
ORIGINAL ARTICLE

Bi-objective hybrid flow shop scheduling
with sequence-dependent setup times and limited buffers

Sina Hakimzadeh Abyaneh & M. Zandieh

Received: 3 September 2010 /Accepted: 25 April 2011 /Published online: 15 September 2011
Springer-Verlag London Limited 2011

Abstract The bi-objective hybrid flow shop problem with
sequence-dependent setup times and limited buffers is
mentioned in this paper. In this environment, there are
limited buffer spaces between any two successive stages;
thus, maybe there is not enough room for queues of jobs
that are waiting in the system for their next operations. This
problem is shown to be NP-hard in the strong sense. Up to now,
some heuristic and metaheuristic approaches are proposed to
minimize makespan or total tardiness of jobs. This paper
presents several methods for optimization which consider two
objectives simultaneously. The resolution of several specific
instances from the open literature with the adaptations of non-
dominated sorting genetic algorithm and sub-population
genetic algorithm suggest that the proposed algorithms are
effective and useful methods for solving this problem.

Keywords Bi-objective optimization . Hybrid flow shop
scheduling . Limited buffer space . Sequence-dependent
setup times

1 Introduction

Scheduling is one of the most important concerns in operation
research. As a typical manufacturing and scheduling problem
with strong industrial background, flow shop scheduling with
limited buffers has appealed wide attention both in academic
and engineering fields. Flow shop scheduling problem, or

FSP, is a class of group shop scheduling problems in which the
operations of every job must be processed on machines
1,2,…,m in this same order. A special case of FSP is
permutation flow shop scheduling problem, in which the
processing order of the jobs on the machines is the same for
every machine. With the objective to minimize the total
completion time (or makespan), such an issue is very hard to
solve effectively due to the NP-hardness and the constraint
on the intermediate buffer.

Different techniques have been presented for solving a
flow shop optimization problem. Some of these are a
simulation of natural events like ant colony optimization
which is inspired by searching and foraging behavior of
ants in real world. Genetic algorithm is another example
that spots a primary population as initial solution and then
use some operator inspired by genetic science to improve
the answer. On the other hand, we could mention the
simulated annealing that imitates the annealing process.

A hybrid flow shop model, which also referred to as flexible
flow line or multiprocessor flow shop in the open literature,
allows us to represent most of the industrial systems. The
process industry such as chemical, powder making, refinery,
pharmaceutical, oil, food, tobacco, textile, paper, and metallur-
gical industry can be modeled as a hybrid flow shop. A hybrid
flow shop consists of a series of workshops, each of which has
several machines in parallel. Some stages may have only one
machine, but for the plant to be qualified as a hybrid flow shop,
at least one stage must have several devices. These machines
can be identical, uniform, or unrelated. Figure 1 shows the
environment of hybrid flow shop with limited buffer spaces.
Any job is processed at only one machine at each stage.

As stated by Pinedo [16], cited machine setup time is a
significant factor for production scheduling in all flow
patterns, and it may easily consume more than 20% of
available machine capacity if not well handled. Also, the
completion time of production and machine setups are
influenced by production mix and production sequence. On

S. Hakimzadeh Abyaneh
Department of Industrial Engineering,
Mazandaran University of Science and Technology,
Babol, Iran

M. Zandieh (*)
Department of Industrial Management, Management and
Accounting Faculty, Shahid Beheshti University, G.C.,
Tehran, Iran
e-mail: m_zandieh@sbu.ac.ir

Int J Adv Manuf Technol (2012) 58:309–325
DOI 10.1007/s00170-011-3368-5

the one hand, processing in large batches may increase
machine utilization and reduce the total setup time. There is
a tradeoff between flow time and machine utilization by
selecting batch size and scheduling. Scheduling problems
with sequence-dependent setup times are among the most
difficult classes of scheduling problems. A one machine
sequence-dependent setup scheduling problem is equivalent
to a traveling salesman problem and is NP-hard [16]. Even
for a small system, the complexity of this problem is
beyond the reach of existing theories [12]. Sequence-
dependent setup scheduling of a hybrid flow shop system
is even more challenging. Also, limitation of buffer spaces
increases this complexity extensively. Buffer capacity is an
important issue in production lines such as the petrochem-
ical processing industries and cell manufacturing. Most of
the time, buffer is restricted or there is no buffer space
between some stages due to limited room and storage
facilities. So it could not be unlimited in real production
processes, and if there is no efficient plan for job
scheduling, this constraint may cause serious problems.
Up to now, mathematical programming, constructive
heuristics, and metaheuristics have been proposed for flow
shop scheduling, where it is usually assumed that the buffer
size between every two successive machines is infinite. So
it is meaningful and functional to consider the case with
limited buffers.

Moreover, if the multiple objectives of the combinatorial
problems are considered, they become even more complex. A
multiple objectives problem causes the single optimal solution
to convert into a set of optimal solutions named Pareto optimal
solutions. If there is no further information, one of these
Pareto optimal solutions cannot be chosen as the best one.
This demands a user to find as many Pareto optimal solutions
as possible. Classical optimization methods like the multi-
criterion decision-making methods suggest converting the
multi-objective optimization problem to a single objective
problem and try to find one optimal solution at each run.
When such a method is used for finding multiple solutions, it
has to be applied many times to find several different solutions
after many simulations.

This study considers the problem of sequence-dependent
setup time hybrid flow shop scheduling with limited buffer
spaces and the objectives of minimizing the makespan and
sum of the tardiness of jobs and presents two multi-phase
methods to solve the problem. Finally, an extensive compu-
tational experience is carried out in order to analyze the
different parameters of the algorithm. The results obtained
from the computational study have shown the efficiency of the
multi-phase algorithms. The key feature of these two
algorithms is that they limit the search to the space of
permutation vectors representing the order in which the given
set of jobs is processed in the first stage. Naturally, such a
vector does not specify the schedule by which the jobs are
processed in subsequent stages. Thus, we need an appropriate
constructive procedure for generating a complete and equal
schedule associated with each permutation vector.

In this paper, adoptions of sub-population genetic
algorithm II (SPGA II) and non-dominated sorting genetic
algorithm II (NSGA II) are proposed to SDST hybrid flow
shop problems with limited buffer capacities. In Section 2,
we are going to reconsider some literatures of hybrid flow
shop scheduling. Section 3 introduces the proposed adopted
algorithms. Section 4 presents experimental design which
compared the results achieved by proposed algorithms, and
finally, Section 5 consists conclusions and future work.

2 Literature review

This section is going to reconsider some literatures of flow
shop and hybrid flow shop scheduling. Here, some heuristic
and metaheuristic approaches, which proposed to solve
such these problems, are reviewed.

Among heuristic approaches, an algorithmwhich developed
by McCormick et al. [13] and known as profile fitting tries to
initially sequence jobs that lead to the minimum sum of idle
times and blocking times on machines. Leisten [11] presented
a more comprehensive approach and compares heuristics
adapted from cases of no-wait, unlimited buffers, limited
buffers, and two specially designed heuristics which attempt

Fig. 1 The scheme of hybrid
flow shop with limited buffer

310 Int J Adv Manuf Technol (2012) 58:309–325

to optimize the utilization of the available buffer storage. A
heuristic for minimizing the steady-state cycle time presented
by Abadi et al. [1] repetitively produces a minimal part set in
an m machine blocking flow shop. The main idea is slowing
down operations in order to make a connection between the
no-wait flow shop, in which jobs do not wait between
operations, and the blocking flow shop. In addition, this
method might be practical to minimize the makespan. Caraffa
et al. [3] used this idea to expand a genetic algorithm to
minimize this measure.

Ronconi [17] proposed three constructive heuristics,
which include a combination of the Profile Fitting heuristic
and the enumeration procedure used by the NEH algorithm.
Those suggested methods outperform the NEH algorithm in
problems involving up to 500 jobs and 20 machines. More
recently, Ronconi and Henriques [18] proposed FPDNEH
constructive heuristic that explores the nonexistence of
intermediate buffers, as well as the characteristics related to
the tardiness criterion. They also suggested a greedy
randomized adaptive search procedure (GRASP) metaheur-
istic, which is a multi-start and iterative process in which
each iteration consists of two construction and local search
phases, was also presented by them. The construction phase
builds a feasible solution, whose neighborhood is explored
until a local minimum is found during the local search phase.

As far as we know, few studies deal with limited buffer
capacities in the flow shop environment. Nowicki [15] has
developed a tabu search algorithm for this kind of problem in
the special case where there is a single machine at each stage.
Also, Wang et al. [22] proposed a hybrid genetic algorithm
for flow shop scheduling with limited buffers. In the same
context, Norman [14] also considers the problem with a
sequence-dependent setup time for each job at each stage.
Wittrock [24] and Sawik [19] are the only articles that directly
addressing the FSPM/b (flow shop problem with limited
buffer capacities). Wittrock [24] and after that Sawik [20]
develop constructive procedures for solving this problem and
solve six instances of the problem from a real production line.

In the literature, the notion of hybrid flow shop has emerged
in the 1970s. Hung and Ching [7] addressed a scheduling
problem taken from a label sticker manufacturing company
which is a two-stage hybrid flow shop with the characteristics
of sequence-dependent setup time at stage 1, dedicated
machines at stage 2, and two due dates. The objective was
to schedule 1 day’s mix of label stickers through the shop
such that the weighted maximal tardiness is minimized. They
proposed a heuristic to find the near optimal schedule for the
problem. The performance of the heuristic was evaluated
comparing its solution with both the optimal solution for small
sized problems and the solution obtained by the scheduling
method used in the shop. Jolai et al. [8] tried to minimize
tardiness, earliness, and maximize total profit, simultaneously.
Davoudpour and Ashrafi [5] also solved multi-objective

SDST flexible flow shop with GRASP algorithm. Behnamian
et al. [2] suggested A multi-phase covering Pareto optimal
front method to multi-objective scheduling in a realistic
hybrid flow shop using a hybrid metaheuristic. For this
reason, they proposed a new metaheuristic which combines
simulated annealing and variable neighborhood search. The
first phase concentrated on specific search space and
prevented all individuals from being converted into a local
optimal by means of decomposing the population into several
sub-populations. Then, in order to improve non-dominated
solutions and explore Pareto solution space found in the first
phase, in second phase, sub-population was reunified as a
single big population. The basic idea of phase 3 was
developing a strategy that explores the Pareto space to
improve previous phase solutions and finds a pathway that
filled the gap between the disconnected pieces of the Pareto
front using a novel e-constraint covering method.

In most real-world cases, setup times depend on both jobs,
which is separable from processing. Up to now, there are few
works published which address heuristics for flexible flow
lines with sequence-dependent setup times. Yaurima et al. [25]
proposed a genetic algorithm for hybrid flow shop with
sequence-dependent setup time, unrelated parallel machines,
machine availability, and limited buffer constraints together
inside the same problem formulation, and they considered the
production environment of a television assembly line for
inserting electronic components. Kurz and Askin [9, 10]
examined scheduling rules for SDST flexible flow lines.
They explored three classes of heuristics. The first class of
heuristics (cyclic heuristics) is based on simplistic assignment
of jobs to machines with little or no regard for the setup
times. The second class of heuristics is based on the insertion
heuristic for the traveling salesman problem. The third class
of heuristics is based on Johnson’s rule. They proposed eight
heuristics and compared the performance of those on a set of
test problems. Moreover, they formulated the SDST flexible
flow lines as an integer programming model. Because of the
difficulty in solving the IP model directly, they developed a
random keys genetic algorithm. Recently, Zandieh et al. [26]
proposed an immune algorithm for hybrid flow shops
scheduling with sequence-dependent setup times. This IA
approach incorporates an accelerating mechanism as well as a
restraining mechanism to assist the search for a near optimal
solution. The accelerating mechanism redeploys the best
solutions found so far in the subsequent generation. By doing
so, the search for near optimal solutions can possibly
converge rapidly.

In this paper, we use two adapted algorithms, which
were inspired by SPGA II and NSGA II, for minimizing
total tardiness and completion time of jobs in a hybrid flow
shop with limited buffer capacities. After that, we will
evaluate the performance of the proposed method with
several different criteria.

Int J Adv Manuf Technol (2012) 58:309–325 311

3 Multi-objective evolutionary algorithms

3.1 Solution representation

For exploration a promising neighborhood, we carry out the
search in the space of the permutation vectors that represent the
order in which the given set of jobs are performed in the first
stage. Also, an effective procedure is designed byWardono and
Fathi [23] to construct a complete schedule associated with a
given permutation vector. This section began by debate about
the concept of solution representation and the search space.
Then, we introduce the procedure H1 for constructing a
complete schedule for a given permutation vector.

First of all, an appropriate format must be determined to
represent a solution. There are two different formats that
can be used for this problem, namely the matrix represen-
tation and the vector representation. Using the matrix
representation, a solution is shown by a pair of mN×L
matrices I and X whose components are defined below:

Ijl: the machine number to which job j is assigned at stage l
Xjl: the position of job j within the sequence of jobs that

are assigned to machine Ijl at stage l

The major benefit of this representation is that it covers the
whole solution space, i.e., there exists a unique pair of matrices
(I, X) associated with every solution for the problem. In the
context of a local search, however, there are two disadvan-
tages associated with this format. The first weakness is that it
is simply cumbersome to work with. See Wardono and Fathi
[23] for an example of using this format in the context of the
FSPM/b problem. This leads to subsequent difficulties in
designing and implementing various features of the local
search algorithm such as the neighborhood structure and the
exploration and exploitations strategies in an effective manner.
The second disadvantage of using this format, which is
specific to the FSPM/b problem, is that it is computationally
expensive to determine if a given solution in this format is
feasible for the problem, i.e., whether or not the available
buffer space is enough to implement the given schedule. Since
we need to make this determination for every neighboring
solution that we consider at each iteration, this is a particularly
troublesome issue for the neighborhood search algorithm.

The alternative approach is to restrict the search to a subset
of the solution space that can be represented in a simpler
format for the local search. Ideally, this subset should contain
the collection of all potentially good solutions for the problem.
Apparently, it is complicated to recognize such a subset of the
solution space in an exact and efficient manner. In the
algorithms that we propose in this article, we restrict the
search to the collection of solutions that are associated with
the set of permutation vectors of size N. Each permutation
vector S represents the order in which the given set of jobs is
processed in the first stage. Such a vector does not indicate a

complete schedule by itself. In a complete schedule, the jobs
sequence at each stage and also the machine number which
perform each job must be determined. Thus, we need to
devise an associated procedure for constructing a complete
and feasible schedule for any given vector S. The resulting
schedule is expected to be related with the vector S. Naturally,
the overall success of the local search algorithm strongly
depends on the efficiency of this procedure to construct
potentially good solutions for the given permutation vectors.
Wardono and Fathi [23] showed that this approach results in a
complete answer for the FSPM/b problem. Certainly, we use
the matrix representation to show a complete schedule that
obtained by H1 procedure whenever we need to. In this
article, we employ a similar format for solution representation
to design a local search algorithm for the FSPM/b problem.

As mentioned above, in this paper, an adaption of
procedure H1 proposed by Wardono and Fathi [23] is
employed to construct a complete schedule for the FSPM/b
problem associated with any given permutation vector S.
We only add a part to put setup times into calculations.
According to this procedure, for any given permutation
vector S, the corresponding job schedule at the first stage is
obtained by using the first available machine (FAM) rule.
For each of the subsequent stages, the jobs are first
sequenced in the increasing order of their completion time
at the previous stage and then assigned to the machines at
the current stage according to the FAM rule. However,
because of the limited buffer capacities and setup times, the
starting time of a job on a machine at a given stage is not
necessarily equal to either its completion time at the
previous stage or the completion time of the previous job
on the machine at this stage. In procedure H1, when a
machine start to process job j in stage l, the completion time
of the job in this stage will be computed and added to event
list. Because of SDST, we have to add setup time of the
machine from its previous operation to job j while
computing completion time (see [23] for more information).

3.2 Sub-population genetic algorithm II approach

This section concentrates on a multi-phase method named
SPGA II which is proposed by Chang and Chen [4]. In the first
phase, the population will be separated into several sub-
populations in which each of them is designed for a scalar
multi-objective. Multiple objectives are combined with min–
max method, and then each sub-population evolves separately
to obtain a good approximation of the Pareto front. In the
second phase, for improvement of the Pareto front, non-
dominant solutions will be unified as Pareto archive which is
the initial solution for phase 2. Pioneering efforts [4] have
shown that sub-population genetic algorithm is effective in
solving the multi-objective combinatorial problems. Based on
these previous researches, this paper adopts the SPGA

312 Int J Adv Manuf Technol (2012) 58:309–325

algorithm with a global Pareto archive technique and a two-
stage approach to solve the multi-objective problems in a
hybrid flow shop environment with limited buffer spaces and
sequence-dependent setup times. In the first stage, the areas
next to the two single objectives are searched, and solutions
which explored around these two extreme areas are reserved
in the global archive for later evolutions. Then, in the second
stage, larger searching areas except the middle area are further
extended to explore the solution space in finding the near
optimal frontiers. There are two main characteristics of the
sub-population-like method:

1. Numerous sub-populations explore the entire solution
space

2. The multiple objectives are combined into a single
objective for each sub-population

Because the sub-populations are planned to explore specific
region, the Pareto optimal solutions are scattered uniformly over
the frontier. If the sub-populations communicated to each other
while they were exploring the different solution spaces, it might
bring better convergence and diversity. Therefore, we employ
the global Pareto archive concept to let each sub-population
communicate with others during the algorithm’s implementa-
tion. Another important thing about this procedure is the two-
stage approach that can accelerate the convergence and improve
the diversity of the solution quality at each different stages. The
detailed procedure is explained in the following:

The procedure Initialize generates a random set of
chromosomes according to the population size at the
beginning and determines the primary Pareto set. The
procedure Divide population is to divide the original
population intons sub-populations. The procedure Assign
weight to each objective is to assign different weight
values to each sub-population and also the individuals in

the same sub-population will share the same weight value.
Since the problem is a bi-objective problem, the vector
size is set to two. These weights should be changed
gradually. In this research, combination of weight vector is
defined by:

w1ðtÞ; w2ðtÞð Þ ¼ sin 2pt=Rð Þj j; 1� w1ðtÞð Þ

Algorithm 2: SPGA

while do
for to and to do

Evaluate objectives and fitness function with procedure
Update Pareto archive
Selection with elitism strategy
Two point crossover
Moving position mutation

end for
end while

(1, 1, 2, 2)start end start end

0=
<

==

timer
/ 2timer runtime

1i start 1end 2j start 2end

1H

Algorithm 1: The main procedure of SPGA II
Parameters setting

: the total number of sub-populations
: number of individuals in each sub-population

: the number of sub-populations in stage 1
and

Initialize
Divide population
Assign weight to each objective
Stage 1: SPGA

Initiate sub-populations

Stage 2: SPGA

ns
np

index
, _runtime crossover rate _mutation rate

(1, / 2, / 2, ,)index ns index ns np-

- -+
(, ,)index ns np

(1 / 2, 1 / 2, 0, 0,)index ns index np

Int J Adv Manuf Technol (2012) 58:309–325 313

where t is the tth sub-population, R=200 and it is obvious
that 0≤w1, w2≤1.

After the weight assignment, the corresponding scalar-
ized objective value of the f1(x) and f2(x) objectives in sub-
populations should be determined. For this reason, we
mixed the min–max method for multi-objective problem
with the weighting and because of the difference between
scales of the two objectives, the values need to be
normalized into a single unit interval. Consequently, the
objective function for the tth sub-population is formulated
as follows:

w1ðtÞ f1ðxÞ � f
»
1

f w1 � f »1

 !
þ w2ðtÞ f2ðxÞ � f

»
2

f »2

 !" #

where f
»
1 and f

»
2 denote the individual minimum of each

respective total tardiness and completion time of jobs and
f w1 is the worst (maximum) value of the first objective
function. Notice that all instances are solved using 10

different seeds for each algorithm and the minimum
solution in all runs are used as f* and fw for each objective.

The Elitism strategy adopted at the first stage randomly selects
a number of individuals from non-dominant set into the mating
pool. The tournament selection is employed at the selection
operation. In this study, we also use ordinary two point crossover
and moving position mutation which illustrated in Fig. 2.

When the first stage is finished, the algorithm initiates
other sub-populations by tournament selection from all
existing solutions generated at the first stage. So the fitness
of these solutions will be recalculated according to the
weight vector of each corresponding sub-population and the
bests will be selected for that particular sub-population. In
this phase, initial solutions for the sub-populations will be
generated by selecting those better ones from those existing
solutions, which will accelerate the convergent progression.
Thus, those selected solutions will be further evolved
during second stage. The pseudo code for initiating sub-
populations for second stage is mentioned below:

This approach enables the system to recombine different
species from different sub-populations, so more diversified
solutions with better quality are produced. Another advan-
tage of this approach is to exchange the information from
existing sub-populations.

We have to inform that in all figures which illustrate
final population and non-dominant members as Fig. 3,
horizontal and vertical axes are shown completion time and
total tardiness of jobs, respectively.

3.3 Non-dominated sorting genetic algorithm II approach

In this section, we are going to discuss a multi-phase method
named NSGA II which suggested by Deb et al. [6]. Here, we
adapt NSGA II by the environment considered in this study
and employ it to resolve some instances. Simulation results
show the efficiency of this method for this special case. To
start with, a random set of chromosomes according to the
population size will be generated. In order to spot solutions
of the first non-dominant front, each solution can be

compared with whole population based on their objective
values which obtained by procedure H1 [23]. In this way, it
will be disclosed if any solution dominates entire population.
Consequently, all individuals in the first non-dominant front
are found, and this front is established. In order to identify
the next non-dominant front, the solutions of the first front
are temporarily removed and the above procedure is
repeated. This action is continued for third and higher levels
of non-domination. As we can see, it is a complex and time-
consuming procedure for finding all non-dominant fronts.
Therefore, we are going to use a fast non-dominated sorting
approach proposed by Deb et al. [6] and described below.

First of all, for each solution, two entities must be calculated:

1. np: domination count, the number of solutions which
dominate the solution p

2. Sp: set of solutions that the solution p dominates

All solutions with domination count equal to zero belong
to the first non-dominant front named Pareto front. Now,
for each solution with np=0, we check each member q of its

Algorithm 3: Initiate sub-populations

for to do
for to do

solution = Tournament selection
Set solution

end for
end for

(1, 1, 2, 2)start end start end

1 /2i index 1 /2ns index
1j np

()np
(, ,)i j solution

=
=

- -

314 Int J Adv Manuf Technol (2012) 58:309–325

set Sp and reduce its domination count by one. In doing so,
if the domination count becomes zero for any member, we
put it in a separate list Q. These members belong to the

second non-dominant front. Now, the above procedure is
continued with each member of Q and the third front is
identified. This process is true for finding all fronts.

Fig. 2 Representation of two
point crossover (a) and moving
position mutation (b)

Algorithm 4: Non-domination sort
for each do

for each do

if then (i.e. dominate)

else if then

end if
end for
if then

end if

while do

for each do

for do

p P

pS

0pn

q P

p q { }p pS S q p q p q

q p 1p pn n

0pn

1rankp

1 1 { }F F p

1i

iF
Q

ip F

pq S

1p pn n

if 0pn then

1rankq i

{ }Q Q q
end if

end for
end for

1i i

iF Q

Int J Adv Manuf Technol (2012) 58:309–325 315

According to some empirical results, it is hard to obtain
a widespread solution for multi-objective combinatorial
problems. Along with convergence to the Pareto optimal
set, it is also desired that an evolutionary algorithm
maintains a good spread of solutions in the obtained set
of solutions. In the NSGA II, crowded comparison
approach is proposed to maintain sustainable diversity in
the population. To describe this approach, we first define
density estimation metric and then introduce the crowded
comparison operator.

Density estimation To get an estimation of the density of
solutions surrounding a particular solution in the popu-
lation, we calculate the average distance of two points on
either side of this point along each of the objectives. This
quantity which called crowding distance, serves as an
approximation of the perimeter of the cuboid formed by using
the nearest neighbors as the vertices. Figure 4 illustrates the
computation of crowding distance for a bi-objective problem.

In Fig. 4, the crowding distance of the ith solution in its front
(Points marked with bold circles are solutions of the same non-
dominant front) is the average side length of the cuboid
(shown with a dashed box).

The crowding distance computation needs sorting the
population according to each objective function value in
ascending order of quantity. Thereafter, for each objective
function, the best solutions are assigned an infinite distance
value. All other intermediate solutions are assigned a
distance value equal to the absolute normalized difference
in the function values of two adjacent solutions. This
calculation is continued with other objective functions. The
overall crowding distance value is calculated as the sum of
individual distance values corresponding to any objective.
Each objective function is normalized before calculating the
crowding distance. A solution with a smaller value of this
distance measure is, in some sense, more crowded by other
solutions. Crowding distance measure for front Ft is
computed as below:

Fig. 3 Final population and
Pareto archive of SPGA II
algorithm

Algorithm 5: Algorithm 4: Crowding distance assignment
for each objective do (total tardiness and completion time of jobs)

for to

end if
end for

j

tl F

(,)s tF Sort F j

1 ldis dis

2i 1tF
max min[(1) (1)]/()i i s s s sdis dis F i F i F F

316 Int J Adv Manuf Technol (2012) 58:309–325

Crowded comparison operator The crowded comparison
operator (<n) guides the selection process at the different
stages of the algorithm in the direction of a uniformly
scattered Pareto optimal front. Any individual in the
population has two features:

1. Non-domination rank (irank)
2. Crowding distance (idistance)

We now define a partial order < n as

i<nj if irank < jrankð Þ or irank ¼ jrankð Þ and idistance < jdistanceð Þð Þ

It means that between two solutions with differing non-
domination ranks, we prefer the solution with the lower
rank. Otherwise, if both solutions belong to the same front,
then the solution located in a lesser crowded region is
preferred (Fig. 5).

Most of the time, a random initial population P0 is
created and sorted based on the non-domination in several
independent groups. So each solution is assigned a rank

equal to its non-domination level. At first, the two-point
crossover and moving position mutation operators (Fig. 2)
are used to create an offspring population Q0 of size N.
Now a combined population R0=P0 ∪ Q0 is established
which is of size 2N. Then the chromosomes of this mixed
population R0 is sorted according to non-domination level.
Since R0 includes all previous and current population
members, elitism is ensured. Now, solutions belonging to
the best non-dominant set F1 are of best solutions in the
combined population and must be emphasized more than any
other solution in the combined population. If the size of F1 is
smaller than N, all members of this set have to be chosen for
the new generation P1. The remaining members of this
population are chosen from subsequent non-dominant fronts
in the order of their ranking. Thus, this is followed by
solutions from the sets F2, F3, and so on. This procedure is
continued until no more sets can be accommodated. Suppose
that the count of solutions in all sets from F1 to Ft would be
larger than the population size N. To choose a population of
size N, we sort the solutions of the last front Ft using the
crowded comparison operator <n in descending order and
choose the best solutions needed to fill all population slots.
This procedure will be resumed for next generations.

In this method, we put a specific time for stopping
criterion due to some empirical experiences. Whenever this
condition is satisfied, the algorithm must be finished.

3.4 Local searching structure

Pareto archive which obtained by the main algorithms is the
initial solution for this phase. For any permutation vector v,
a vector v′ is supposed to be in the neighborhood H of v
(denoted as H(v)) if it is obtained from v by changing the
position of job x and job y (y≠x) in vector v. We choose these
positions randomly among all jobs. The size of this
neighborhood is N(N−1)/2. At the start of this neighborhood

Fig. 5 Final population with
Pareto front of NSGA II
algorithm

Fig. 4 Crowding distance illustration

Int J Adv Manuf Technol (2012) 58:309–325 317

exploration, the set of solutions obtained from main algo-
rithms are considered as a promising area. During the
implementation, if the local search algorithm achieved a
better solution, the new solution would enter in the Pareto set,
and it should be regarded as an updated promising area. In the
continuance of this investigation, we will find that the quality
of the solutions obtained via this local search is significantly
improved. Also, the time needed for this search is less than 1

3
of the time which consumed by the main algorithms.

In this study, after the usage of SPGA II and NSGA II
methods until a specific time, the efficient local search algorithm
based on moving position mutation operation (as represented in
Fig. 2(b)) will be utilized to concentrate computing effort on
exploring promising neighbor solutions. We named the
combined algorithms as non-dominated sorting memetic
algorithm (NSMA) and sub-population memetic algorithm
(SPMA), respectively. The certain number of iteration could be

a good stopping criterion for this search. Best improving and
first improving are considered as two commonly used search
techniques. In the best improving strategy, the entire neighbor-
hood is analyzed and the current solution is replaced by the
best one, while in the first improving strategy, the current
solution is replaced by the first solution which improves its
value. But none of these strategies are useful here. Due to
presence of Pareto set, it is not rational to compare a new
solution with its parent. Consequently, whenever mutation
operator results in a new solution, we have to judge it
against all Pareto archive members. If none of them
dominates this solution, it should be entered the Pareto
archive. Afterward, the old Pareto members have to be
checked if the new member dominates them. If so, these
old chromosomes must be removed from the Pareto
front. The pseudo code for local search algorithm is
given as follows:

The algorithm will be terminated whenever the total
number of iterations reaches a specified value.

4 Experimental design

In this section, we are going to compare the results of
different algorithms in a hybrid flow shop with limited
buffer spaces and SDST constraint. All algorithms were
implemented in MATLAB 7.6.0.324 (R2008a) and ran on a

PC with a Pentium dual core 3.60 GHz processor with
2 GB of RAM and Microsoft Windows Vista environment.

4.1 Data generation and settings

In this part, we will test the performance of the proposed
methods with several experiments by different sizes. These
instances must include the number of jobs, number of
stages, number of machines in each stage, range of
processing times, the range of sequence-dependent setup

Algorithm 6: Local search
for to do

for each do
if then

break for
end if

end for
if then end of
for do

if then end if
end for

end for

1i _iteration number
()p Random select Pareto

()q mutate p
p Pareto
p q

0k

1k { }Pareto Pareto q
p Pareto

q p { }Pareto Pareto p

318 Int J Adv Manuf Technol (2012) 58:309–325

times, and the range of buffer capacities. Test problems
were generated according to Taillard [21]. These instances
are commonly used in the literatures. All instances are
available at http://www.prd.usp.br/docentes/debora/. Ten
different matrices of processing times were generated for
each of the 12 size shown in Tables 2 and 3. For each of
those matrices, four scenarios were built. But we have
chosen the first processing times matrix and first scenario to
test algorithms efficiency. Due to preventing applying
remote answers, we ran each simulation for three times
and employ the average of them as the main answer.

The setup times for the first stage are set to 0 for all jobs.
However, in other stages, setup times are uniformly

distributed from 0 to 25. Buffer capacities are other
important things that we have to set. The important point
is systems with larger buffer rooms tend to unlimited buffer
problems. Because of this fact, it is better that the buffer
spaces between successive stages be less than the number
of jobs. Thus, examples with small size of buffer are
recommended for our particular case. So we distribute
buffer size uniformly from 0 to 4. Also, in general, all
combinations of these levels will be tested. In addition, we
have to mention some further restrictions. The variable
machine distribution factor requires that at least one stage
have more than one machine. Also, the largest number of
machines in a stage must be less than the number of jobs.

Fig. 6 Comparison of final population and Pareto set of SPGA II and NSGA II algorithms for the same problem

Fig. 7 Comparison of Pareto archives for SPGA II, NSGA II, SPMA, and NSMA for four different instances

Int J Adv Manuf Technol (2012) 58:309–325 319

http://www.prd.usp.br/docentes/debora/

The number of machines in each stage is randomly chosen
between 1 and 5.

4.2 Evaluation metric

Most of the multi-objective optimization methods approx-
imate the Pareto optimal front by a set of non-dominated
solutions. It is important decision that how to evaluate the
quality of these solutions, because the conflicting and
incommensurable nature of some of the criteria makes this
process more complex. In general, comparing the solutions of
two different Pareto approximations coming from two

Table 1 Mean evaluation metrics for each algorithm

Evaluation metrics Algorithms

NSGA II NSMA SPGA II SPMA

Computational
time (s)

5171.5 1684.6 5296.0 1666.2

N 10.6 18.1 6.7 15.5

Spacing 1862.9 649.8 3080.6 874.2

MID 153065.5 126928.1 147732.8 123793.9

RAS 1.08 0.58 1.57 0.52

CS 0% 78.3% 0% 87.5%

Problem size Evaluation metrics Algorithms

(Job×Stage) NSGA II NSMA SPGA II SPMA

20×5 Computational time (s) 78.3 22.5 81.8 23.1

N 20.3 42.7 7.3 29.7

Spacing 89.8 34.6 147.8 47.9

MID 1900.2 1532.9 1590.7 1605.7

RAS 0.02 0.08 0.03 0.05

CS 0% 38.3% 0% 10.3%

20×10 Computational time (s) 108.8 43.9 112.7 43.6

N 7.0 29.7 6.3 17.3

Spacing 309.5 20.8 389.0 47.8

MID 2708.4 2210.7 2371.0 2237.2

RAS 0.05 0.01 0.05 0.01

CS 0% 42.9% 0% 61.2%

20×20 Computational time (s) 824.0 85.8 831.1 86.7

N 9.3 13.7 5.0 6.3

Spacing 197.2 79.6 377.0 266.5

MID 6975.8 6358.6 6870.9 6438.7

RAS 0.20 0.12 0.48 0.27

CS 0% 24.4% 0% 90.3%

50×5 Computational time (s) 752.3 146.1 773.9 151.8

N 11.0 19.0 7.3 21.3

Spacing 294.0 148.8 1159.7 146.1

MID 6776.9 5174.5 6712.2 4818.9

RAS 0.13 0.02 0.20 0.02

CS 0% 84.3% 0% 100%

50×10 Computational time (s) 908.3 268.8 953.6 269.3

N 9.7 13.3 7.3 6.3

Spacing 1151.6 127.3 1012.1 464.9

MID 13529.5 9084.2 13081.7 11512.6

RAS 0.32 0.12 0.65 0.44

CS 0% 87.5% 0% 100%

50×20 Computational time (s) 1457.3 567.5 1495.4 570.6

N 5.3 22.0 7.7 21.7

Spacing 480.7 115.8 739.8 145.0

MID 12595.8 9535.7 12209.5 9909.1

RAS 0.56 0.06 0.42 0.08

CS 0% 86.4% 0% 100%

Table 2 Mean evaluation
metrics for small sizes of
problems in three runs

320 Int J Adv Manuf Technol (2012) 58:309–325

algorithms is not straightforward. In the 1990s, the
quality of solutions to the Pareto optimal front (in the
objective space) is being evaluated by visual inspection.
This kind of evaluations is possible for two- and three-
objective test functions. However, in general, the quality
of the approximated sets must be measured by a
quantitative metric. For this reason, in this paper, we
proposed four indices as follows:

& Spacing: This metric allows us to measure the unifor-
mity of the spread of the points in the solution set.

& Mean ideal distance (MID): The closeness between
Pareto solution and ideal point (0, 0)

& RAS: The rate of achievement to two objectives
simultaneously

& CS: dominance percentage of on solution compare with
another one

The loss of diversity may mean premature of evolution
algorithm. According to some empirical results, it is hard to
obtain a widespread solution for multi-objective combina-
torial problems. For this purpose, we will compute Spacing
metric for algorithms as below:

Spacing ¼
ffi
1

n� 1

Xn
i¼1

di � d
� �2s

Problem size Evaluation metrics Algorithms

(Job×Stage) NSGA II NSMA SPGA II SPMA

100×5 Computational time (s) 4714.6 565.5 4772.5 597.3

N 8.3 13.7 7.7 11.7

Spacing 1031.5 511.3 1801.7 511.2

MID 23673.5 8255.7 18311.4 11284.3

RAS 0.42 0.07 0.45 0.04

CS 0% 100% 0% 90.5%

100×10 Computational time (s) 5973.5 1177.1 6006.7 1198.7

N 10.0 13.3 5.0 17.3

Spacing 1090.0 378.9 3245.8 323.9

MID 39312.5 22503.7 30686.6 23066.8

RAS 0.94 0.16 1.61 0.14

CS 0% 100% 0% 100%

100×20 Computational time (s) 7287.3 2242.4 7812.3 2248.3

N 7.0 13.0 7.0 19.7

Spacing 3538.4 780.5 1206.2 340.6

MID 51131.3 40266.9 52896.2 39507.0

RAS 1.07 0.43 1.82 0.23

CS 0% 88.9% 0% 100%

200×10 Computational time (s) 7578.0 3424.3 7687.5 3711.4

N 7.3 12.7 5.3 10.3

Spacing 8535.7 800.0 2193.2 532.4

MID 143730.2 91874.7 130701.3 88647.4

RAS 3.18 0.55 3.76 0.87

CS 0% 100% 0% 100%

200×20 Computational time (s) 11558.4 4613.4 11914.3 4356.6

N 23.0 15.7 7.7 12.3

Spacing 995.3 1234.4 8818.7 1599.4

MID 246472.00 225078.4 236651.6 222150.4

RAS 1.14 0.88 2.40 1.21

CS 0% 100% 0% 100%

500×20 Computational time (s) 20816.7 7057.8 21110.7 6736.7

N 8.7 8.3 6.7 12.3

Spacing 4640.9 3565.9 15875.7 6064.7

MID 1287978.9 1101260.9 1260710.1 1064348.3

RAS 4.97 4.43 7.04 2.86

CS 0% 86.7% 0% 97.2%

Table 3 Mean evaluation
metrics for large sizes of
problems in three runs

Int J Adv Manuf Technol (2012) 58:309–325 321

Fig. 8 Interaction between evaluation metrics and number of jobs for different types of algorithms

Fig. 9 Interaction between evaluation metrics and number of working stages for different type of algorithms

322 Int J Adv Manuf Technol (2012) 58:309–325

In which n is Pareto solutions number, di is define as

di ¼ min
j

f i1ðxÞ � f j1ðxÞ
�� ��þjf i2ðxÞ � f j2ðxÞ

��� �
; i; j ¼ 1; 2; . . . ; n

And d is mean of di vectors. Also MID is defined as
follows:

MID ¼
Pn
i¼1

ci

n

where n is the number of non-dominant solution and
ci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 21i þ f 21i

p
. The lower value of MID, the better of

solution quality we have. Another evaluation metric which
we proposed in this paper is RAS. The equation of RAS is
represented as following equation:

RAS ¼
Pn
i¼1

f1i�Fi

Fi

� 	
þ f2i�Fi

Fi

� 	n o
n

Where Fi=min {f1i, f2i}. The solution with lower value of
RAS has better quality. Also, in all measures assumes positive
objective values. Therefore, solutions with negative objectives
must be transformed into the positive part of the axis. Another
important criterion is CS which presents the percentage of the
solutions number in a Pareto set which dominate the members

of another Pareto set. If we suppose X and X′ are two Pareto
set, CS will be calculated with equation below:

CS X ; X 0ð Þ ¼ a 2 X ; 8a0 2 X 0 : a �� a0j j
Xj j

If CS=1, it means that X completely dominates X′. In
addition, the number of Pareto solution and the time needed
for implementation of an algorithm are significant.

4.3 Computational results

In this section, we are going to compare the proposed
algorithms for hybrid flow shop scheduling. In this paper,
SPGA II and NSGA II with an additional local search phase
were adapted to solve the problem. The comparisons are
performed on the basis of the sets of non-dominant solutions
obtained by each algorithm. Figure 6 illustrates a comparison
of final population of SPGA II and NSGA II algorithms for
the same problem. As it shows, totally, the Pareto archive of
NSGA II algorithm is better than the other one. It is closer to
the ideal point. However, the Pareto front of the SPGA II
algorithm is more crowded in this special instance.

Figure 7 presents the non-dominant solutions of a single
run by SPGA II and NSGA II and local search phase for
different sizes of problems. As it can be seen, the
neighborhood exploration improves the Pareto archive

Fig. 10 Mean evaluation metrics for all algorithms

Int J Adv Manuf Technol (2012) 58:309–325 323

significantly. These results show that the proposed search
algorithm works effectively in all size of problems.

In order to evaluate the efficacy and performance of
the algorithms proposed in this paper, 12 different sizes
of problems are used. As it can be seen in average row
in Table 1, the SPMA and NSMA are superior to the basic
version of the algorithms in all aspects. Tables 2 and 3
represent the values of the mean evaluation metrics for
respectively small and large sizes of problems in three
runs.

It is notable that the time measure mentioned for NSMA
and SPMA algorithms is only the time period for the local
search phase. It means the neighborhood exploration add this
distinct time to the CPU time for achieving the final answer.
Since we want to prove the efficiency of local search in
advancement of Pareto archive, CS metric then shows the
dominance percentage of non-dominant solution set which
obtain by this phase in compare with the relevant basic
algorithm. For example, notice CS for NSGA II and NSMA;
Table 1 shows that 78.28% of Pareto members of NSMA
dominate all members of the Pareto set which belongs to
NSGA II. On the other side, there is no non-dominant

solution of NSGA II that can dominate the Pareto archive of
NSMA. Due to the proximity of the solutions attained by the
basic version of algorithms and also the local search phases,
it is not logical to compare this criterion for them.

Figures 8 and 9 show the effect of jobs and number of
working stages on evaluation metrics for different algo-
rithms. As we can see, in general, proposed local search
algorithm significantly improves the solutions obtained by
basic version of algorithms.

Figure 10 illustrates the mean evaluation metrics for all
algorithms. As it can be seen above, the local search phase
causes a meaningful improvement in all measures. In order
to see the difference between algorithms, one-way ANOVA
is applied for each criterion. All analyses in this section are
at the 95% confidence level. Figure 11 shows LSD interval
plots for the evaluation metrics.

5 Conclusions and future works

In this paper, we considered the minimization of two
objectives which are the total tardiness and completion time

Fig. 11 Interval plots of NSGA II, NSMA, SPGA II, and SPMA

324 Int J Adv Manuf Technol (2012) 58:309–325

in a hybrid flow shop environment with restricted buffer space
and also sequence-dependent setup time condition. For this
reason, a new metaheuristic which combines SPGA II and
NSGA II with a neighborhood search is proposed. First, the
SPGA II and NSGA II were suggested for solving the problem
in an exact time. Subsequently, in order to improve non-
dominant solutions and to explore promising area for Pareto
solution space, a functional local search algorithm started
working with the Pareto archive reached by those algorithms.

To validate the proposed algorithm, we used 12 sizes of
test problems, and different comparison metrics were
proposed to judge and evaluate the performance of the
algorithms. Experimental design shows that such a local
search can be of great significance in improving the Pareto
optimal solutions. Therefore, it is obvious that SPMA and
NSMA are successful in this novel environment.

This paper illustrates the effectiveness of presented multi-
phase algorithms in this particular problem. We believe that
the methods proposed here are a good start in developing well-
organized and useful algorithms for this special environment.

References

1. Abadi INK, Hall NG, Sriskandarajah C (2000) Minimizing cycle
time in a blocking flowshop. Oper Res 48:177–180

2. Behnamian J, Fatemi Ghomi SMT, Zandieh M (2009) A multi-
phase covering Pareto-optimal front method to multi-objective
scheduling in a realistic hybrid flowshop using a hybrid
metaheuristic. Expert Syst Appl 36:11057–11069

3. Caraffa V, Ianes S, Bagchi TP, Sriskandarajah C (2001)
Minimizing makespan in a flowshop using genetic algorithms.
Int J Prod Econ 70:101–115

4. Chang P-C, Chen S-H (2009) The development of a sub-
population genetic algorithm II (SPGA II) for multi-objective
combinatorial problems. Appl Soft Comput 9:173–181

5. Davoudpour H, Ashrafi M (2009) Solving multi-objective SDST
flexible flow shop using GRASP algorithm. Int J Adv Manuf
Technol 44(7–8):737–747. doi:10.1007/s00170-008-1887-5

6. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and
elitist multiobjective genetic algorithm (NSGA-II). IEEE Trans
Evol Comput 6:2

7. Hung TSL, Ching JL (2003) A case study in a two-stage hybrid
flow shop with setup time and dedicated machines. Int J Prod
Econ 86:133–143

8. Jolai F, Sheikh Sh, Rabbani M, Karimi M (2009) A genetic
algorithm for solving no-wait flexible flow lines with due
windows, and job rejection. Int J Adv Manuf Technol 42(5–
6):523–532

9. Kurz ME, Askin RG (2003) Comparing scheduling rules for
flexible flow lines. Int J Prod Econ 85:371–388

10. Kurz ME, Askin RG (2004) Scheduling flexible flow lines with
sequence-dependent setup times. Eur J Oper Res 159(1):66–82

11. Leisten R (1990) Flowshop sequencing problems with limited
buffer storage. Int J Prod Res 28:2085–2100

12. Luh PB, Gou L, Zhang Y, Nagahora T, Tsuji M, Yoneda K,
Hasegawa T, Kyoya Y, Kano T (1998) Job shop scheduling with
group dependent setups, finite buffers, and long time horizon. Ann
Oper Res 76:233–259

13. McCormick ST, Pinedo ML, Shenker S, Wolf B (1989)
Sequencing in an assembly line with blocking to minimize cycle
time. Oper Res 37:925–936

14. Norman BA (1999) Scheduling flowshops with finite buffers and
sequence-dependent setup times. Comput Ind Eng 36:163–177

15. Nowicki E (1999) The permutation flow shop with buffers: a tabu
search approach. Eur J Oper Res 116:205–219

16. Pinedo M (1995) Scheduling theory, algorithms, and systems, 2nd
edn. Prentice-Hall, Englewood Cliffs

17. Ronconi DP (2004) A note on constructive heuristics for the
flowshop problem with blocking. Int J Prod Econ 87:39–48

18. Ronconi DP, Henriques LRS (2007) Some heuristic algorithms for
total tardiness minimization in a flowshop with blocking. Omega
37:272–281

19. Sawik TJ (1993) A scheduling algorithm for flexible flow lines
with limited intermediate buffers. Appl Stoch Models Data Anal
9:127–138

20. Sawik TJ (1995) Scheduling flexible flow lines with no in-process
buffers. Int J Prod Res 33(5):1357–1367

21. Taillard E (1993) Benchmarks for basic scheduling problems. Eur
J Oper Res 64:278–285

22. Wang L, Zhang L, Zheng D-Z (2006) An effective hybrid genetic
algorithm for flow shop scheduling with limited buffers. Comput
Oper Res 33:2960–2971

23. Wardono B, Fathi Y (2004) A tabu search algorithm for the multi-
stage parallel machine problem with limited buffer capacities. Eur
J Oper Res 155:380–401

24. Wittrock RJ (1988) An adaptable scheduling algorithm for
flexible flow lines. Oper Res 36:445–453

25. Yaurima V, Burtseva L, Tchernykh A (2008) Hybrid flowshop
with unrelated machines, sequence-dependent setup time, avail-
ability constraints and limited buffers. Comput Ind Eng.
doi:10.1016/j.cie.2008.09.004

26. Zandieh M, Fatemi Ghomi SMT, Moattar Husseini SM (2006) An
immune algorithm approach to hybrid flow shops scheduling with
sequence-dependent setup times. Appl Math Comput 180:111–
127

Int J Adv Manuf Technol (2012) 58:309–325 325

http://dx.doi.org/10.1007/s00170-008-1887-5
http://dx.doi.org/10.1016/j.cie.2008.09.004

	Bi-objective hybrid flow shop scheduling with sequence-dependent setup times and limited buffers
	Abstract
	Introduction
	Literature review
	Multi-objective evolutionary algorithms
	Solution representation
	Sub-population genetic algorithm II approach
	Non-dominated sorting genetic algorithm II approach
	Local searching structure

	Experimental design
	Data generation and settings
	Evaluation metric
	Computational results

	Conclusions and future works
	References

