque
capacity of the drive motor. The machine must come
to a complete stop when traversing a sharp corner in
the toolpath, since an instantaneous change in direction
of motion at finite speed implies infinite acceleration.1

The handling of the deceleration/acceleration phases
necessitated by corners significantly influences the total
path execution time and the fidelity of the executed
path to the commanded path—i.e., the path contour
error.

A sharp corner may be regarded as an impulse in
the path curvature, of magnitude equal to the angular
change of path direction at that corner. It is useful
to consider the corner as the limit of a sequence of
smooth paths with finite curvature “spikes” culminating
in a delta function. If the corner is to be traversed in
a time interval shorter than that implied by an exact
traversal under the machine axis acceleration bounds, it
is necessary to “smooth out” the geometry. Two aspects
of the smoothing facilitate a faster traversal: (i) the

1To execute a sharp corner at finite speed, each of the machine
axes must in general achieve an instantaneous change of speed—
i.e., an infinite acceleration.
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smoothed path can be of shorter length than the cor-
responding portion of the exact path and (ii) since the
smoothed path has finite curvature, a nonzero feedrate
can be maintained over its entire extent.

It should be noted that, because of the internal dy-
namic characteristics (inertia and damping) of the ma-
chine axes, there will be an inherent tendency of the
physical motion to “round out” sharp path corners.
However, this fact does not exempt one from the need
for careful analysis of the exact manner in which cor-
ners are executed, if prescribed bounds on axis acceler-
ations and path contour error are to be observed. In
principle, it is possible to formulate an inverse dy-
namics problem, whose solution determines a modified
machine input that, subject to the internal machine
dynamics, exactly produces the desired output motion.
This has been addressed [4] in the context of smooth
paths and unbounded accelerations, but the problem is
far more difficult for nonsmooth paths subject to finite
axis acceleration bounds.

The problem of negotiating sharp corners in tool-
paths that one wishes to execute at very fast nominal
feedrates is of particular concern in the context of
high-speed machining [2, 15, 18–20], and some authors
[3, 13, 14] have proposed smoothing of sharp corners
by analytic curves with free parameters that can be
adjusted to minimize contour error. The present study
proposes a different approach to high-speed cornering,
based on a priori modifications to the toolpath geome-
try and feedrate that are formulated to ensure satisfac-
tion of prescribed bounds on the contour error and axis
accelerations.

The proposed corner smoothing scheme is based on
“splicing” the linear segments that meet at a corner
with a G1 conic segment. The conic segment is specified
as a rational quadratic Bézier curve r(ξ) for ξ ∈ [ 0, 1 ]
with control points p0, p1, p2 and scalar weight w1

associated with p1. Taking p1 as the exact corner
point, the lengths �1 = |p1 − p0|, �2 = |p2 − p1| of the
control-polygon legs and the weight w1 are available
as free parameters to adjust the geometry of the conic
splice segment and to provide a simple and intuitive
means of subduing the contour error—which decreases
monotonically as w1 increases and �1, �2 decrease. Fur-
thermore, it is possible to develop efficient and accurate
real-time interpolators for Bézier conic segments [7],
as natural extensions of simple linear/circular G code
segments.

Once a conic splice segment r(ξ) satisfying a pre-
scribed contour error has been constructed, a feedrate
function V(ξ) must be determined along it so as to
mimimize the traversal time, consistent with the axis
acceleration bounds. Formally, this feedrate is the solu-

tion of a calculus of variations problem with pointwise
constraints. Since this does not admit simple closed-
form solutions, we formulate an approximation scheme
based on writing2 E(ξ) = 1

2 V2(ξ) as a Bernstein-form
polynomial on ξ ∈ [ 0, 1 ]. The axis acceleration con-
straints can then be expressed as a set of polynomial
inequalities, with coefficients linearly dependent on the
Bernstein coefficients E0, . . . , En of E(ξ).

The polynomial inequalities arising from the acceler-
ation constraints are not imposed directly. Instead, the
inequalities are applied to their Bernstein coefficients
(which are linear expressions in E0, . . . , En). Through
recursive application of the de Casteljau subdivision
algorithm the “control polygons” defined by these
coefficients converge monotonically [5] to the graphs
of the constraint polynomials, guaranteeing satisfaction
of the exact acceleration constraints to any desired
precision through a system of linear inequalities. The
task is then to minimize the traversal time for the conic
splice segment,

T =
∫ 1

0

|r′(ξ)|√
2 E(ξ)

dξ , (1)

with respect to E0, . . . , En—subject to linear con-
straints on them. Although the objective function (1)
is not linear in E0, . . . , En, it is easily verified to be
monotone with respect to each of these variables.
Therefore, to facilitate solution of the constrained op-
timization problem, a linear approximation of Eq. 1 is
used, which reduces the task to a classical linear pro-
gramming problem—for which efficient solution proce-
dures are well known.

The plan for the remainder of this paper is as fol-
lows. The key parameters governing exact acceleration-
limited execution of sharp corners by Cartesian CNC
machines are first identified in Section 2. The problem
of achieving fast corner execution, subject to specified
contour error and axis acceleration bounds, is then
introduced in Section 3, which describes an approach to
smoothing sharp corners using conic “splice” segments
that deviate from the exact corners by no more than a
prescribed tolerance ε. In Section 4 we consider fastest
traversal of smoothed corners, consistent with the axis
acceleration bounds. The optimal feedrate is the solu-
tion of a calculus of variations problem under pointwise
constraints, but near-optimal solutions can be obtained
by approximating it with a simple linear programming
task. Finally, examples from an implementation of the

2 E(ξ) = 1
2 V2(ξ) is used to specify the feedrate since, unlike V(ξ),

its time derivatives are polynomials in the curve parameter ξ .
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method are presented in Section 5, while Section 6
recapitulates key results of this study and identifies
some issues that deserve further investigation.

2 Exact acceleration-limited cornering

We study first the optimal (fastest) exact execution
of sharp corners by CNC machines with acceleration-
limited axes, since this furnishes key parameters for
the corner smoothing scheme. For brevity, we consider
two-axis Cartesian machines (the extension to three-
axis machines is straightforward). We assume that the
desired motion before and after negotiation of the
sharp corner point corresponds to a prescribed constant
feedrate V∗.

Consider a machine with acceleration/deceleration
bounds Ax, Ay for the x, y axes. Let p1 = (x1, y1) be
a sharp corner point of the machine path, and let the
angles θ1, θ2 define the orientation of the incoming and
outgoing path segments that meet at p1, so that t1 =
(cos θ1, sin θ1) and t2 = (cos θ2, sin θ2) are unit vectors
along them. To exactly execute the corner, the machine
must completely stop at p1—i.e., the feedrate must
decrease from V∗ to 0 on the incoming segment, and
increase from 0 to V∗ on the outgoing segment.

According to the “bang-bang principle” [11, 16], the
fastest traversal of the corner is realized when either the
x or y axis is operating at its maximum acceleration/
deceleration rate, Ax or Ay, on both the incoming and
outgoing path segments. We take p1 = (0, 0) without
loss of generality and denote by d1, d2 and t1, t2 the ex-
tents and durations of the deceleration and acceleration
phases. Then for the incoming segment, we have

0 − d1 cos θ1 = 1

2
axt2

1 , 0 − V∗ cos θ1 = axt1 ,

0 − d1 sin θ1 = 1

2
ayt2

1 , 0 − V∗ sin θ1 = ayt1 ,

where ax, ay are the x, y axis accelerations (assumed
uniform). Similarly, for the outgoing segment

d2 cos θ2 − 0 = 1

2
axt2

2 , V∗ cos θ2 − 0 = axt2 ,

d2 sin θ2 − 0 = 1

2
ayt2

2 , V∗ sin θ2 − 0 = ayt2 .

Eliminating t1 and t2 among these equations, we obtain
the axis accelerations

(ax, ay) = V2∗ (− cos θ1, − sin θ1)

2d1
and

(ax, ay) = V2∗ (cos θ2, sin θ2)

2d2

during the two phases of the corner traversal, and we
must have |ax| ≤ Ax, |ay| ≤ Ay for each phase. These
constraints determine the minimum required extents
d1, d2 for the deceleration/acceleration phases as

d1 = V2
∗ max

[ | cos θ1|
2Ax

,
| sin θ1|

2Ay

]
,

d2 = V2
∗ max

[ | cos θ2|
2Ax

,
| sin θ2|

2Ay

]
. (2)

Consequently, the minimum required time Tmin for an
exact corner traversal, under the given axis acceleration
bounds, is

Tmin = 2 (d1 + d2)

V∗
. (3)

Note that the subset of the toolpath associated with the
exact corner traversal can be parameterized as

r̂(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

p0(1 − 2ξ) + p1(2ξ − 0) for ξ ∈
[

0,
1

2

]
,

p1(2 − 2ξ) + p2(2ξ − 1) for ξ ∈
[

1

2
, 1

]
,

(4)

where p0 = p1 − d1t1 and p2 = p1 + d2t2.
For the exact corner traversal, the feedrate V de-

creases linearly with time from V∗ to 0 along the in-
coming segment and increases linearly with time from
0 to V∗ along the outgoing segment. The dependence of
V on the path parameter ξ , however, is not linear—it is
given by

V̂(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

V∗
√

1 − 2ξ for ξ ∈
[

0,
1

2

]
,

V∗
√

2ξ − 1 for ξ ∈
[

1

2
, 1

]
.

(5)

3 High-speed cornering problem

An exact traversal of the corner (4) subject to the
prescribed axis acceleration bounds is possible using
the feedrate (5), and its duration is defined by (3). To
achieve a faster traversal, it is necessary to “smooth
out” the corner so a nonzero feedrate can be main-
tained throughout the motion.

3.1 Path modification scheme

The overall scheme for the corner toolpath/feedrate
modification is as follows. Lengths L1 and L2 on the
original path, before and after the corner point p1, are
isolated and decomposed as L1 = a1 + b 1 + �1 and
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L2 = �2 + b 2 + a2. The lengths a1 and a2 define “coast-
ing” phases on the original path, at constant feedrate
V∗, while b 1 and b 2 define constant deceleration/
acceleration phases, where the feedrate decreases from
V∗ to V1 and increases from V2 to V∗ (the values V1, V2

are yet to be determined). Finally, the lengths �1 and
�2 on the original path are replaced by a Bézier conic
segment r(ξ) defined on ξ ∈ [ 0, 1 ] with control points
p0 = p1 − �1t1, p1, p2 = p1 + �2t2 and scalar weight w1

associated with control point p1—see expression (12)
below.

The feedrate variation V(ξ) along the conic segment
r(ξ), including the initial/final values V1 = V(0) and
V2 = V(1), will be obtained by minimizing its traversal
time under the axis acceleration bounds. To compare
the total traversal time with the unmodified path, we
also isolate lengths L1 and L2 on it, before and after p1,
and decompose them as L1 = c1 + d1 and L2 = d2 + c2,
where c1, c2 define coasting phases at feedrate V∗ and
d1, d2 are given by Eq. 2. The parameters that define
corresponding modified and unmodified segments of
the toolpath corner are illustrated in Fig. 1.

Now depending on the values of �1, �2, θ1, θ2, V1, V2

and Ax, Ay, it may be possible to omit the coast-
ing phase on the incoming or outgoing parts of the
modified or unmodified path (or both), to make L1, L2

as small as possible. The feed acceleration (i.e., time
derivative of the feedrate V = ds/dt) is

A = dV
dt

= V
dV
ds

,

where s is distance along the path. To satisfy the axis
acceleration bounds, the maximum feed acceleration
magnitude on the incoming/outgoing linear path seg-
ments is defined for i = 1, 2 by

Ai = min

[
Ax

| cos θi| ,
Ay

| sin θi|
]

. (6)

Since, for a constant feed acceleration A over linear
distance �s, the change in 1

2 V2 is equal to A�s, we have

1

2
V2

∗ − 1

2
V2

i = Aibi and
1

2
V2

∗ = Aidi

for i = 1, 2. Consequently,

bi = V2∗ − V2
i

2Ai
and di = V2∗

2Ai
, (7)

while ai = Li − bi − �i and ci = Li − di are given by

ai = Li − V2∗ − V2
i

2Ai
− �i and ci = Li − V2∗

2Ai
. (8)

Hence, comparing bi + �i with di (see Fig. 1) for i = 1, 2
we may choose

ai = 0 , ci = �i − V2
i

2Ai
if �i >

V2
i

2Ai
,

ai = 0 , ci = 0 if �i = V2
i

2Ai
,

ai = V2
i

2Ai
− �i , ci = 0 if �i <

V2
i

2Ai
,

to make L1, L2 as small as possible.
For the unmodified corner, the total traversal time is

simply

Tc = c1

V∗
+ V∗

A1
+ V∗

A2
+ c2

V∗
, (9)

while for the smoothed corner, it is

Ts = a1

V∗
+ V∗ − V1

A1
+ TC + V∗ − V2

A2
+ a2

V∗
, (10)

with TC being the traversal time for the conic segment,
obtained from the feedrate optimization process (see
Section 4 below).

a1

b1

l1 l2

b2

a2

c1

d1
d2

c2

Fig. 1 Left Modified path corner—a1 and a2 are “coasting” seg-
ments, at feedrate V∗; b1 and b2 are linear deceleration/
acceleration segments, from V∗ to V1 and from V2 and V∗; and

�1, �2 are control polygon legs for the conic smoothing segment.
Right Unmodified corner—c1, c2 are coasting segments, while d1,
d2 are deceleration/acceleration segments defined by Eq. 2
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3.2 Conic smoothing segments

The Bernstein basis for polynomials of degree n on ξ ∈
[ 0, 1 ] is defined by

b n
k(ξ) =

(
n
k

)
(1 − ξ)n−kξk , k = 0, . . . , n . (11)

On account of its inherent numerical stability and avail-
able useful algorithms [6, 9, 10, 22], this basis is used in
all subsequent computations. A conic segment can be
defined [5] in the “standard” rational quadratic Bézier
form

r(ξ) = p0 b 2
0(ξ) + w1p1 b 2

1(ξ) + p2 b 2
2(ξ)

b 2
0(ξ) + w1 b 2

1(ξ) + b 2
2(ξ)

(12)

by the control points p0 = p1 − �1t1, p1, p2 = p1 + �2t2

and the associated weights w0 = 1, w1, w2 = 1. Expres-
sion (12) specifies an ellipse, parabola, or hyperbola
segment according to whether w1 <1, w1 =1, or w1 >1.
As w1 → ∞, it converges monotonically to the control
polygon defined by p0, p1, p2 (this is the limiting case of
a hyperbola as a pair of intersecting lines)—see Fig. 2.
Note also that higher values of w1 yield a smoother
transition between that linear and conic path segments.

For w1 = 1, expression (12) reduces to

r(t) = p0 b 2
0(ξ) + p1 b 2

1(ξ) + p2 b 2
2(ξ) , (13)

i.e., parabolas admit polynomial parameterizations. For
brevity, we now set

l1 = p1 − p0 , �1 = |l1| and

l2 = p2 − p1 , �2 = |l2| .
When w1 	= 1, the center of the ellipse/hyperbola is
situated [17] at

c = p1 + l2 − l1
2

(
1 − w2

1

) , (14)

while for w1 = 1, the focus of the parabola is given
[17] by

f = p1 + �2
1 l2 − �2

2 l1
| l2 − l1|2 . (15)

The derivative of expression (12) can be written as

r′(ξ) = d(ξ)

w2(ξ)
, (16)

where

w(ξ) = b 2
0(ξ) + w1 b 2

1(ξ) + b 2
2(ξ) , (17)

and we define

d(ξ) = d0 b 2
0(ξ) + d1 b 2

1(ξ) + d2 b 2
2(ξ) (18)

with

d0 = 2w1l1 , d1 = l1 + l2 , d2 = 2w1l2 .

In the case w1 = 1, we have simply

r′(ξ) = 2 l1 b 1
0(ξ) + 2 l2 b 1

1(ξ) .

Now let ε be a prescribed bound on the contour
error between r(ξ) and the exact corner r̂(ξ) defined
by Eq. 4 with p0 = p1 − �1t1, p2 = p1 + �2t2. A suitable
measure “distance(r(ξ), r̂(ξ))” for the deviation of the
conic segment from the exact path must be defined, to
enforce the contour error bound ε. Perhaps the simplest
definition,

distance
(
r(ξ), r̂(ξ)

) = max
ξ∈[ 0,1 ]

| r(ξ) − r̂(ξ) | ,

is based on a correspondence of the points on r(ξ) and
r̂(ξ) imposed by their parameterizations. A more rigor-
ous measure, satisfying all the requirements of a metric
function, is the Hausdorf f distance defined [12] by

distance
(
r(ξ), r̂(ξ)

) = min
u∈[ 0,1 ]

max
v∈[ 0,1 ]

| r(u) − r̂(v) | .

We adopt a simpler measure of the deviation of r(ξ)

from r̂(ξ) here—namely, the distance between the cor-
ner point p1 and the point on the conic segment closest
to it. The point of Eq. 12 nearest to p1 must satisfy the
condition

[ p1 − r(ξ) ] · r′(ξ) = 0 , (19)

Fig. 2 Conic segments represented as rational quadratic Bézier curves of the form (12) with weights w1 = 1 (left), w1 = 2 (center), and
w1 = 6 (right)
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i.e., the displacement p1 − r(ξ) is orthogonal to the
curve tangent direction, defined by r′(ξ). For an ellipse
or hyperbola with w1 	= 1, this can be reduced using
Eq. 16 to a quartic equation with Bernstein coefficients

c0 = 2w1�
2
1 , c1 = 1

4
(1 − w1)(�

2
1 + l1 · l2) , c2 = 0 ,

c3 = − 1

4
(1 − w1)(�

2
2 + l1 · l2) , c4 = − 2w1�

2
2 .

For the parabola with w1 = 1, on the other hand, it
reduces to a cubic with Bernstein coefficients

c0 = �2
1 , c1 = − c2 = l1 · l2 , c3 = �2

2 .

Standard root-finding methods for Bernstein-form
polynomials can be used to compute the real roots of
the cubic or quartic on ξ ∈ [ 0, 1 ].

The above procedure allows computation of the tol-
erance between the exact corner and the conic segment
defined by w1 for given points p0, p1, p2. To find the
w1 value required to achieve a specified tolerance ε,
the procedure can be invoked in a standard numerical
scheme—such as the bisection or secant method [1].
Alternatively, note that �1, �2 can be adjusted to achieve
a desired tolerance ε, since uniform scaling of r(ξ) by a
positive factor k does not alter the roots of Eq. 19 but
changes the tolerance from ε to k ε.

3.3 Acceleration on conic segment

The parametric speed and feedrate along the conic
segment are

σ(ξ) = |r′(ξ)| = ds
dξ

and V(ξ) = ds
dt

,

where s denotes the arc length of r(ξ) measured from
ξ = 0. Thus, derivatives with respect to time t and the
curve parameter ξ are related by

d
dt

= ds
dt

dξ

ds
d
dξ

= V
σ

d
dξ

. (20)

Hence, using dots for time derivatives and primes for
parametric derivatives, we have

v = ṙ = V
σ

r′ and

a = r̈ = V
σ

[
σ V ′ − σ ′V

σ 2
r′ + V

σ
r′′

]
.

and the x, y components of velocity v and acceleration
a along the conic path segment r(ξ) = (x(ξ), y(ξ)) are

ẋ = V
σ

x′ , ẍ = V
σ

[
σ V ′ − σ ′V

σ 2
x′ + V

σ
x′′

]
,

ẏ = V
σ

y′ , ÿ = V
σ

[
σ V ′ − σ ′V

σ 2
y′ + V

σ
y′′

]
,

where

σ =√
r′ · r′ =

√
x′2 + y′2 , σ ′ = r′ · r′′

σ
= x′x′′ + y′y′′

σ
.

(21)

Substituting from Eq. 21, the acceleration components
can be written in terms of the path r(ξ) = (x(ξ), y(ξ))

and feedrate V(ξ) as

ẍ = V
x′2 + y′2

[ (
V ′ − x′x′′ + y′y′′

x′2 + y′2 V
)

x′ + Vx′′
]

,

ÿ = 1

x′2 + y′2

[ (
V ′ − x′x′′ + y′y′′

x′2 + y′2 V
)

y′ + Vy′′
]

.

The acceleration constraints |ẍ| ≤ Ax, |ÿ| ≤ Ay can
thus be phrased as

(
x′2 + y′2) (

x′′V2 + x′VV ′) − (
x′x′′ + y′y′′) x′V2

− Ax
(
x′2 + y′2)2 ≤ 0 ,

(
x′2 + y′2) (

x′′V2 + x′VV ′) − (
x′x′′ + y′y′′) x′V2

+ Ax
(
x′2 + y′2)2 ≤ 0 ,

(
x′2 + y′2) (

y′′V2 + y′VV ′) − (
x′x′′ + y′y′′) y′V2

− Ay
(
x′2 + y′2)2 ≤ 0 ,

(
x′2 + y′2) (

y′′V2 + y′VV ′) − (
x′x′′ + y′y′′) y′V2

+ Ay
(
x′2 + y′2)2 ≤ 0 . (22)

When r(ξ) = (x(ξ), y(ξ)) and V(ξ) are polynomial or
rational functions of ξ , these are polynomial or rational
inequalities.

The general problem involves finding the path r(ξ)

and feedrate V(ξ) that minimize the traversal time,

T =
∫ 1

0

σ

V
dξ ,

subject to satisfaction of the above system of acceler-
ation constraints by r(ξ) and V(ξ) for ξ ∈ [ 0, 1 ] and
the tolerance ε on the deviation of r(ξ) from r̂(ξ). This
is an extremely challenging problem in the calculus
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of variations, and some assumptions/simplifications are
necessary to render it more tractable. If the path r(ξ)

is specified a priori, solution methods based on the
principles of bang-bang control are available [21], but
these are also quite complicated. Our goal is to for-
mulate a relatively simple scheme suited to the high-
speed cornering problem—yielding improvements in
cornering time that, although not truly optimal, are nev-
ertheless significant and worthwhile. This scheme uses
conic arcs as smoothing segments (see Section 3.2) and
a linear programming approximation (see Section 4) to
the constrained optimization problem.

4 Feedrate function determination

The parametric speed of the conic segment (12)—i.e.,
the derivative ds/dξ of the arc length s with respect to
the curve parameter ξ—can be expressed in terms of
Eqs. 17 and 18 as

σ(ξ) = |r′(ξ)| = |d(ξ)|
w2(ξ)

.

Applying Eq. 20 to Eq. 12, and using dots and primes to
denote derivatives with respect to time t and the curve
parameter ξ , the velocity v and acceleration a along r(ξ)

can be written as

v = ṙ = V
d
|d| ,

a = r̈ = w2

|d|4 [ VV ′ |d|2 d + V2 d × (d′ × d) ] .

Instead of defining the feedrate V as a polynomial in
the curve parameter ξ , it is convenient to define E =
1
2 V2 in the Bernstein basis (11) as

E(ξ) =
n∑

k=0

Ekb n
k(ξ) , ξ ∈ [ 0, 1 ] . (23)

The coefficients of E(ξ) will be determined by minimiz-
ing the traversal time for the conic segment, subject to
the axis acceleration constraints.

4.1 Axis acceleration constraints

In terms of E, the acceleration can be written as

a = r̈ = w2

|d|4 [ E′ |d|2 d + 2E d × (d′ × d) ] .

We note that this depends linearly on the coefficients
E0, . . . , En. Now let (ax, ay) and (dx, dy) be the com-

ponents of a and d, and suppose the motion is subject
to the axis acceleration bounds |ax| ≤ Ax and |ay| ≤
Ay. Clearing denominators then gives the polynomial
inequalities

w2 | (d2
x + d2

y

)
dx E′ + 2

(
dyd′

x − dxd′
y

)
dy E |

≤ Ax
(
d2

x + d2
y

)2
,

w2 | (d2
x + d2

y

)
dy E′ + 2

(
dxd′

y − dyd′
x

)
dx E |

≤ Ay
(
d2

x + d2
y

)2
,

which we cast in the form

| Px(ξ)E′(ξ) + Qx(ξ)E(ξ) | ≤ Rx(ξ) ,

| Py(ξ)E′(ξ) + Qy(ξ)E(ξ) | ≤ Ry(ξ) ,

by introducing the polynomials

(
Px, Py

) = w2
(
d2

x + d2
y

) (
dx, dy

)
,

(
Qx, Qy

) = 2w2
(
dyd′

x − dxd′
y

) (
dy, dx

)
,

(
Rx, Ry

) = (
d2

x + d2
y

)2 (
Ax, Ay

)
. (24)

These polynomials may be constructed from Eqs. 17
and 18 using the standard arithmetic procedures [6,
9, 10, 22] for polynomials in Bernstein form. Note
that deg(Px, Py) = 10, deg(Qx, Qy) = 9, and deg(Rx,

Ry) = 8.
The derivative of Eq. 23 may be expressed as in

Bernstein form as

E′(ξ) =
n−1∑
k=0

n (Ek+1 − Ek) b n−1
k (ξ) . (25)

Having constructed the polynomials (Eq. 24), the arith-
metic rules for Bernstein-form polynomials may be
invoked to express Gx(ξ) = Px(ξ)E′(ξ) + Qx(ξ)E(ξ)

and Gy(ξ) = Py(ξ)E′(ξ) + Qy(ξ)E(ξ) as polynomials
of the form

G(ξ) =
n+9∑
k=0

gk (E0, . . . , En) b n+9
k (ξ) , (26)

of degree n + 9 in ξ , with coefficients that are homoge-
neous linear expressions,

gk(E0, . . . , En) =
n∑

i=0

gki Ei ,
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in E0, . . . , En. One can verify [10] that the coefficients
gki are specified by the general form

gki = n

( 10
k+1−i

)(n−1
i−1

)
(9+n

k

) Pk+1−i

− n

( 10
k−i

)(n−1
i

)
(9+n

k

) Pk−i +
( 9

k−i

)(n
i

)
(9+n

k

) Qk−i , (27)

P0, . . . P10 and Q0, . . . , Q9 being the Bernstein coeffi-
cients of Px(ξ), Qx(ξ) or Py(ξ), Qy(ξ) according to
whether Eq. 26 represents Gx(ξ) or Gy(ξ). However,
for any given k, the three terms in Eq. 27 occur only
for restricted ranges in i, namely, max(1, k − 9) ≤ i ≤
min(n, k + 1) for the first term; max(0, k − 10) ≤ i ≤
min(n − 1, k) for the second; and max(0, k − 9) ≤ i ≤
min(n, k) for the third.

Now Rx(ξ) and Ry(ξ) in Eq. 24 are nominally de-
gree 8, but can be degree-elevated to obtain their
coefficients in the Bernstein basis of degree n + 9 on
ξ ∈ [ 0, 1 ]. Using these degree-elevated coefficients and
Eq. 26, the acceleration constraints for each axis can be
written as

n+9∑
k=0

(
n∑

i=0

gki Ei − Rk

)
b n+9

k (ξ) ≤ 0 ,

n+9∑
k=0

(
n∑

i=0

gki Ei + Rk

)
b n+9

k (ξ) ≥ 0 . (28)

Such inequalities hold for both the x and the y axis,
using the coefficients P0, . . . , P10 and Q0, . . . , Q9 in
Eq. 27 and R0, . . . , Rn+9 appropriate to that axis. Since
these constraints are difficult to enforce in a point-
wise manner—i.e., for each ξ ∈ [ 0, 1 ]—we invoke the
attractive properties of Bernstein-form polynomials
to apply them in a rapidly convergent approximate
manner.

The control polygon of a polynomial f (ξ) with
coefficients c0, . . . , cm in the degree-m Bernstein basis
on ξ ∈ [ 0, 1 ] is defined by connecting the control points
ck = (k/m, ck) for k = 0, . . . , m in order, and the graph
of f (ξ) always lies within the convex hull of its control
points. This is a consequence of the fact that the basis
functions (11) are non-negative on ξ ∈ [ 0, 1 ], and they
form a partition of unity. The de Casteljau algorithm
subdivides f (ξ) at any point ξ∗ ∈ (0, 1) to yield “left”
and “right” control polygons, representing f (ξ) on the
subintervals [ 0, ξ∗ ] and [ ξ∗, 1 ]. Setting c0

j = c j for j =
0, . . . , m this computes a triangular array of values cr

j
through the interpolations

cr
j = (1 − ξ∗) cr−1

j−1 + ξ∗ cr−1
j (29)

for j = r, . . . , m and r = 1, . . . , m. Then f (ξ∗) = cm
m,

while c0
0, c1

1, c2
2, . . . , cm

m and cm
m, cm−1

m , cm−2
m , . . . , c0

m are
the coefficients of f (ξ) on [ 0, ξ∗ ] and [ ξ∗, 1 ]. See
Farin [5] for further details on the properties of
Bernstein-form polynomials.

4.2 Linearization of cost function

Although the constraint inequalities are linear in
E0, . . . , En, the cost function T defined by (1) is not.
Nevertheless, T has some useful properties that help
simplify the optimization. From Eqs. 1 and 23, the first
and second partial derivatives of this cost function are

∂T
∂ Ei

= −
∫ 1

0

σ(ξ) b n
i (ξ)

[ 2 E(ξ) ]3/2
dξ , 0 ≤ i ≤ n , (30)

and

∂2T
∂ Ei∂ E j

= 3
∫ 1

0

σ(ξ) b n
i (ξ) b n

j (ξ)

[ 2 E(ξ) ]5/2
dξ , 0 ≤ i, j ≤ n .

Since σ(ξ) and E(ξ) are by definition nonnegative on
[ 0, 1 ], the first partial derivatives are always nonpos-
itive, while the second partial derivatives are always
nonnegative (i.e., the Hessian matrix of T has nonneg-
ative entries). Thus, T is monotonically decreasing with
respect to each of E0, . . . , En, which implies that its
global minimum lies on a constraint boundary. Further-
more, the nonnegative nature of the second derivatives
indicates that T is a convex function of E0, . . . , En,
implying that a local minimum is a global minimum.
Minimization of a monotone convex cost function is
a less difficult task than minimization of a general
nonlinear function.

The linear constraints determine a convex poly-
tope in the Euclidean space R

n+1 with coordinates
E0, . . . , En containing all instances of the function (23)
consistent with the axis acceleration constraints. Un-
der iterated subdivision, the control polygons converge
monotonically to the graph of E(ξ) on ξ [ 0, 1 ]. The
number of planar facets defining the feasible poly-
tope essentially doubles with each subdivision step,
which generates new coefficients specifying E(ξ) that
are linear combinations of the original coefficients
E0, . . . , En.

The monotonicity of T with respect to the coeffi-
cients of Eq. 23 ensures that its minimum occurs on the
boundary of the feasible polytope. Formally, this point
can be identified as the solution of a convex optimiza-
tion problem, since Eq. 1 is a convex function and the
feasible region is convex. For simplicity, we take the ad-
ditional step here of making a linearized approximation
of Eq. 1, allowing standard linear programming (LP)
methods to be used—for an LP problem, the minimum
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occurs at a vertex of the feasible polytope. If T̃ is the
value of Eq. 1 at a particular point (Ẽ0, . . . , Ẽn) about
which it is to be linearized, we may write

T (E0, . . . , En)=T
(

Ẽ0, . . . , Ẽn

)
+

n∑
i=0

∂T
∂ Ei

(
Ei− Ẽi

)
,

(31)

where the derivatives ∂T/∂ Ei specified by Eq. 30 are
evaluated at (Ẽ0, . . . , Ẽn)—these derivatives must be
evaluated by numerical quadrature.

Linearization about a point other than the true so-
lution may cause the LP method to identify a vertex
somewhat different from the true minimum. Since the
cost function is monotone, the sign of the derivative
of Eq. 31 with respect to each of E0, . . . , EN is always
consistent with that of the exact cost function (1). Also,
since Eq. 1 is a convex function, the true minimum
may not be at a vertex. The LP method will always
guarantee a feasible solution, typically close to but not
necessarily identical with the true optimum.

4.3 Formulation of LP constraints

Each axis incurs two acceleration constraints of the
form (28). Instead of attempting to impose these point-
wise constraints exactly, we take advantage of the con-
vex hull and subdivision properties of the Bernstein
form to obtain a convergent sequence of approxima-
tions to them, that are linear in E0, . . . , En. Moreover,
these approximations are conservative, so one can be
certain that the exact acceleration bounds are never
exceeded.

Prior to any subdivision of the [ 0, 1 ] domain, impos-
ing the conditions

n∑
i=0

gki Ei ≤ Rk and

n∑
i=0

gki Ei ≥ − Rk for k = 0, . . . , n + 9

on the coefficients of the constraints (28) ensures their
satisfaction a fortiori. These conditions can be ex-
pressed in the standard LP form A x ≤ b, where x is the
vector of free parameters, the matrix A specifies their
coefficients in the linear constraints, and b is the right-
hand-side vector of constants.

These “initial” constraints are generally too restric-
tive, and several stages of subdivision will typically
be required to identify a feasible solution giving a
significant reduction of the traversal time T. Under
repeated subdivision, the control polygons converge

to the graphs of the exact polynomial constraints
(28). Subdivision may be implemented through the
de Castlejau algorithm. Alternatively, the vector c̄ of
Bernstein coefficients on a subinterval [ ξ1, ξ2 ] may be
obtained from the coefficients c on [ 0, 1 ] by a matrix
multiplication c̄ = Mc, the elements of the subdivision
matrix M being defined [8] by

Mjk =
min( j,k)∑

i=max(0, j+k−n)

bi
j(ξ2) b n− j

k−i (ξ1) , 0 ≤ j, k ≤ n .

Now if G is the (n + 10) × (n + 1) matrix of the
coefficients gki on [ 0, 1 ], then

Ḡ = M G (32)

is the corresponding matrix for the subinterval [ ξ1, ξ2 ].
When [ 0, 1 ] is subdivided into a set of m contigu-

ous subintervals [ 0, ξ1 ], [ ξ1, ξ2 ], . . ., [ξm−1, 1], there
is an essentially m-fold increase in the number of
constraints. However, the constraint corresponding to
the initial coefficient on [ ξk, ξk+1 ] is identical to that
corresponding to the final coefficient on the preced-
ing interval [ ξk−1, ξk ] and should be omitted for k =
1, . . . , m − 1. Hence, each of the two constraints (28)
yields (n + 9)m + 1 conditions for each of the two axes,
or 4 [ (n + 9)m + 1 ] linear inequalities altogether on the
coefficients E0, . . . , En.

5 Illustrative examples

The following examples illustrate representative results
from a preliminary implementation of the high-speed
cornering scheme. In both examples, the degree of the
polynomial (23) used in optimizing the feedrate over
the conic smoothing segment is n = 16, and two levels
of subdivision (through the de Casteljau algorithm)
were invoked.

Example 1 Consider the corner traversal specified by
the parameters θ1 = 200◦, θ2 = − 90◦, V∗ = 25 mm/s,
Ax = Ay = 2000 mm/s2, ε = 0.015 mm. The conic
smoothing segment is defined by values w1 = 2, �1 =
0.07607 mm, �2 = 0.08095 mm. The feedrate opti-
mization process for this segment yields entry and
exit values V1 = 17.703 mm/s, V2 = 19.289 mm/s, and
hence, from Eq. 7, we obtain b 1 = 0.07320 mm, b 2 =
0.06323 mm and d1 = 0.14683 mm, d2 = 0.15625 mm.
In accordance with the criteria presented in Section 3.1,
we choose overall dimensions L1 = 0.14927 mm, L2 =
0.15625 mm to isolate the path corner, correspond-
ing to the values a1 = 0 mm, c1 = 0.00244 mm, a2 =
0.01207 mm, c2 = 0 mm specified through Eq. 8.
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Fig. 3 Left Comparison of exact path corner (dashed line) and
smoothed corner (solid line) for Example 1—the entire extents
L1, L2 of the isolated incoming/outgoing corner segments are

shown. Right The feedrate variation along the original corner
(dashed line) and smoothed corner (solid line)—note that the
traversal time for the latter is ∼ 30% less than for the former

Figure 3 compares the original and smoothed path
corners, together with the corresponding feedrate vari-
ations. The overall corner traversal times, as determined
from expressions (9) and (10), are Tc = 0.02434 s for
the exact corner, and Ts = 0.01700 s for the smoothed
corner. The smoothed corner thus gives a reduction of
∼ 30% in the overall cornering time.

Figure 4 shows that the specifed bound of 2000 mm/s2

on the magnitude of the x and y axis accelerations is ob-

served throughout the execution of the smoothed cor-
ner. Figure 4 also shows the “second hodograph”—i.e.,
the locus in the (x, y) plane traced by the acceleration
vector—during execution of the conic segment. This
is seen to conform closely to the perimeter of the
rectangular region defined by |ax| ≤ 2000 mm/s2 and
|ay| ≤ 2000 mm/s2, as would be expected for the exact
“bang-bang” solution to the acceleration-constrained
time-optimal control problem.
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Fig. 4 Left x and y axis accelerations during execution of the
smoothed corner in Example 1, in conformity with the prescribed
bounds ±2000 mm/s2. Right The second hodograph (i.e., the locus

traced by the acceleration vector) during traversal of the conic
segment in Example 1, showing that the feedrate optimization
yields a result closely approximating the “bang-bang” solution
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Fig. 5 Left Comparison of exact path corner (dashed line) and
smoothed corner (solid line) for Example 2—the entire extents
L1, L2 of the isolated incoming/outgoing corner segments are

shown. Right The feedrate variation along the original corner
(dashed line) and smoothed corner (solid line)—in this case, the
reduction in the overall corner traversal time is only ∼ 22%

Example 2 The parameters specifying the second cor-
ner traversal are θ1 = 20◦, θ2 = − 105◦, V∗ = 20 mm/s,
Ax = Ay =2000 mm/s2, ε =0.02 mm. The conic smooth-
ing segment is defined by w1 = 2, �1 = 0.06672 mm,
�2 = 0.06858 mm. From the feedrate optimization, we
obtain V1 = 15.365 mm/s, V2 = 15.232 mm/s, and Eq. 7
thus gives b 1 = 0.03851 mm, b 2 = 0.04057 mm and
d1 = 0.09397 mm, d2 = 0.09659 mm. Invoking the cri-
teria of Section 3.1, we choose overall dimensions L1 =
0.10523 mm, L2 = 0.10915 mm for the path corner,

corresponding to values a1 = 0 mm, c1 = 0.01126 mm,
a2 = 0 mm, c2 = 0.01256 mm specified through Eq. 8.
In this example, the overall traversal times defined by
Eq. 9 and 10 are Tc = 0.02025 s for the exact corner
and Ts = 0.01571 s for the smoothed corner, so the re-
duction in the cornering time is more modest (∼ 22%)
than in the previous example.

Figure 5 compares the original and smoothed corners
and corresponding feedrate variations. Again, the axis
accelerations along the smoothed path, shown in Fig. 6,
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Fig. 6 Left x and y axis accelerations during execution of the
smoothed corner in Example 2, in conformity with the prescribed
bounds ±2000 mm/s2. Right The second hodograph (i.e., the locus

traced by the acceleration vector) during traversal of the conic
segment in Example 2, showing that the feedrate optimization
yields a result closely approximating the “bang-bang” solution
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lie within the ±2000 mm/s bounds. Figure 6 also shows
the “second hodograph” for the conic smoothing seg-
ment of the path.

6 Closure

A method for computing a priori modifications to CNC
part programs that include sharp toolpath corners, so
as to enable faster corner execution while observing
a prescribed geometrical contour error and bounds
on the machine axis accelerations, has been proposed.
The sharp corner is smoothed by the insertion of
a conic smoothing segment, and the feedrate varia-
tion on this segment is determined by minimizing the
traversal time, under the constraint of the axis accel-
eration bounds. By exploiting the advantageous prop-
erties of Bernstein-form polynomials, solutions can be
obtained using standard linear programming methods.
Computed examples were presented to illustrate the
implementation of the method and its performance in
typical examples.

The corner modification scheme is intended as on
offline preprocessing application, to modify the geom-
etry of the toolpath and associated feedrates prior to
real-time execution on a CNC machine. By cataloging
the results for various corner geometries, nominal fee-
drates, acceleration bounds, contour error tolerances,
etc., it should be possible to determine suitable para-
meters for arbitrary cornering tasks by an interpolation
scheme, rather than running the optimization algorithm
for each new cornering problem.
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