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Abstract During the past decade, polymer nanocompo-
sites have emerged relatively as a new and rapidly
developing class of composite materials and attracted
considerable investment in research and development
worldwide. An increase in the desire for personalized
products has led to the requirement of the direct
machining of polymers for personalized products. In
this work, the effect of cutting parameters (spindle
speed and feed rate) and nanoclay (NC) content on
machinability properties of polyamide-6/nanoclay (PA-
6/NC) nanocomposites was studied by using high speed
steel end mill. This paper also presents a novel approach
for modeling cutting forces and surface roughness in
milling PA-6/NC nanocomposite materials, by using
particle swarm optimization-based neural network
(PSONN) and the training capacity of PSONN is
compared to that of the conventional neural network. In
this regard, advantages of the statistical experimental
algorithm technique, experimental measurements artificial
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neural network and particle swarm optimization algo-
rithm, are exploited in an integrated manner. The results
indicate that the nanoclay content on PA-6 significantly
decreases the cutting forces, but does not have a
considerable effect on surface roughness. Also the
obtained results for modeling cutting forces and surface
roughness have shown very good training capacity of the
proposed PSONN algorithm in comparison to that of a
conventional neural network.
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1 Introduction

Recent researches on polymer-layered silicate nano-
composites have shown remarkable improvement of
tensile modulus and tensile strength [1, 2]. The
substantial improvements in mechanical, thermal, and
physical properties of polymer-layered silicate nano-
composites have widened the use of these polymers in
industry. In the late 1980s, the Toyota Motor Company
commercialized a timing belt cover made from nylon-6/
nanoclay (NC) composites for one of its car models
demonstrating that thermoplastic nanocomposites are one
of the most promising materials to use in domestic and
industrial applications [3]. More recently, researchers
Kojima et al. [4] and Kato et al. [5] showed that for
nylon-6/MMT nanocomposites very small amounts of
layered silicate loadings, approximately 5 wt.%, resulted
in pronounced improvements of thermal and mechanical
properties.
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As a result of nylon-6/nanoclay composite properties
and potential applications, there exists a strong need to
understand the manufacturing processes, particularly the
machining of these nanocomposite materials. An increase
in the desire for personalized products has led to the
need for the direct machining of polymers for personal-
ized products. The production of personalized products
depends heavily on the types of equipment being used,
respective technologies, and the selection of various
types of materials. The ability to machine soft materials
such as polymers offers distinct advantages for produc-
ing personalized soft consumer products, using direct
machining [6]. But the machining of polymers often
presents challenges to engineers in terms of close
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Table 1 Mechanical and

2
thermal properties of PA-6 and Impact strength (KJ/m?)

Tensile modulus (Gpa)

Tensile strength (Mpa) NC content (phr)

different nanocomposites
40.027

37.4231
35.7949

2.797 76.44
3.333 87.039
3.548 88.492

tolerances, their unusual geometry, and softness, which
means that it behaves differently as compared with
conventional metal cutting [7].

The material properties significantly affect the success
(or failure) of the machining operation. Surface roughness
and specific cutting force are two important criteria used for
evaluating the machinability of a composite material. These
properties and other characteristics of the work are
summarized in terms of its machinability, which indicates
the relative ease to machine a given material using
appropriate tooling and cutting parameters. Several criteria
may be used to evaluate machinability, but the most
important are tool life, cutting forces, and surface roughness
[8]. The study of the dynamics of cutting forces and surface
roughness is critical in any machining process for the
proper planning and control of the machining operation and
for the optimization of the cutting conditions aiming to
reduce production costs and time. Cutting force analysis
plays a vital role in studying the various characteristics of a
machining process, for instance, the dynamic stability,
positioning accuracy of the tool, and roughness of the
machined surface [9].

Surface roughness on a nanocomposite material, as for
other materials, is also contributed by tool geometry and
material properties, cutting kinematics, and cutting con-
ditions [10]. The measurement of surface roughness is
used to determine the surface quality of the machined
surfaces.

There is explicit information available on the machining
of metals, whereas knowledge regarding the machining of
polymers and their nanocomposites is limited. In recent
years, there are few works on machining of polymers
composites in milling and turning operations. Paulo Davim
and Mata present an experimental study on the cutting
process for polyamides PA 6 and PA 66-GF30 (reinforced
with 30% glass fiber). In another work, Davim et al. studied
the machinability of PA 66 with and without 30% glass
fiber reinforcing, when precision turning at different feed
rates and using four distinct tool materials [11, 12]. Dhokia
et al., in an initial attempt, worked to extract information
about the machining of soft materials with a focus on
defining the optimum machining parameter for a machined
polypropylene product. In another work, they presented a
predictive model using a design of experiments strategy to
obtain optimized machining parameters for a specific

surface roughness in ball-end machining of polypropylene
[6, 13].

Most of the time, it is very difficult to find the related
analytical or empirical expressions and proper coefficients
to calculate the optimal cutting conditions for the consid-
ered material and tool. Recently, analytical and empirical
models have been developed by using neural network in
order to calculate surface roughness for several materials
[14, 15]. Also, the neural network model coupled with the
genetic algorithm (GA) is proposed to determine the
optimal machining for surface roughness [16, 17]. In recent
years, a new evolutionary algorithm (EA) called particle
swarm optimization (PSO) was developed. The PSO has
fewer parameters and is easier to implement than the GA
methods. The PSO has also shown a faster convergence rate
than the other EAs for solving five optimization problems
[18]. Successful applications of PSO to some optimization
problems such as function minimization [19, 20] and
artificial neural network design [21, 22], have demonstrated
its potential.

In an initial work, this paper investigates the
influence of the effects of nanoclay and cutting param-
eters on machinability of polyamide-6 (PA-6) nano-
composites in milling. To this end, the influence of
cutting parameters (spindle speed and feed rate) on the
cutting force and the surface roughness (R,) of nano-

Fig. 3 Actual machining operation
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Fig. 4 Surface roughness measurement

composite materials using high speed steel (HSS) end mill
are examined. Then cutting force and surface roughness
are separately modeled by using particle swarm
optimization-based neural network (PSONN). The capac-
ity modeling of PSONN has been compared to that of the
conventional neural network (NN) (backpropagation based
on Levenberg—Marquardt algorithm).

The codes of PSONN are written in visual C++ language
and optimal conventional neural network architecture is
designed using MATLAB Neural Network Toolbox.

2 Particle swarm optimization-based neural network

Particle swarm optimization is a population-based stochas-
tic optimization algorithm which has been proposed by
Eberhart and Kennedy in 1995 [23]. It is considered to be
capable to reduce the ill effect of the backpropagation (BP)
algorithm of feedforward ANNs (e.g., very slow conver-
gence speed in training, ease to get stuck in a local
minimum, etc.), because it does not require gradient and
differentiable information [18]. Also, it has proven to be a
good competitor to the GA when it comes to optimization
problems [19].

In PSO algorithm, each single solution is a “particle”.
All particles have fitness values, which are evaluated by
the fitness function to be optimized, and have velocities,

Fig. 5 Schema of measuring of
the 3 orthogonal components of
cutting force in the workpiece
(F,, F,, and F.) m
0
i

_

 —
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which direct the flying of the particles. The particles are
flown through the problem space by following the
current optimum particles. PSO is initialized with a
group of random particles (solutions) and then searches
for optimal by updating generations. In one iteration,
each particle is updated by following two best values.
The first one is the best solution (fitness) achieved so far
(individual best position). Another best value tracked by
the particle swarm optimizer, is the best value, obtained
so far by any particle in the population (global best
position); so, the velocity and position of the obtained
optimum solution (particle) is updated during the itera-
tive process. The stop criteria are reaching the maximum
iteration number or satisfaction of the minimum error
condition.

Although usually conventional PSO can find good
solutions rapidly, it may be trapped in local minimum and
fail to converge to the best position [18]. So, in recent
years, some investigations have been done to deal with this
problem [24, 25].

Suppose that the search space is n dimensional, the
particles of the swarm can be represented by an n
dimensional vector X; = [x;1,Xp, ...,xm]T €S, and the
velocity of this particle can be represented by n dimen-
sional vectorV; = [vil,viz,...,v,»,,}T € S, where S is the
searching space. The fitness of each particle can be
evaluated according to the objective function of the
optimization problem. P;(t) = [Py, Pn, ..., Py is the last
best position of the particle ‘i’, it is noted as its individual
best position. The global best position isP,(¢) and the new
velocity of particle will be assigned according to the
following equations:

Vil + 1) = @.0i(t) + v (Pi(t) — Xi(1))

+ c2.12.(Py(1) — Xi(1)) (1)

Where c; and ¢, are acceleration parameters, w represents
the inertia weight which decreases linearly from 1 to near
0 while training, and r; and r, are random numbers
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Table 2 Levels of variables

Variables Level 1 Level 2 Level 3
NC content (phr) 0 2 6
Spindle speed (rpm) 630 1,250 2,500
Feed rate (mm/tooth) 0.03 0.07 0.11

ranging between 0 and 1. The velocities of the particles on
each dimension are clamped to a maximum velocity: Vpax.
The new position of the particle “/” is calculated by the

following equation:

Xi(t+1) =X(0) + Vi(t + 1) (2)

Figure 1 illustrates the flowchart of the PSONN algorithm.
As shown in this figure, the first step is initialization, 7, cl,
c2, Vmax, and tolerance. These parameters have very
important rules to promote the network’s efficiently.
After that, the first particle position vectors (X) and
velocity vectors (V) were initialized randomly (between
0 and 1) for each particle. And two of them were
considered as P,(f),and P(¢) (randomly). Then according
to feed forward network inputs, outputs for layers and
mean square error (MSE) were calculated. Also P,(7),and
Pi(t) were determined again. After that, according to
Egs. | and 2, particle velocities and particle positions
were updated.

3 Experimental procedure

4 Material

The PA6 used in this work was B5 from BASF. The
nanofiller was Nanofil®9 provided by Southern Clay
Products which is organically modified montmorillonite
with good adhesion to PA-6. PA-6 pellets and NC
powder which remained at 90°Cfor 12 h and were mixed

with a high speed mixer at dry conditions. Nanocompo-
sites with 2 and 6 phr nanoclay were prepared by melt
mixing using a lab scale corotating twin-screw extruder
(ZSK25, L/D=40). The screw configuration used includes
two high mixing zones using kneading elements and
enhances dispersive and distributive mixing in the system
and the extruder was equipped with a circular die. Then,
dry extruded pellets were injection molded into standard
(ASTM D 638) tensile bars using a 3-ton Engel injection
molding machine. After molding, the specimens were
sealed and placed in a vacuum desiccator for a minimum
of 24 h prior to mechanical testing, under dry conditions.
Figure 2 shows the effect of nanoclay content on the yield
strength for the two different nanocomposite samples and
pristine PA-6. The mechanical and thermal properties of
PA-6 and different nanocomposites are indicated in
Table 1.

4.1 Tool and machine tool

The experiments were performed in a Deckel Maho
DMU 70 V vertical axis computer numerical control
(CNC) milling machine with a maximum spindle speed of
3,150 rpm and 3,000 mm/min maximum feed rate. The
machine had a 5.5 KW spindle motor. The actual
machining operation is illustrated in Fig. 3. The CNC
part programs are created by employing TopSolid CAD/
CAM software on a personal computer, Intel Pentium IV
at 3.2 GHz. The experiments have been carried out in
nanocomposite plates with 3 mm of thickness, using a
two flute HSS end mill, with 3 mm diameter. HSS end
mill was manufactured according to standard HSS end
mills [26].

4.2 Surface roughness measurement

Hommel Tester T8000 of Hommelwerke firm was used
in the experimental work to measure surface roughness.
The tools measure surface roughness with probes,
measure, and control in appropriate length and circum-
ferences. To do this, three small regions on the machined
surface are determined for measurements. Measurements

Table 3 ANOVA for the cutting

force (F,) Source DF Sum of square Variance F F o=5% P
Feed rate (mm/tooth) 2 2,212.34 1,106.17 156.09 3.3690 59.37
Spindle speed (rpm) 2 1,177.88 588.94 83.11 3.3690 31.61
NC content (phr) 2 194.34 97.17 13.71 3.3690 5.21
Error 20 141.73 7.09 1.9898 3.80
Total 26 3,726.29 100

@ Springer



54

Int J Adv Manuf Technol (2011) 57:49-60

Table 4 ANOVA for surface roughness (R,)

Source DF Sum of square Variance F F a=5% P
Feed rate (mm/tooth) 2 98.233 49.177 122.40 3.3690 91.95
Spindle speed (rpm) 2 0.481 0.240 0.60 3.3690 0.45
NC content (phr) 2 0.087 0.044 0.11 3.3690 0.08
Error 20 8.025 0.401 1.9898 7.51
Total 26 106.827 100

in these regions are conducted and the average value is
recorded as the R,. In Fig. 4, the used surface roughness
measurement tool is shown. The tracing velocity and the
cut-off lengths were fixed at 0.5 mm/s and 2.5 mm,
respectively.

4.3 Cutting force measurement

In order to measure cutting forces, the workpiece was
mounted on a Kistler 9255B three-component piezoelectric
dynamometer, which, in turn, was mounted onto the
machine’s table (see Fig. 5). Data acquisitions were made
through piezoelectric dynamometer by interface RS-232 to
load three Kistler 5011B amplifiers and to the PC using the
appropriate software Dynoware Kistler®.

Single-pass, linear cuts were executed according to the
factor levels of each repetition. The minimum, maximum,
and mean values were also calculated. The maximum value
of each component was selected as most representative. The
value of cutting force (F,,) was determined according to the
following equation:

Fy = \[F2+ F2 + 2 (3)

where F,, F), and F; are the three orthogonal components
of cutting force in N.

4.4 Design of experiments

In this work, 27 samples based on full factorial design of
the experiments employing three-level cutting parameters
and three-level nanoclay content are given in Table 2. A
constant depth of cut of 1 mm was used using HSS end mill.
5 Results and discussion

The results of milling tests allowed the evaluation of the

PA-6/nanoclay nanocomposites, using HSS end mill. The
machinability was evaluated by F), and R,.

@ Springer

5.1 Analysis of variance

The observed values of F,, and R, were used to determine
the significant factors influencing the machining process.
The significant parameters influencing the cutting force and
surface roughness were found using the analysis of variance
(ANOVA) procedure. Tables 3 and 4 show the ANOVA for
cutting force and surface roughness, respectively. From
these calculations, it is inferred that the feed rate has more
influence on surface roughness as compared to cutting
force. Further, it is also inferred that nanoclay content has
greater influence on cutting force as compared to surface
roughness.

5.2 Influence of the cutting parameters on the F,,

In Figs. 6, 7, and 8, the evolution of the cutting forces F,,,
can be seen with the feed rate for the different spindle speed
for nanoclay content, of 0, 2, and 6 phr, respectively. From
these figures, it can be realized that the F), increases with
feed rate and decreases with the spindle speed. As can be
seen in Fig. 9, the slope of decreasing the forces recorded
when milling the PA-6/nanoclay nanocomposites was con-
siderably lower at high spindle speed. This fact may be
related to the semiductile behavior of the PA-6 (Table 1),
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Fig. 6 Cutting force (F),) as function of cutting parameters for pure
PA-6
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Fig. 7 Cutting force (F,,) as function of cutting parameters for PA-6,
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which would cause the softening of the work material on the
rake face of the tool and adhesion of the work material on
the rake face of the tool, which tends to slightly increase
cutting forces. The burrs observed at the end of cutting at
high spindle speed show evidence of melting of the material.

5.3 Effect of NC content on the cutting force F,

Figure 10 shows the relationship between nanoclay content
and cutting force F), at different spindle speeds. As shown
in this figure, the forces recorded when milling the PA-6/
nanoclay nanocomposites were considerably lower com-
pared to the pure polyamide. While it was seen in
machining metals and polymer composites, that cutting
forces increase with increasing the material hardness, the
reverse effect was seen for nanocomposite samples, which
can be attributed to the ductile behavior of the PA-6
nanocomposite.

For further elaboration, we use the proposed methodol-
ogy which is based on the definition of the metal cutting
process proposed by Astakhov [27]. According to this
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Fig. 8 Cutting force (F,,) as function of cutting parameters for PA-6,
6% nano clay
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Fig. 9 Cutting force (£),,) as function of spindle speed for different
material, feed rate 0.03 mm/rev

model, the power balance in the cutting system can be
written as following equations:

P. ZFCVZde—‘rPfR +PfF+Pch (4)
and the cutting force is calculated as:

:de+P/R+PjF+Pch
v

F,

(5)

where, P,q is the power spent on the plastic deformation of
the layer being removed, P is the power spent at the tool—
chip interface, Py is the power spent at the tool-workpiece
interface, and Py, is the power spent in the formation of
new surfaces.

As Fig. 11 shows, the elastic modulus increases
monotonically by increasing the NC content, and the elastic
modulus of the sample with NC content of 6 phr shows an
26% increase compared to pristine PA-6.

Layered silicate has proved to contribute to properties
improvement of the polymers in which they are dispersed.
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Fig. 10 Cutting force (F,) as a function of nanoclay; feed rate=
0.03 mm/rev
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Amongst those properties, unexpected enhancement in
modulus of nanocomposites and fracture toughness decre-
ment at low filler contents has drawn a lot of attention. The
Young’s modulus expressed as the stiffness of a material at
the start of a tensile test has shown to be strongly improved
when nanocomposites are formed.

The modulus of PA-6 nanocomposites is well known to
be highly sensitive to the degree of exfoliation, since
greater level of exfoliation lead to higher aspect ratio of
filler particles which translates into better improvement of
tensile modulus. The large increase in tensile modulus of
nanocomposites with low NC content is an indication of the
occurrence of exfoliation and intercalation and large
interfacial area between the polymer and silicate layers
[28]. The ability of dispersed silicate layers to increase the
Young’s modulus of PA-6 nanocomposites can be correlat-
ed to the average length of the layers, thus to the aspect
ratio of the dispersed nanolayers. This increase of elastic
modulus by increasing the NC content, results in decrease
of plastic deformation of the layers of material being
removed in cutting.

Power spent due to the friction at the tool—chip interface
is directly proportional to the average shear stress at the
tool—chip contact and the tool—chip contact length. As can
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Fig. 12 Effect of nanoclay content on the energy at break
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Fig. 13 Surface roughness (R,) as function of cutting parameters for
pure PA-6

be seen in Table 1, by increasing the NC content, the
ultimate tensile strength of the different nanocomposite
samples do not change effectively, but by increasing the NC
content, the brittle behavior of the nanocomposite, increase
monotonically. This brittle behavior decreases the tool—chip
contact length and tends to decrease power spent due to
friction at the tool—chip interface.

The power spent in the formation of new surfaces is
proportional to the energy of fracture per shear plane. As
it is illustrated in Fig. 12, increasing the NC content
results in lower value for the fracture toughness parameter.
It is believed that lower mobility of polymer chains due to
intercalation in the gallery spacing of the rigid silicate
layers results in lower toughness at higher NC contents.
The reinforcing effect of NC is probably due to the
incorporation of clay platelets in the PA-6 matrix. In
addition, the decrease in elongation and break energy with NC
content indicates that the resulting nanocomposites show
brittle behavior. This decrease of fracture toughness parameter
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F-S
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Fig. 14 Surface roughness (R,) as function of cutting parameters for
PA-6 2% nanoclay
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Fig. 15 Surface roughness (R,) as function of cutting parameters for
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by increasing the NC content, results in decrease of the power
spent in the formation of new surfaces.

5.4 Influence of the cutting parameters on the surface
roughness

In Figs. 13, 14, and 15, the evolution of the R,, can be seen
with the feed rate for different spindle speed of nanoclay
content, of 0, 2, and 6 phr respectively. Figures 13, 14, and 15,
show that the value of R, increases when the feed rate does.

R, decreases when the spindle speed increases. This fact
may be related to ductile behavior of the PA-6 (Table 1),
which would cause softening of the work material on the
rake face of the tool and decrease shear stress of the
material which results in easier cutting and better surface
finish. So with a higher spindle speed and a lower feed rate,
it is possible to obtain a better surface finish.

5.5 The effect of NC content on surface roughness

In Fig. 16, the evolution of the surface roughness R, can be
seen with nanoclay contents at different spindle speeds. It
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Fig. 16 Surface roughness (R,) as a function of nanoclay, feed rate=
0.03 mm/rev

can be seen that nanoclay content does not have consider-
able influence on surface roughness. This may be related to
the low shear stress of the PA-6 and its nanocomposites.
However, shear stress of nanocomposites is lower than pure
PA-6 but they are very low versus the HSS tool that can
affect surface cutting.

6 Modeling
6.1 Surface roughness modeling

The training subset includes 24 groups or 90% of the
experimental data and the testing subset includes three
groups or 10% of the data (not used in training) which
were selected randomly out of each group in all parts.
In order to find out the best possible network for
surface roughness, different architectures (not presented
in the paper) and nine combinations of training—testing
sets based on cross-validation method (by using
PSONN) were tested. In cross-validation algorithm, the
dataset is divided into a number of equal sized
divisions. For each of these, one division is used for
the test data, and the others are used for training and
selection. This allows the training algorithm to use
virtually the entire dataset for training. In this study 27
datasets are divided to nine equal groups (three data in
each group) and each group was used as test data and
remained groups (24 data) were used for training.
Table 5 shows the results of cross-validation in surface
roughness modeling.

Finally, the PSONN model with 3-7-1 architecture
was selected for surface roughness modeling. More-
over, the inertia weight (w) linearly decreases from 0.9
to 0.02, cl and c2 are equal to 2.1 and the number of
particles in each subspace is 35. The maximum and
minimum velocity values are 6 and —6, respectively (cf.

Table 5 Results of cross-validation in surface roughness modeling

Test numbers Training (error) Testing error

7-11-27 0.031 0.032
4-10-22 0.029 0.036
9-12-23 0.032 0.034
8-14-21 0.026 0.037
2-16-25 0.021 0.027
3-17-20 0.038 0.035
5-13-24 0.032 0.028
6-19-15 0.027 0.031
1-18-26 0.026 0.033
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Table 6 Comparison of neural networks predictions with experimental measurement (R,) for the test set

Test Spindle speed Feed rate (mm/ NC content Experiment R, BP Error PSONN  Error
number (rpm) tooth) (phr) (pm) (NN) (%) (%)

2 630 0.07 0 4.51 3.484 14.40 4231 5.90
16 2,500 0.03 2 2.17 1.981 8.70 2.087 3.82
25 2,500 0.03 6 2.15 2.195 2.09 2.113 1.72

Egs. 1 and 2). The training and checking MSE are
obtained as 0.021 and 0.0269, respectively, after 277
iterations. The Bayesian regularization backpropagation
based on Levenberg—Marquardt algorithm selected for
training the backpropagation-based NN. It minimizes a
combination of squared errors and weights, and then
determines the correct combination so as to produce a
network that generalizes well. The backpropagation-
based NN model with 3-5-1 architecture is selected.
MSE for training and testing data are obtained as 0.047
and 0.0325, respectively, after 322 epochs. Table 6 shows
the comparison of neural networks predictions with
experimental measurement (R,) for the test set during
testing the PSONN and backpropagation-based NN. In
particular, PSONN has demonstrated improvement in
training average error as compared to the backpropaga-
tion algorithm.

The results demonstrated that PSO algorithm has
better performance and faster convergence speed than
BP algorithm. The reason is that in PSONN a local
gradient descending method is used to search around
global optimum. Beside in comparison with BP,
PSONN has some attractive characteristics. It retains
previous useful information and encourages construc-
tive cooperation and information sharing between
particles, which enhance the search for a global
optimal solution.

Table 7 Results of cross-validation in cutting forces modeling

Test numbers Training (error) Testing error

3-18-22 0.081 0.317
4-14-20 0.075 0.276
8-15-19 0.102 0.327
1-16-27 0.085 0.305
9-12-24 0.117 0.298
7-11-25 0.085 0.253
6-17-21 0.069 0.245
2-10-27 0.067 0.321
5-13-23 0.075 0.279
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6.2 Cutting force modeling

For cutting force modeling, the training subset includes 24
groups of the experimental data and the testing subset
includes three of the data (not used in training) which were
selected randomly out of group in all parts. In order to find
out the best possible network for cutting force modeling,
different architectures (not presented in the paper) and nine
combinations of training—testing sets based on cross-
validation method (by using PSONN) were tested. Table 7
shows the results of cross-validation in cutting force
modeling.

Finally, the PSONN model with 3-4-3-1 architecture
selected, the inertia weight, is linearly decreases from 0.9 to
0.01, c1 and c2 are equal to 2 and the number of particles in
each subspace is 30. The maximum and minimum velocity
values are 7 and —7, respectively (cf. Egs. 1 and 2). The
training and checking MSE are obtained as 0.069 and
0.245, respectively, after 350 iterations. The Bayesian
regularization backpropagation based on Levenberg—Mar-
quardt algorithm was selected for training the
backpropagation-based NN. It minimizes a combination of
squared errors and weights, and then determines the correct
combination so as to produce a network that generalizes
well. The backpropagation-based NN model with 3-4-1
architecture is selected. The MSE for training and testing
data are obtained as 0.953 and 2.54, respectively, after 519
epochs. Table 8 shows the comparison of neural networks
predictions with experimental measurement (F,,) for the test
set during testing the PSONN and backpropagation-based
NN. In particular, PSONN has demonstrated improvement
in training average error as compared to the backpropaga-
tion algorithm.

In neural network concept, overfitting likely occurs
when trying to determine more fitting parameters than the
number of data pairs. Sometimes overfitting has definitely
occurred when trying to determine more fitting parameters
than the number of data pairs. As can be seen in the errors
of testing and training in cutting forces modeling an
overfitting is obvious for both models while it cannot be
seen in the results of surface roughness modeling. The
reason is that in cutting force modeling case, the relation-
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Table 8 Comparison of neural networks predictions with experimental measurement (F,,) for test set

Test Spindle speed Feed rate (mm/ NC content Experiment F, BP Error PSONN  Error
number (rpm) tooth) (phr) (N) (NN) (%) (%)

6 1,250 0.11 0 42.7 43.87 2.02 42.24 1.74
17 2,500 0.07 2 17.1 15.78 7.13 17.32 1.88
21 630 0.11 6 47.9 45.47 4.85 48.04 0.50

ship between the output and inputs in a neural network is
more complex and nonlinear than the surface roughness,
but result shows that PSONN could successfully adjust
itself with the complex data and had less overfitting than
backpropagation algorithm.

7 Conclusions

Based on the experimental results presented, the following
conclusions can be drawn from milling PA-6/NC nano-
composites using HSS end mills:

» Cutting force increases when the feed rate increases and
cutting force increases when the spindle speed
decreases, i.e., at a higher spindle speed and a lower
feed rate, cutting force is lower.

* Pure PA-6 has a higher cutting force in comparison
with PA-6 nanocomposites. The slope of decreasing
forces is being decreased with increasing the nano-
clay content

* Surface roughness increases when the feed rate
increases and surface roughness decreases when the
spindle speed increases; with a higher spindle speed and
a lower feed rate it is possible to obtain a better surface
finish.

* The addition of nanoclay to the PA-6 significantly
decreases the cutting forces, but does not have any
considerable effect on surface roughness.

* Feed rate is the cutting parameter that presents the
highest statistical and physical influence on surface
roughness and on cutting force.

This study has also discussed the application of PSO-
based NN, for determining modeling of cutting parame-
ters leading to prediction cutting force and surface
roughness values in the milling of PA-6/NC nanocompo-
sites. The results have been compared to the convention-
al neural network algorithms and it demonstrated that
PSO algorithm had better performance and faster con-
vergence speed than BP algorithm. Beside in comparison
with BP, PSONN retains previous useful information and
encourages constructive cooperation and information

sharing between particles, which enhance the search for
a global optimal solution. The results showed that the
PSONN can be used reliably, successfully and very
accurately for the modeling of milling of PA-6/NC
nanocomposites operation.
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