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Abstract A correct prediction of build time is essential to
calculate the accurate cost of a layer manufactured object.
The methods presented in literature are of two types:
detailed–analysis- and parametric-based approaches. The
former require that a lot of data, related to the kinematic
and dynamic performance of the machine, should be
known. Parametric models, on the other hand, are of
general use and relatively simple to implement; however,
the parametric methods presented in literature only provide
a few of the components of the total build time. Therefore,
their performances are not properly suited in any case. In
order to overcome these limitations, this paper proposes a
parametric approach which uses a more complete set of
build-time driving factors. Furthermore, considering the
complexity of the parametric build time function, an
artificial neural network is used so as to improve the
method flexibility. The analysis of the test cases shows that
the proposed approach provides a quite accurate estimation
of build time even in critical cases and when supports are
required.
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1 Introduction

Rapid prototyping (RP) is a technology for quickly
fabricating physical models, functional prototypes and
small batches of parts, by stacking two-dimensional layered
features, directly from computer-aided design (CAD) data.
RP plays an important role in both minimising the
development time required for a new product and reducing
costs [1, 2].

One of the current tendencies is for companies which
offer rapid prototyping services to be equipped with
numerous prototyping technologies so as to satisfy the
wide range of customer needs. The various layer manufac-
turing technologies differ not only in the material used but
also in the operating principle and the modalities by which
the material is layered on each single slice of the prototype.
The cost of an object made with rapid prototyping depends
on a number of factors, some of which are easy to
determine, while some others are more closely linked to
the prototyping technology used. An important factor
which affects cost is the time employed in object
manufacturing. It affects the fixed costs of the manufac-
tured object.

Some of the most significant factors which affect build
time can be evaluated relatively easily; for example, the
volume of the material or slice number. Other factors,
however, are not so easy to predict. Such is the case of the
object complexity which also requires, in the specific case
of build time estimation, a way to be defined. The common
practice for estimating build time is to assume it to be
proportional to the total volume of the prototype. Actually,
this approach provides only one component of the total
build time. A detailed analysis of the forming tool move-
ments which need to be made in order to manufacture a
given object is necessary so as to correctly predict build
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time; nevertheless, this analysis cannot be performed by
general purpose software. It is difficult to standardise a
method for build time estimation which is independent
from the specific type of machine.

In order to solve this problem, a parametric approach,
which is based on an artificial neural network, is proposed
to estimate build time. Most of the significant factors which
affect build time are identified and then analysed. They
constitute the input factors of the neural network which is
purposely trained beforehand to estimate build time. When
using a typical parametric approach, some problems are
found both in the identification of the parametric function
and in the estimation of the coefficients of the formula. In a
neural network-based approach this task is performed at the
training stage of the network, when the weight factors are
determined. Choosing the set of training samples is a
critical step, which greatly affects the performance of the
neural network. In order to define the criteria to select the
training samples and the sample size, a controlled trial-and-
error approach is suggested. Furthermore, the method
proposed in this paper can be adapted for the build time
estimation of the main layer manufacturing technologies. It
has been tried out through a series of test cases related to
3DP and FDM technologies and the results which have
been obtained are discussed hereinafter. The chosen RP
technologies are the most different ones in terms of
parameters required to estimate build time.

2 Related works

Build time tf depends on the characteristics of the layer
manufacturing process, as well as on the prototype’s
geometry, its dimensions and the orientation in the RP
machine [3]. It is difficult to accurately calculate build
time without considering all the process parameters which
affect machine movement, including acceleration and
deceleration of the manufacturing tool (nozzle or laser
beam) [4]. Build time can be determined as the sum of the
forming time for each layer and the delay time between
the subsequent layers’ manufacture. Layer forming time
depends on the tool movements which are required to
form the layer contours and the tool path loops which are
necessary to form the internal part of the layer. In most
cases, the time required to execute a single tool path
depends on the tool path length and on the repositioning
number of the forming tool. The delay time between
subsequent layers’ deposition, called recoating time, takes
into account the time which is necessary for the cooling or
the solidification of the deposited material, the non-
productive time for the prototype’s vertical translation
and other auxiliary unproductive activities such as nozzle
cleaning.

Generally speaking, the build time of layer manufactured
objects can result from the sum of seven different
components:

tf ¼ Tc�mat þ Th�mat þ Tc�sup þ Th�sup þ Trep�mat

þ Trep�sup þ Tdelay ð1Þ
where:

Tc-mat is the total scanning time of the material contour
Th-mat is the total time for hatching material
Tc-sup is the total scanning time of the supports’ contour
Th-sup is the total time for hatching supports
Trep-mat is the total time for the repositioning of the

material deposition tool
Trep–sup is the total time for the repositioning of the

supports’ deposition tool
Tdelay is the total delay time between subsequent layers’

deposition.

Nonetheless, in the related literature, there has not yet
been introduced a convenient and general function to
estimate build time components. Specific formulas have
been defined, each of which are adapted for a specific
machine that uses a specific technology. The methods
presented in literature can be classified into two main
categories: detailed analysis- and parametric-based
approaches.

The first group includes methods that calculate the total
build time by computing the geometry through a detailed
analysis of the activities associated with the prototyping
process [4–9]. These methods can only be used if combined
with the slicing software and the tool path generator, which
are dedicated to a specific layer manufacturing technology.

If we are to develop a general purpose method for build
time estimation, the parametric approach has undoubtedly a
greater potentiality. Cheng [10] and Frank [11], with the
intent of looking for the minimal cost build direction,
propose a simple parametric approach which assumes build
time to be proportional to the slices’ number (bz/L). Xu et
al. [12] proposed a more sophisticated parametric approach
which only considers two components: layers’ deposition
time and total delay time between subsequent layers’
deposition.

tf ¼ Th�mat þ Tdelay ¼ Vmat=Lmatð Þ � ts þ bz�mat=Lmatð Þ � tw ð2Þ
where:

bz-mat prototype’s height
Lmat layer thickness
ts solidifying rate or material deposition rate in the

build time
tw delay time between subsequent layers’ deposition
Vmat volume of material to be formed.
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Formula (2) is easy to implement but it does not take
into account the complexity of the geometric model
associated with the presence of holes and with the
complexity of layers’ contours; neither does it consider
the unproductive time for the movements and the reposi-
tioning of the manufacturing tool.

Ruffo et al. in [13] introduced the bounding box volume
of the part which is to be manufactured by the selective
laser sintering as the build-time driving factor that identifies
its shape complexity. Even though the results reported in
the paper show errors less than the 13% in the build time
estimation, the method is nevertheless developed for a
specific machine and cannot be directly extended to other
technologies, especially those that require supports. In order
to overcome the typical limitations of a parametric
approach, Munguìa et al. in [14] proposed a neural
network-based model for build time estimation for selective
laser sintering using the same input parameters proposed by
Ruffo et al. in [13] (the z−height, the volume and the
bounding box of the part to be manufactured). The results
reported prove that using the neural network reduces errors
in build time estimation if compared with the traditional
parametric approach.

In order to take into account shape complexity, Campbell
et al. in [15] introduced the area to be hatched as a build-
time driving factor for the stereo lithography machine. The
authors proposed the following parametric model to
estimate build time:

tf ¼ Th�mat þ Th�sup þ Tdelay ð3Þ

The laser hatching time for an interior region and for
support is considered to be directly proportional to the area
of the region and inversely proportional to the hatch
spacing and the scanning velocity. The time delay takes
into account only the recoating time and it is assumed as a
constant value. As pointed out by the authors, the method

does not consider all the terms of build time, such as the
contour scanning time, or all the unproductive times which
add to the total delay time between subsequent layers’.

In order to quickly calculate the total hatching area of all
layers, Nezhad et al. in [16] proposed the estimator
algorithm. The validation, despite being verified only in
the hatching area estimation of two simple models, seems
to be promising.

An important build time component is associated with
the layer contour depositions. This time component is
already considered in the method proposed by Lan and
Ding in [17]. They introduce the following formula to
evaluate the build time of an object layered by a stereo
lithography machine:

tf ¼ Tc�mat þ Th�mat þ Th�sup þ Tdelay ð4Þ

The first three terms depend on the mean velocities of
contour scanning, of hatching and of supports’ scanning,
respectively. These velocities cannot be easily determined
for technologies other than the laser stereo lithography. The
first term is evaluated roughly as a linear function of the
total length contour and, for this reason, it is always
overestimated. Also in this case, the last term of the Eq. 4
only takes into account the total recoating time.

The analysis of the parametric models presented in
literature evidenced that none of the methods consider all
the important components of build time. In a particularly
competitive market, even the smallest error in build time
estimation can significantly affect build cost estimation by
producing a non-profitable or an excessive price estimation.

3 Build time driving factors

The build time driving factors here defined must be
identified from the STL standard definition of the geometric

Table 1 Sub-processes involved in typical commercial rapid prototyping technologies

Technologies Sub-processes

Material Support

Border scanning Area scanning Border scanning Area scanning

Fused deposition modelling (FDM) Yes Yes Yes Yes

Stereo lithography (SLA) Yes Yes Yes Yes

Selective laser sintering (SLS) Yes Yes No No

Laminated object manufactured (LOM) Yes No No Yes

Multi jet modelling (MJM) No Yes No Yes

Three dimensional printing (3DP) No Yes No Yes

Electron beam sintering (EBM) Yes Yes No No

Selective laser melting (SLM) Yes Yes No No
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model. In order to develop a robust build time estimator,
these parameters should be, on the one hand, independent
from each other so as to avoid cross-correlation and, on the
other hand, independent from the specific technology which
has been used to produce the prototype.

Table 1 reports the sub-processes involved in typical
commercial rapid prototyping technologies ([18–21]). In
addition, as previously evidenced, for every technology,
non-productive activities such as vertical translation and
nozzle cleaning must be considered.

As highlighted in Table 1, some technologies require the
deposition of the layers’ contours. The related time is
proportional to the sum of the contour length of each layer.
For a geometric model described by triangular facets, the
total length of the layers’ contour to be deposited is [22]:

pmat ¼

PnT
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z � nj

� �2� �r
� Sj

Lmat
ð5Þ

where:

nj unit normal vector at triangular facet jth
nT number of triangular facets.
Sj area of jth triangular facet
z model building direction.

As opposed to the expression proposed by Nezhad et al.
in [16], Eq. 5 calculates the total layers’ perimeter much

faster, but it is not suitable when the slicing is carried out
with non uniform thickness.

The time for deposition tool repositioning (Trep-mat) is a
function of the number of repositioning movements (nr-mat)
involved in hatching the internal part of the layers. This
number depends on the prototype’s orientation around the
model building direction (z) with respect to the hatching
vector (τ), which defines the direction of the tool path line
segments (Fig. 1). To estimate nr-mat, the following formula
is introduced [22]:

nr�mat ¼ 1

Hmat � Lmat

�
XnT
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z � nj

� �2� �r
� Sj � τc � nj;xy

�� ��� � ð6Þ

where:

Hmat hatching distance between two subsequent segments
of tool path (Fig. 1)

nj,xy unit normal vector at j-th triangular facet projected
onto the stratification plane

τc complementary vector on the stratification plane of
the hatching vector.

Many commercial RP technologies, such as FDM, EBM
and SLM, layer material by alternating hatching vectors

Technologies Build time driving factors

Material Support

Vmat
Lmat

bz�mat
Lmat

pmat nr-mat
Vsup

Lsup

bz�sup

Lsup p-sup nr-sup

FDM Yes Yes Yes Yes Yes Yes Yes Yes

SLA Yes Yes Yes Yes Yes Yes Yes Yes

SLS Yes Yes Yes Yes No No No No

LOM Yes Yes Yes No Yes Yes No Yes

MJM Yes Yes No Yes Yes Yes No Yes

3DP Yes Yes No Yes Yes Yes No Yes

EBM Yes Yes Yes Yes No No No No

SLM Yes Yes Yes Yes No No No No

Table 2 The influence in build
time of each of the eight driving
factors being considered when
using typically commercial rapid
prototyping technologies

FDM fused deposition model-
ling, SLA stereo lithography,
SLS selective laser sintering,
LOM laminated object manu-
factured, MJM multi-jet model-
ling, 3DP three-dimensional
printing, EBM electron beam
sintering, SLM selective laser
melting

Layer contours 

Tool path loops 
Hmat 

Hmat•nj,x-y•  

repositioning 

i-th layer 

z 

x 

y 

Lmat 

Fig. 1 Hatching distance and
deposition tool repositioning
number
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which are orthogonal in consecutive stratification layers. In
these cases, the tool repositioning number can be evaluated

as the average value of nr-mat calculated for two orthogonal
hatching directions:

nr�mat ¼ 1

2 � Hmat � Lmat

XnT
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z � nj

� �2� �r
� Sj � τ0 � nj;xy

�� ��þ τ90 � nj;xy
�� ��� � ð7Þ

Formulas (5), (6) and (7) can only be calculated once the
geometric model and the technological parameters (Lmat, τ
and Hmat) are known.

The approach used to calculate the build-time driving
factors for material stratification can also be applied to
supports’ build-time estimation, for those technologies that
require them.

Table 2 lists the eight build-time driving factors here
calculated. The same table reports whether the driving
factors affect build time for the different commercial
technologies.

These eight parameters (Vmat/Lmat, bz-mat/Lmat, pmat,
nr-mat, Vsup/Lsup, bz-sup/Lsup, psup, nr-sup) only consider the
dimensional and geometric features of the object to be
manufactured and the dimensional technological parame-
ters. The kinematic factors of the layer manufacturing

process are not taken into consideration; namely, the
hatching and moving velocity, the non-productive ma-
chine movements, acceleration and deceleration of the
manufacturing tool. All these parameters are specific for
the assigned process and are not furnished by the machine
builder. In any case, these parameters are difficult to
implement in a general purpose model of build time
estimation. In other words, it is not easy to define
exhaustive functions which represent the dependency
existing between build time components and driving
factors. A qualitative evaluation of these dependencies is
shown in Table 3 for the FDM technology, where the
letters H, M and L stand for high, medium and low
dependency, respectively. The identified parameters affect
all the build time components. Furthermore, Table 3
highlights the fact that each time component has a high

Train neural 
network 

Execute neural 
network 

Calculate build time 
driving factors 

Vmat /Lmat, bz-mat /Lmat, pmat, nr-mat

Vsup /Lsup, bz-sup/Lsup, psup, nr-sup

Analysis of the 
error

Estimated build 
time 

Data base  
(Training samples)

Geometric Model 
(STL) 

Real build time 

Layer 
manufacturing 

technology 

Improve the set of 
training samples 

Real build time 

error > tv

yes 

no end

Fig. 2 The process for build
time estimation

Tdelay Th-mat Tc-mat Trep-mat Th-sup Tc-sup Trep–sup

bz-mat/Lmat H – – – – – –

Vmat/Lmat L/M H – – – – –

pmat L L/M H M – – –

nr-mat L L/M M H – – –

Vsup/Lsup L/M – – – H – –

bz-sup/Lsup H – – – – – –

psup L – – – L/M H M

nr-sup L – – – L/M – H

Table 3 Dependencies between
build time driving factors and
build time components for FDM
technology
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dependency on a driving factor, with the exception of
Tdelay.

4 Build Time Estimation System

In the approach herein proposed the need for approximating
build time, which is a very complex and non-linear function
of the previously defined build-time driving factors, is
satisfied by using a specifically designed artificial neural
network.

Generally speaking, artificial neural networks can be
used to perform function approximations and they are
capable of generating a complete representation when only
just a part of the whole information is given. Like
biological neural networks, the artificial one consists of a
collection of units (neurons) communicating with each
other through axon connections. The artificial neural
network is an adaptive system which changes its structure
based on external or internal information that flows
through the network. The function defined by a neural
network lies on the synaptic weights that are adaptively
trained by a learning mechanism. That makes it possible to
store knowledge in such a flexible way that it is updated
when new data are available. The neural network has an
intrinsic parallel structure and its execution is very rapid.
The capability of neural networks to describe knowledge
strictly depends on their structure, on the number of nodes
and on the synaptic connections. A multi-layer feed-
forward neural network with an arbitrarily large number of
units in the hidden layers can approximate any real
continuous function [23].

The proposed approach for build time estimation, a
diagram of which is shown in Fig. 2, takes advantage of
the characteristics of artificial neural networks. The Build
Time Estimation System (BTES) can be trained with the
known build-time data of a set of sample cases estimated

for a given build direction and layer manufacturing
technology. This approach does not require that the
coefficient of a complex parametric formula should be
estimated. The capability of a neural network to reproduce
non-linear functions gives the possibility of taking account
of the complex interactions which exist between the input
factors and which are not easily predictable. In this
specific case, it means that the previously defined
kinematic factors are implicitly considered without need-
ing to be known.

This approach has an intrinsic adaptive capability; if for
a prototype the error in build time estimation is greater than
a threshold value, it is added to the set of training samples
for the artificial neural network. Therefore, the build time
estimator evolves as further historical data are acquired.

4.1 The architecture of the artificial neural network

BTES is based on a typical back-propagation artificial
neural network (ANN) with two hidden layers (Fig. 3). It
consists of eight nodes in the first layer plus a number of
nodes, for logical input (1, 0), each of which is dedicated to
a single manufacturing technology. Particular attention has
been paid to the choice of the number of nodes in the

Input layer (I) yI

…. 

……. ……. 

…. ….…. First hidden layer (FH)     

…. …. ….…. 

…. …. ….…. 

Second hidden layer (SH) 

Output layer (O)               

Fig. 3 Configuration of the
artificial neural network

Table 4 Principal technical specifications of the FDM layer manu-
facturing machine used

Company Technimold s.r.l.

Process FDM

Machine Dimension SST

Maximum working volume 203×203×205 mm

τ material and support (*) 45°

L material and support 0.254 mm

H material and support (*) 0.5 mm

(*) view figure 1
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hidden layers. In fact, there is no simple method to select an
appropriate number of neurons for the hidden layers; it
depends on the complexity of the problem and should be
set empirically [24]. With too few nodes, the network may
not converge in training, whilst with too many hidden-layer
nodes the network starts to lose generalisation ability.
Considering the aim being pursued through this work, the
best results have been obtained with 75 nodes for each
hidden layer of the neural network. The output node makes
an estimation of the build time. The activation functions
used are sigmoid–tangent for the hidden layers and linear
for the output layer.

As regards its implementation, a programme has
been written by the MATLAB Neural Network Toolbox
[25]. The performance of the neural network, when
trained with historical data, has been measured by
calculating the time percentage error (TPE), which is
expressed as follows:

TPEðiÞ ¼ ETðiÞ � TTðiÞ
TTðiÞ

����
���� � 100% ð8Þ

where, ET(i) is the estimated build time of sample i and
TT(i) is the targeted build time.

5 Training and testing of the BTES

The neural network in BTES must be trained with real
known data related to the build times of a given set of
objects that are manufactured with assigned technologies.
The training set of samples should be representative of the
correlation between each factor and the corresponding build
time components. In other words, during the training phase,
sufficient knowledge should be transferred into the neural
network for the build time estimation to be able to be
applied also to those cases for which the ANN has not been
directly trained. There is not an only way to determine how
many, and which, data items are appropriate for training a
neural network. In literature some approaches are pre-
sented, which define the minimal number of training
samples for an ANN [26].

In this work, as training samples, we have chosen
objects whose build time driving factors are in the range
of objects susceptible of prototyping, for assigned
technologies, and are as much orthogonal as possible
between them. The orthogonality of the build time
driving factors ensures the independence of the effect
of each factor on build time. The orthogonality of the
factors of the training samples makes it possible to
minimise the number of test cases which are necessary to
train the ANN. It is not possible to choose build time
factors which are completely independent. It is precisely
because of their interactions that they are so complex and
difficult to predict. Thus it is not easy to select a set of

a) test case No. 1 b) test case No. 2 

d) test case No. 4c) test case No. 3

e) test case No. 5 f) test case No. 6

Fig. 4 Test cases used to validate the proposed build time estimator

Vmat/Lmat bz-mat/Lmat nr-mat pmat Vsup/Lsup bz-sup/Lsup nr-sup

bz-mat/Lmat 0.152

nr-mat 0.144 0.339

pmat 0.128 0.444 0.478

Vsup/Lsup 0.134 0.248 0.227 0.226

bz-sup/Lsup 0.094 0.584 0.069 0.157 0.532

nr-sup 0.045 0.384 0.158 0.085 0.569 0.576

psup 0.122 0.069 0.084 0.162 0.194 0.225 0.166

Table 5 Correlation coeffi-
cients of the 16 training samples
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training objects which allows us to selectively control
each build time driving factor. In this paper, in order to
guide the selection process of orthogonal factors, the

orthogonality of the training samples is verified by
means of the following correlation function:

B Xh;Xkð Þ ¼
P
i

xh;i � xh
� �

xk;i � xk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

xh;i � xh
� �� 	2

� P
i

xk;i � xk
� �� 	2" #vuut

h 6¼ k 0 < B Xh;Xkð Þ � 1 ð9Þ

where:

xh,i∈ Xh (Xh is the array containing the values for the h-th
build time driving factor of the training samples)

xh is the mean value of Xh.

A high value of B shows that build time driving factors
(Xh, Xk) are correlated. This may entail a poor training of
the neural network which could not then be able to
discriminate the contribution of each build time factor.

Build-time driving factors are evaluated by computing
the selected geometric models, defined in STL standard,
with the original software we have developed. A first
experiment is carried out by using the FDM technology
(fused deposition modelling) as reference technology,
whose technical specifications are quoted in Table 4; eight
build time driving factors seem to be particularly suited to
take into account the sub-processes involved in prototype
manufacturing with this technology. Firstly, 16 different
samples, which identify a quite orthogonal set, have been
chosen. The relative correlation coefficients are quoted in
Table 5. Although the training samples are very different
from each other, the correlation coefficients in Table 5
evidence some dependencies. These dependencies can vary
with the set of test cases analysed. Consequently, the
training of the neural network is not carried out with an
ideal set of samples.

The ANN has been trained by using the back-
propagation training rules. The weights and biases of the
network are adjusted to minimise the sum of the squared
network errors. The initial training of the neural network
has been carried out by making use of 16 samples and it
has required 22,000 training cycles. The training process
has been interrupted for a training mean-square error less
than 10−8. The maximum TPE value of the neural network
for the 16 objects used in the training process is 3.8×
10−5%. Despite the autocorrelation existing between the
build time driving factors (Table 5), ANN reproduces quite
perfectly the build time of the prototypes used as training
examples.

16 20 24 28 32
0
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180

No. training samples

T
P

E
 [

%
]

test case No.1
test case No.2
test case No.3
test case No.4
test case No.5
test case No.6
mean values

Fig. 5 TPE of the test cases at
different levels of the ANN
training for the FDM machine

Table 6 Results obtained for six test cases (training sample size 32)
for the FDM machine

Build time [min]

Test case Real Estimated Error [%]

No.1 70 61.3 −12.43
No.2 229 198.6 13.28

No.3 63 70.1 11.27

No.4 69 77.6 12.46

No.5 558 575.5 3.14

No.6 86 99.86 16.12
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In order to check the ANN generalisation ability, the
trained network has been tested out as regards the
estimation it makes of the build times of six test samples
(Fig. 4) that have never been used before to train ANN. The
values for the build time driving factors of these test
samples are included in the range of values used during the
training process. These cases present some critical aspects
that contribute to the difficulty in predicting build time,
such as small thicknesses and holes. The build time
estimation of the six test cases has been performed by
training the ANN with different sets of training samples,
which have been obtained by adding to the initial set of
examples (16 objects) four other groups of new objects,
each group consisting of four geometric models. For each
stage of the training process (16, 20, 24, 28 and 32 training
examples) the build times of the six objects shown in Fig. 4
have been estimated and then compared with the real build
times; the results are shown in Fig. 5.

The ANN mean error decreases as the training level
increases. This means that important parts of knowledge,
concerning the determination of the build time function,
have been progressively transferred into the network.

Table 6 quotes the build time errors which have been
yielded by ANN for each test case, when 32 training
examples have been used. The results obtained show a
good performance of the proposed method, especially
when compared with the results presented in literature [5,

6, 11, 17]. These results appear to be better, considering
that the build time estimators analysed in literature are
dedicated to a specific rapid prototyping technology and
are designed to perform a detailed analysis of the forming
tool movement.

A second experiment is carried out by using the 3DP
technology (Table 7) as reference, for which the driving
factors being considered are not properly suited to the
specific deposition strategy. It is owing to the previous
considerations that a greater number of training samples
have been required (Fig. 6) to adequately train the ANN.
Furthermore, build time estimation errors appear to be more
dispersed: the mean value error is equal to 12% and the
maximum value is 20.3% (Table 8).

6 Conclusion

This paper presents a new approach to estimate the build
time of layer manufactured objects. The driving factors,
which typically affect build time in the main layer
manufacturing technologies, are identified. In order to
automatically evaluate these factors, starting from the STL
standard file of the object to be manufactured, the methods
to analyse the significant geometric features are proposed.
Therefore, and by means of a specifically designed artificial
neural network, we are able to obtain an approximation of
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Fig. 6 TPE of the test cases at
different levels of the ANN
training for the 3DP machine

Table 7 Principal technical specifications of the 3DP layer manufacturing machine used

Company Object

Process 3DP

Machine EDEN 350V

Maximum working volume 340×340×200 mm

τ material and support 0°

L material and support 0.016 mm

H material and support 60 mm (this is the width of the slice layered with one stroke by the jetting head along the y-direction)
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the build time, which is a very complex and non-linear
function of the previously defined build time driving
factors.

Particularly, the new method has been applied to
calculate the build time of some test cases that are
characterised by some critical aspects which add to the
difficulty in predicting build time. The results obtained
show a good performance, especially when they are
compared with those of the methods dedicated to specific
technologies presented in literature. The errors made in the
build time estimation of the six test cases analysed are due
to the fact that the approach being used does not perform a
detailed analysis of the activities required to manufacture an
object. For this reason, some build time components are left
out of consideration, such as the time which is necessary for
the forming tool to repose after each tool path. Other build
time components cannot be strictly evaluated but, rather,
must be assumed as medium values; for instance, the
velocity of the deposition tool is implicitly assumed to be
constant.
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