Int J Adv Manuf Technol (2011) 55:1111-1122
DOI 10.1007/s00170-010-3120-6

ORIGINAL ARTICLE

A novel two-stage genetic algorithm for a mixed-model
U-line balancing problem with duplicated tasks

Seyed Mahmood Kazemi - Reza Ghodsi -
Masoud Rabbani - Reza Tavakkoli-Moghaddam

Received: 7 February 2010 /Accepted: 13 December 2010 /Published online: 7 January 2011

© Springer-Verlag London Limited 2011

Abstract A widespread supposition on mixed-model
assembly line-balancing problems assigns a task, which
is shared between two or more models to a single
station. Bukchin and Rabinowitch (European Journal of
Operational Research, 174:492-508, 2006) relaxed the
restriction for mixed-model straight-line assembly line
problems and allowed tasks common to multiple models
to be assigned to different stations, called task duplication.
In this paper, considering the same relaxation but for
mixed-model U-shaped assembly lines, a novel genetic
algorithm (GA) approach for solving large-scale problems
is developed. Although superiorities of U-shaped assem-
bly lines over straight lines have been discussed in several
articles, this paper makes the advantage more tangible by
providing a quantitative example. This paper also presents
a novel two-stage genetic algorithm which is fittingly
devised for solving the new proposed model. In order to
evaluate the effectiveness of the GA, one small-scale and
one medium-scale problem are solved using both the
proposed GA and Lingo 8.0 software, and the obtained
outcomes are compared. The computational results indi-
cate that the GA is capable of providing high-quality
solutions for small- and medium-scale problems in
negligible central processing unit (CPU) times. It is worth
mentioning that, for large-scale problems, such as Kim
and Arcus test problems, no analogous results for those
obtained by our proposed GA exist. To conclude, it can be
said that the proposed GA performs well and is able to
solve large-scale problems within acceptable CPU times.

S. M. Kazemi - R. Ghodsi (<)) - M. Rabbani -

R. Tavakkoli-Moghaddam

Industrial Engineering Department, University of Tehran,
Tehran, Iran

e-mail: ghodsi@ut.ac.ir

Keywords Assembly line-balancing - Mixed-model U-line
balancing - Task duplication costs - Two-stage genetic
algorithm

1 Introduction

An assembly line is a productive line in which units move
continuously through a number of successive stations by
some kinds of a transportation system. These stations are
usually aligned in a serial manner. An assembly line-
balancing problem (ALBP) consists of finding a feasible
line balance (i.e., assigning tasks to stations) with respect to
some objectives such that the precedence constraints along
with additional restrictions are satisfied. Figure 1 shows a
precedence diagram with 22 tasks. A rectangle represents a
task; the numbers within the rectangles are the task
numbers, and an edge connecting two tasks represents a
precedence relation between the tasks. Since the installation
of an assembly line is a long- to mid-term planning problem
and usually needs considerable capital investments, it is
necessary to design and balance such a system so that it
performs at the highest possible efficiency. According to
variety of products, different types of assembly lines are
recognized as shown in Fig. 2.

1.1 Single-model line

If only one product or several products with insignificant
variations in setup times and performance task times (e.g.,
compact disks or drinking cans) are assembled, the
assembly system can be considered like a single-model
line. Bowman [4] developed two different linear-
programming approaches to the assembly line-balancing
problem. Gutjahr and Nemhauser [15] developed an

@ Springer

1112

Int J Adv Manuf Technol (2011) 55:1111-1122

Fig. 1 An example of a
precedence graph

algorithm based on finding the shortest route in a finite
directed network for solving the single-model ALBP. The
optimal solution can be obtained by finding any path from
the starting to terminating node containing a minimal
number of arcs. Patterson and Albracht [24] presented a
zero—one integer programming formulation with the Fibo-
nacci search. Betts and Mahmoud [3] developed a branch-
and-bound algorithm to obtain an optimal solution for the
ALBP. A novel tabu search algorithm for solving a simple
assembly line-balancing type-1 problem and also a real-life
version of the problem is presented by Lapierre et al. [20].
Kim et al. [19] considered five various objectives and
presented genetic algorithms to solve ALBPs with five
objectives, namely (1) minimizing number of workstations,
(2) minimizing cycle time, (3) maximizing workload
smoothness, (4) maximizing work relatedness, and (5) a
multiple objective with the foregoing objectives 3 and 4.
Rekiek et al. [25] focused on the line-balancing and
resource planning. In Section 2, we present a simple ALBP
formulation and a review of existing methods. We also
investigate a number of optimization methods, such as
linear programming, dynamic programming, branch-and-
bound, ranked positional weight, reversed-ranked positional
weight, COMSOAL, and genetic algorithms.

1.2 Mixed-model line
In a mixed-model system, setup times between models can
be ignored because, in general, it is assumed that all models

are variations of the same base product. The mixed-model
ALBP involves the assignment of tasks of all models to the

JVAVAVAVAYAYAYAVAAVAVAVAVAYA

a. single model line

ANECESASCACEAMAA

b. mixed-model line

AANEDICEECETY

c. multi-model line

Fig. 2 Different types of assembly lines

@ Springer

workstations in a way that some performance measures are
optimized. Avoiding work overload in mixed-model pro-
duction systems entails an investigation into both balancing
and sequencing problems at the same time and that is why
some authors have considered both planning problems
simultaneously. However, because of the existing differ-
ences between planning horizons of balancing and sequenc-
ing problems (the former is a long- to mid-term planning
problem whereas the latter has a short-term planning
horizon), this simultaneous approach is only practical under
very special conditions.

Thomopoulos [30] focused on smoothing all the work-
stations, so that each station has an equal amount of work
on a daily or shift basis. This paper shows how mixed-
model assembly line-balancing algorithms can be adapted
for obtaining smoother model assignments and how the
procedure applies to assembly lines operated on a batched
basis. Gokcen and Erel [12] developed a binary integer
programming model for mixed-model assembly line-
balancing problem. The model employs some properties
that prevent the fast increase in the number of variables.
Erel and Gokcen [11] used a shortest route formulation for
a mixed-model ALBP. This formulation was based on the
algorithm proposed by Gutjahr and Nemhauser [15].
Bukchin et al. [6] concentrated on mixed-model assembly
line design in a make-to-order (MTO) environment and
presented a mathematical formulation considering the
differences between that model and traditional models. A
heuristic is developed to minimize the number of stations
for a fixed cycle time. Noorul Haq et al. [23] used a hybrid
genetic algorithm (GA) approach to mixed-model assembly
line-balancing type-1 problem (i.e., minimizing a number
of workstations). In this paper, two different models of a
base single product are considered, and the precedence
relations of the models use a combined precedence
diagram. In the proposed GA, a modified ranked positional
weight (MRPW) method is used to generate the initial
solutions for GA.

An ordinary assumption on a mixed-model ALBP is to
assign a task that is common to multiple models to a single
station. Bukchin and Rabinowitch [7] relaxed the restriction
and allowed the assignment of tasks that are common to
different models to different stations. They called the

Int J Adv Manuf Technol (2011) 55:1111-1122

1113

situation as task duplication. They considered two cost
elements in the objective function, namely (1) the station
cost that is the cost proportional to the number of stations in
the line and (2) the task cost that captures the additional
cost of duplication.

1.3 Multi-model line

In multi-model production systems, the degree of similar-
ities between products is not high enough to allow setup
times to be ignored. In such kind of assembly lines, the
analysis of setup times and costs is to be considered, and a
short-term lot-sizing problem arises which groups models
to batches and determines their assembly sequence [5].
Recently, as a consequence of implementing just-in-time
(JIT) production principles, many factories are switching
their assembly lines from traditional straight lines to U-
shaped production lines. In the U-line balancing problem,
tasks can be assigned to stations either after all its
predecessors or all of its successors have been assigned
previously. Miltenburg and Wijngaard [22] introduced and
modeled the U-shaped ALBP and developed a dynamic
programming procedure for solving the problem. They also
addressed some advantages of U-lines by comparison with
traditional straight lines, such as (1) improvement of
visibility and communications, (2) multi-skilled operators,
(3) simplicity of rebalancing the line, and (4) reduction in
number of stations. Ajenblit and Wainwright [1] applied an
order-based (GA) to the U-line balancing type-1 problem,
in which a chromosome of length n is a permutation of
1,2,....,n and each chromosome of length n shows a specific
task-ordering of n tasks. Scholl and Klein [27] proposed the
branch-and-bound procedure ULINO for solving different
versions of the U-line ALBP. Gokcen et al. [13]
presented a shortest route formulation of a simple U-type
ALBP. The node generation process used in this paper is
similar to the node generation process developed by Gutjahr
and Nembhauser [15] for the traditional single-model ALBP.
Gokcen and Agpak [14] developed a goal programming
model for the simple U-line balancing problem. They
claimed that their approach was the first multi-criteria
decision making (MCDM) approach to the U-line version.
Chiang and Urban [10] considered the stochastic U-line
balancing problem and presented a hybrid heuristic com-
posed of an initial feasible solution module and a solution
improvement module. Baykasoglu and Ozbakir [2] as-
sumed that each task time has a normal distribution with
mean 4 and standard deviation o. To balance the stochastic
U-line, they developed a new algorithm integrating the
COMSOAL method, ten different task assignment heuris-
tics, and a GA. The algorithm is able to quickly search
effective solutions for U-type ALBPs. In their proposed
GA, the genes of chromosomes are integers. Each integer

represents a task assignment rule. Sabuncuoglu et al. [26]
proposed the ant colony optimization (ACQO) algorithm to
solve a deterministic single-model U-type ALBP. Hwang
et al. [17] developed a multi-objective genetic algorithm
using the priority-based coding method for solving the
U-shaped ALBP.

Sparling and Miltenburg [28] introduced and modeled a
mixed-model U-line balancing problem. Kara and Tekin
[18] presented a mixed-integer programming formulation
for optimal balancing of mixed-model U-shaped assembly
lines. Their proposed approach minimizes the number of
required stations for a given model sequence. Hwang and
Katayama [16] proposed a multi-decision genetic approach
for workload balancing of mixed-model U-type lines. Tasan
and Tunali [29] presented a review of the current
applications of genetic algorithms in ALBPs.

In this paper, the model introduced by Bukchin and
Rabinowitch [7] is modified to be used in a mixed-model
U-shaped assembly line system, and a novel two-stage GA ,
which is fittingly devised for solving the obtained new
model, is developed. It should be pointed out that the
modified model is a mixed-model U-line balancing type-1
problem. Furthermore, the task assignment rules proposed
by Baykasoglu and Ozbakir [2] are employed in our
proposed GA. It is worth noting that applying these rules
increases the flexibility of the chromosomes and eases the
crossover and mutation operations as well as eliminates
repairing procedures. Employing two-stage techniques or a
combination of several methods for solving complicated
problems is frequent in the literature. Liang et al. [21], for
instance, proposed a novel two-stage noise removal
algorithm to deal with impulse noise. Cheng-Wu Chen [8]
presented an effective neural network-based approach to be
used in nonlinear structural systems. The proposed ap-
proach is a combination of H” control performance with
Takagi—Sugeno fuzzy control. Chen et al. [9] also combined
a Takagi—Sugeno fuzzy model approach with a parallel
distributed compensation (PDC) scheme to cope with their
work under study.

The rest of the paper is organized as follows. In section 2,
the model is described and the problem formulation is
presented. In section 3, the proposed GA is explained. In
section 4, an illustrative example is presented and some
numerical experiments based on the standard benchmark
data sets with the computational results are given. Finally,
in section 5, conclusions and a review of the previous
sections are presented.

2 Model description

The model presented in this paper is a modification of the
model introduced by Bukchin and Rabinowitch [7], in

@ Springer

Int J Adv Manuf Technol (2011) 55:1111-1122

Model Il

Model |

Fig. 3 Precedence diagrams taken from Bukchin and Rabinowitch [7]

which the assumptions of the model and further explan-
ations were given. The difference between their model and
our presented model stems from the existing difference
between U-line and traditional straight-line modeling.
Following, we present our mixed-model U-line balancing
(MMULB) model.

2.1 Integer programming formulation for the MMULBP

Parameters:

n Total number of different assembly tasks
Number of models to be assembled on the line

ty Processing time of task i performed on model j
IP; Set of immediate predecessors of task i in model j
IS; Set of immediate successors of task / in model j

¢ Required cycle time for model j

SC Station or fixed cost associated with each station

TC; Task cost associated with each station to which task i
is assigned

Decision variables:

z Number of stations to be used in the assembly line

. __ J lif task i of model; is assigned to station ;
Xijk = Y 0 otherwise.

__ Jlif task i of any of the models is assingned to station ;
Tik = 9 0 otherwise.

. __ J 1if immediate successors of task i in model j have been previously assigned;
Yij = Y 0 if immediate predecessors of task i in model j have been previously assigned.

Table 1 Performance times and task costs for the example

Task Model 1 Model II TC;
1 6 2 11
2 4 - 5
3 6 4 8
4 4 - 3
5 2 3 2

@ Springer

1 2

@

o

=

=

N
)
=
5 4
35

/ |
/ Station 3

5 3

Fig. 4 Optimal balance for the mixed-model U-line production
system

where, the number of tasks # is assumed as an upper bound
on the number of stations.
The problem formulation is as follows.

n n
min{Ssz+ZTC,-Zrik} (1)
i=1 k=1

Subject to:

> xp=1 Vi (2)
k=1

Zk X (xgk — xwx) < My, Vj,g, handg € IPy (3)
=1

Zk X (x]jk —xhjk) § M(l _yhj) Vj,h,landl € IShj (4)
k=1

injk X tij S Cj Vj7k (5)
i=1
zZkax,-jk Vi, j (6)
k=1
> xS Vik (7)
ik = m < ijk)

Xijk Tie, Vi € {0,1} z > 0 and integer (8)

The objective function given in Eq. 1 minimizes the total
costs associated with the number of stations and task
duplication costs. In view of the fact that tasks are
inseparable units in which each task of each model must
be assigned to exactly one station. Constraint (2) guarantees

Int J Adv Manuf Technol (2011) 55:1111-1122

1115

Fig. 5 Precedence diagrams for
models 1 to 4

the restriction. Constraints (3) and (4) satisfy precedence
relationships between tasks. Constraint (3) ensures that task
h of model j can be assigned to station k if its immediate
predecessor tasks have been already assigned to that station
or to one of the previous stations. Constraint (4), which
originates as a result of being U-shaped line, denotes task
h of model ;j can be assigned to station k only if all of its
immediate successors previously have been assigned to that
station or to an upstream station. These two constraints
work together as an either-or constraint and a binary
variable, yj;, is added to produce the practical either-or
constraint set. In other words, task # of model j is assigned
to station k if either all of its immediate predecessors or its
immediate successors are assigned before. Constraint (5) is
the cycle time constraint and assures that the total
performance time of each model at each station cannot
exceed the model’s cycle time. In order to handle complex-

Model 4

ities of U-shaped systems, in our proposed model, it is
assumed that the model that arrives to each crossover
workstation in back of the line is just like the one arrives to
that workstation in front of the line. This assumption is
employed in the cycle time constraint. Since in mixed-model
production systems, different models are variations of a same
base product, this assumption seems to be justifiable. The
total number of workstations is equal to the greatest
workstation index number of all tasks and models and is
shown in Constraint (6). Constraint (7) checks whether task i
of any model is assigned to workstation £. Constraint (8)
denotes that x;3, T, and y;; are binary variables.

2.2 Tllustrative example

In this section, a simple example of a mixed-model system
presented by Bukchin and Rabinowitch [7] is solved by our

@ Springer

1116

Int J Adv Manuf Technol (2011) 55:1111-1122

Table 2 List of task assignment rules employed in the genetic
algorithm

Rule Task assignment rules

number

1 Shortest processing time SPT

2 Longest processing time LPT

3 Minimum total number of successor tasks ~ MiTNST
4 Maximum total number of successor tasks MaTNST
5 Maximum total time of successor tasks MaTTST
6 Minimum total time of successor tasks MITTST
7 Maximum total number of predecessor tasks MaTNPT
8 Minimum total number of predecessor tasks MiTNPT
9 Maximum total time of predecessor tasks ~ MaTTPT
10 Minimum total time of predecessor tasks MiTTPT

proposed model using Lingo 8.0 software to show how
changing traditional straight lines to U-shaped assembly
lines can results in better solutions and more flexibility.
Figure 3 depicts two models in a form of precedence
diagrams. Table 1 show the performance times and task
costs for this given example. In addition to the given data,
we also consider the parameter sets for SC=10, ¢;=8, and
62:5.

We solved this example by our integer programming for
the MMULBP using Lingo 8.0 software and the optimal
objective function value (OFV) found is equal to 59. It shows
that switching from traditional straight lines to the U-shaped
lines can result in reducing the total costs because the optimal
OFV found by Bukchin and Rabinowitch [7] is equal to 61.
The optimal solution for our model is depicted in Fig. 4.

In this figure, the total number of workstations in the
solution is equal to 3; so the first part of the objective
function is equal to SC x z =10 x 3 = 30. The rounded
rectangles in the figure can be considered as machines that
are required to perform each task. For example, a rounded
rectangle containing number 2 stands for the machine that
is responsible for performing task 2. This point is noted to
have a better sense about task duplication costs. In addition,
each machine can perform only the related task and cannot
perform other tasks. In a duplication situation, for example,
machine number 5 can be assigned to more than one station,
as occurred in the optimal solution reported by Bukchin and
Rabinowitch [7]. While no task duplication occurred in our
optimal solution, the second part of the objective function is
equal to: >3 TC; >3 ;7 = 29. So, the minimum value
of the objective function is equal to 30+29=59.

3 The proposed algorithm

In this section, the proposed genetic algorithm (GA) is
introduced. This approach is a novel GA because it is
fittingly devised for solving our new proposed model. The
GA includes two parts seeing that the objective function
includes two parts: the first part, SCxz, minimizes costs
associated with the number of stations and the second part,
> 1, TC; Y} Tir, minimizes task duplication costs. Ac-
cordingly, the first part of the GA, which is referred to
hereafter as the first GA, explores for solutions with
minimum number of stations and the second part of the
GA, which is called hereafter the main GA, tries to find
solutions with minimum task duplication costs among those
solutions found by the first part.

The first GA task is to provide initial population for the
main GA while the main GA starts with this initial
population and solves the proposed MMULB problem. In
the first stage, each of individual models is solved
separately by the first GA as an independent problem for
solving a single-model U-line balancing type-1 problem. It
should be noted that the initial populations of the first GA
are randomly generated. In the first GA, total number of
iterations for each model is set to 100 iterations with the
same objective function value. At the end of solving each
model, the last population is kept. Finally, m populations
achieved for m models are combined together, and the initial
population for the main GA is created. For example, consider
the models presented in Fig. 5. The chromosome length used
in the first GA is equal to 22 for the reason that the total
number of different assembly tasks is equal to 22. When four
populations are achieved, these populations are combined
together in a way that the produced united population is a
100x 88 matrix, in which 100 is the number of solutions in
each population and 88 is the length of each chromosome.
The first 22 genes of these 88 genes are corresponding to the
first chromosome of the first model; the next 22 genes from
gene 23 to gene 44 are related to the first chromosome of the
second model, and so on. In fact, four 100%22 matrices are
augmented in order to create a 100 88 matrix.

Since the first part of the objective function minimizes
the total number of stations and the objective function for
the SULB type-1 problem also minimizes the number of
workstations, this augmentation, instead of using a random
initial solution for the main GA, increases the convergence
rate of the GA notably. Since the number of 100 iterations
as stopping criterion for each model is not a large number
(e.g., diversity of chromosomes in a population is not
reduced drastically) and chromosomes with the minimum

[10] 3] 7]5s]of8]s[1]o9][s]7][8]10]8]2]s5]10[10]5]9[1]4a]

Fig. 6 A chromosome with 22 genes used in the first GA

@ Springer

Int J Adv Manuf Technol (2011) 55:1111-1122

1117

[1]22]19] 2[20[15[3[16]21[a]17[s][7[6]18[8]10[11][9[14]12]13]

Fig. 7 Task-ordering selection produced by the deduction procedure

number of stations (i.e., minimum number of stations found
during 100 iterations) are not necessarily identical (e.g.,
different chromosomes can result in the same value for
number of stations), the variety needed to form an initial
population for the main GA is slightly stained.

3.1 Solution representation

As mentioned before, we use the task assignment rules
proposed by Baykasoglu and Ozbakir [2] in our proposed
GA because applying these rules increases the flexibility of
the chromosomes and eases the crossover and mutation
operations and eliminates repairing procedures. A chromo-
some length is equal to the number of different tasks, and
the value of each gene denotes the task assignment rule. A
list of task assignment rules used in Baykasoglu and
Ozbakir [2] is shown in Table 2.

Suppose that we want to solve a single-model U-line
balancing type-1 problem based on a precedence diagram
represented in Fig. 1, by using the first GA where the cycle
time is equal to 19. A chromosome constituted by 22 genes
is created, and 22 random integers between 1 and 10 are
incorporated into genes of the chromosome. Figure 6 shows
an example of the chromosome for the given problem.

Applying these rules in chromosomes compelled us to
insert a deduction procedure for deducing the related
balance from a chromosome. We explain the procedure by
the chromosome represented in Fig. 6.

Definition Assignable tasks are those whose predecessor or
successor tasks have been assigned already.

Table 3 Balance of the assembly line derived from the chromosome
shown in Fig. 6 using the deduction procedure

Stations 1 1,19,22 station time=13
2 2 station time=11
3 3,15,20 station time=16
4 16,21 station time=10
5 4 station time=11
6 5,17 station time=15
7 6,7 station time=17
8 18 station time=12
9 8,10 station time=14
10 9,11 station time=14

—
—_

12,13,14 station time=17

Deduction procedure:

Step 1: Determine set of assignable tasks and
incorporate them into the Ablet set.

Set i=1, k=1; n=length of the chromosome;

Step 2: Go to the ith gene and read the value.
Select a task from the Ablet set using the
task assignment rule equal to the value.
If more than one task has the same
situation to be selected considering the
task assignment rule, the task with the
minimum number is chosen to be
assigned.

Insert the selected task in a.

If the idle time of station k is equal to or greater

than performance time of task a,

Assign the selected task to station £;

Else

k=k+1;
Assign the selected task to station ;

Step 3: Update ablet set.
i=i+1;

Ifi<n

Go to step 2;

Else

Go to Step 4;

Step 4: Terminate the procedure and display the

assembly line configuration.

Using the above procedure for the chromosome shown
in Fig. 6, the task-ordering selection depicted in Fig. 7 is
deduced. The assembly line balance for the chromosome
shown in Fig. 6 is represented in Table 3.

3.2 Crossover operator

We use a two-point crossover method as shown in Fig. § in
order to generate offspring from parents, in which these two
points are randomly generated. Two points are assumed to
be 12 and 18.

3.3 Mutation operator

Two numbers between 1 and the chromosome length are

arbitrarily generated. Let the smallest and largest numbers
be set to a and b, respectively. Then, b—a+1 integers

@ Springer

1118

Int J Adv Manuf Technol (2011) 55:1111-1122

Fig. 8 Two-point crossover Parent 1

method

[10]3]7]sTo]8[s[1los][7]8]10l8]2]s5]10]10]s[9]1]4]

Parent 2

[2]1]a]e6]7]9[3]10]9]10]1]s[3]10]9]lalelol3][7]s5]a]

Offspring 1

[o]3]7]s]ofs|s]a1]ofs[7[s|3]sofofafefofs[o[1]4]

Offspring 2

[2]1]a]e6[7]9[3]10]9]10]1]8]10[8]2]5 [10]10]/3|7]5][4a]

between 1 and 10 are produced randomly and inserted in
the chromosome.

3.4 Fitness function and selection

The evaluation function used in the first GA is total number
of stations, and the evaluation function used in the main
GA is the objective function computed by:

Eval(solution(j)) = SC x z + Z TC; Z Tik
i=1 =1

1 <j < population size

In selection, the individuals producing offspring are
chosen. Two well-known selection methods are examined
in the proposed GA: “Tournament selection” method and
“Roulette wheel selection” method. In tournament selec-
tion, a number 7our of individuals is chosen randomly from
the population, and the best individual from this group is
selected as parent. This process is repeated as often as
individuals to choose. In roulette-wheel selection a proba-

Table 4 Performance times and task costs for the numerical problem

Task number Task time 7C; Task number Task time 7C;

1 4 11 12 2 2
2 11 10 13 7 3
3 1 9 14 8 4
4 11 8 15 4 5
5 6 7 16 5 6
6 10 6 17 9 7
7 7 5 18 12 8
8 11 4 19 7 9
9 3 20 11 8
10 3 2 21 7
11 8 1 22 2 6

bility is assigned to each chromosome proportional to its
fitness value. The higher the probability, the more chance to
be selected. In tournament selection, the fitness function is
calculated by the evaluation function defined above. But, in
roulette-wheel selection method, we are compelled to
determine a fitness function such that better solutions with
lower evaluation function values have higher fitness
function values. So, we define maxfit that is equal to the
maximum amount of the evaluation function in each
generation and use this variable for determining the fitness
function.

Fitness(solution(f)) = maxfit — 0.9 x Eval(solution(;))
1 <j < population size

The probability of selecting a solution (j) is computed by:

Prob(solution(y))
popsize
= Fitness(solution(y))/ Z Fitness(solution(y))
=1

Table 5 Solution found by the proposed GA for the numerical
problem

Models
1 2 3 4
Stations 1 1,2 1,2 1,2,22 1,2,22
2 3,20,22 3,15,19,22 3,19,20 3,19,20
3 6,21 6,21 421 4,21
4 8 18 16,18 16,18
5 5,17 5,17 5,17 5,15,17
6 13,14 11,14 9,13 13,14
7 9,11,12 9,12 6,11 6,12
8 7,10 8,10 8,10 7,8

@ Springer

Int J Adv Manuf Technol (2011) 55:1111-1122

1119

Table 6 Task duplication costs

Table 7 Task duplication costs for the Thomopoulos data set

Task
number duplications cost

Number of Duplication Task Number of Duplication
number duplications cost

1 1 11 12 1 2
2 1 10 13 1 3
3 1 14 1 4
4 1 15 2 10
5 1 7 16 1 6
6 2 12 17 1 7
7 1 5 18 1 8
8 2 8 19 1 9
9 2 6 20 1 8
10 1 2 21 1 7
11 2 2 22 2 12

Sum=156

4 Computational results

In this section, a numerical problem based on the models
shown in Fig. 5 is developed and solved by the proposed
GA, and the related calculations are explained. Afterwards,
a number of well-known test problems are solved by the
novel GA, and computational results are given. The
proposed algorithm is programmed in the MATLAB
7.2.0.232 (R2006a) software.

4.1 Numerical problem

Consider Fig. 5. The combined diagram of these four
models is shown in Fig. 1. In fact, we first design the
combined diagram, and then the models are produced. The
tasks removed from each model are selected arbitrarily. For
example, in the first model, tasks 4,15,16,18, and 19 are
randomly chosen to be eliminated. The performance task
times are also selected randomly from the numbers between
one and 12. The related values for required parameters
illustrated in Table 4. In addition to the given data, we also
consider the parameter sets for SC=10, ¢;=16, c,=16, c3=
19, and ¢4=19.

Task number 7C; Task number TC;
1 11 11 1
2 10 12 2
3 9 13 3
4 8 14 4
5 7 15 5
6 6 16 6
7 5 17 7
8 4 18 8
9 3 19 9
10 2

The GA finds the solution illustrated in Table 5 after
1,080 iterations in 226 s CPU time from a PC with 2.2 GHz
CPU and 2 GB RAM.

In this table, the number of stations is eight. So, the first
part of the objective function is equal to SC x z = 80. Now,
we need to calculate task duplication costs in order to find
the objective function value. By considering task 1, we can
see that task 1 of all models is assigned to station 1 so the
second part of the objective function for task 1 is equal to
TC, x Z,%Zlﬁk =11 x 1 = 11. Now, consider task 6; task
6 of models 1 and 2 is assigned to station 3, and
consequently, 7¢3=1. In the other side, task 6 of models 3
and 4 is assigned to station 7, and for that reason, 7¢;=1.
Accordingly, the duplication cost for task 6 is equal to
TCs X (763 + 767) = 6 x 2 = 12. The above calculations
are done for each of individual tasks, and the related results
are shown in Table 6.

According to Table 6, total task duplication costs is
equal to 156, and therefore, the objective function value is
equal to 80+156=236. It is worth noting that, because this
solution is derived from a meta-heuristic algorithm, there is
no guarantee for the answer to be an optimal solution.
Figure 9 shows the solution found by our proposed GA for
the given example.

As stated before, the rounded rectangles are a symbol of
machines rather than a symbol of tasks. It represents that

Fig. 9 Balance found by GA

for the numerical problem

L

w
—/
—

—_

[6)]

[6)]
N/
-
o
©
o
~

N

e
o
o]

L uonels
2 uonels

€ uoels
¥ uonels
G uonels
9 uonels
£ uonels

g uonels
N S

22][20][19

[22

21

@G 121/

-
o

—/

—
—_
o))

@ Springer

1120

Int J Adv Manuf Technol (2011) 55:1111-1122

Table 8 Task duplication costs

for the Kim data set Task TC; Task TC; Task TC; Task TC; Task TC; Task TC;
number number number number number number
1 11 11 1 21 7 31 5 41 3 51 9
2 10 12 2 22 6 32 6 42 2 52 8
3 9 13 3 23 5 33 7 43 1 53 7
4 8 14 4 24 4 34 8 44 2 54 6
5 7 15 5 25 3 35 9 45 3 55 5
6 6 16 6 26 2 36 8 46 4 56 4
7 5 17 7 27 1 37 7 47 5 57 3
8 4 18 8 28 2 38 6 48 6 58 2
9 3 19 9 29 3 39 5 49 7 59 1
10 2 20 8 30 4 40 4 50 8 60 2
61 3

machines needed for operating tasks 6, 8, 9, 11, 15, and 22
are installed in more than one station; thus, the money is paid
for operation of the related tasks is duplicated. When model 1
arrives to station 2 in front of the U-line, task 3 is done on the
model, and then the model leaves the station until arrives to
station 2 for the second time in back of the line, and tasks 20
and 22 are operated on the model; after that, model 1 leaves
the line. Although task 15 is common to models 2 and 4, the
station that performs task 15 is different for the two models.
Machine number 15 installed in station 2 is planned for
performing task 15 on model 2 whereas task 15 of model 4 is

done in station 5. Considering the mentioned statements,
Fig. 9 becomes meaningful.

4.2 Test problems

A number of well-known test problems obtained from the
Website http://www.assembly-line-balancing.de/files/uploads/
data-mmulbs.doc are solved using our novel GA. Since task
duplication costs are not considered in the test problems, we
develop arbitrary values for the missed data. Table 7 shows
the new data set taken from Thomopoulos [30] with 19 tasks

Table 9 Task duplication costs

for the Arcus data set Task TC; Task TC; Task TC; Task TC; Task TC; Task TC;
number number number number number number
1 20 21 20 41 20 61 20 81 20 101 20
2 19 22 19 42 19 62 19 82 19 102 19
3 18 23 18 43 18 63 18 83 18 103 18
4 17 24 17 44 17 64 17 84 17 104 17
5 16 25 16 45 16 65 16 85 16 105 16
6 15 26 15 46 15 66 15 86 15 106 15
7 14 27 14 47 14 67 14 87 14 107 14
8 13 28 13 48 13 68 13 38 13 108 13
9 12 29 12 49 12 69 12 89 12 109 12
10 11 30 11 50 11 70 11 90 11 110 11
11 10 31 10 51 10 71 10 91 10 111 10
12 9 32 9 52 9 72 9 92 9
13 8 33 8 53 8 73 8 93 8
14 7 34 7 54 7 74 7 94 7
15 6 35 6 55 6 75 6 95 6
16 5 36 5 56 5 76 5 96 5
17 4 37 4 57 4 77 4 97 4
18 3 38 3 58 3 78 3 98 3
19 2 39 2 59 2 79 2 99 2
20 1 40 1 60 1 80 1 100 1

@ Springer

http://www.assembly-line-balancing.de/files/uploads/data-mmulbs.doc
http://www.assembly-line-balancing.de/files/uploads/data-mmulbs.doc

Int J Adv Manuf Technol (2011) 55:1111-1122

1121

Table 10 Solutions for the given test problems if roulette-wheel
selection method is employed

Problem set Objective Total number ~ CPU time, s
function value of iterations
Thomopoulos 176 875 139
Kim 536 1,858 1,454
Arcus problem 1 3,043 2,833 5,644
Arcus problem 2 2,256 3,265 6,760
Arcus problem 3 2,220 1,891 3,565
Arcus problem 4 2,072 2,618 5,317
Arcus problem 5 1,881 2,008 3,923

and three models considering SC=10, ¢;=0.9, ¢,=1, and c3=
1.5. Table 8 shows the new data set taken from Kim et al.
[19] with 61 tasks and four models considering SC=10, ¢;=
10, ¢,=9, c3=12, and c3=12. Table 9 shows the new data set
taken from Arcus with 111 tasks and five models considering
SC=25 and the following parameters.

Problem 1: ¢;=6615, c,=6615, c3=6615, c,=6615,
c5=6615.

Problem 2: ¢;=10027, ¢,=10027, ¢3=10027,
c4=10027, ¢5=10027.

Problem 3: ¢;=10743, ¢,=10743, ¢3=10743,
c4=10743, c5=10743.

Problem 4: ¢;=11378, ¢,=11378, ¢3=11378,
c4=11378, c5s=11378.

Problem 5: ¢;=17067, ¢,=17067, c3=17067,

c4=17067, cs=17067.
The values of the first GA parameters are as follows.

Number of chromosomes in each population=100.
Percentage of the best current chromosomes copied to
the next generation=10.

Crossover probability (or rate)=0.8.

Mutation probability (or rate)=0.1.

Stopping condition=100 iterations with the same OFV.
Tournament size (Tour)=4 (if tournament selection is
employed).

The values of the main GA parameters are as follows.

Number of solutions in each population=100.
Percentage of the best current chromosomes copied to
the next generation=10.

Crossover probability (or rate)=0.6.

Mutation probability (or rate)=0.3.

Stopping condition=500 iterations with the same OFV.
Tournament size (Tour)=4 (if tournament selection is
employed).

The computational results of the mixed-model U-line
balancing problem, which minimizes the task duplication
costs and number of stations simultaneously, are presented

in Tables 10 and 11. Table 10 shows the results if roulette-
wheel selection method is employed while Table 11 shows
the results if tournament selection method is applied.

Comparing results of Table 10 and Table 11, it can be
concluded that employing tournament selection method in
the proposed GA generally improves objective function
values while makes CPU times worse.

To conclude the effectiveness of the GA, the model has
been solved once for the small-scale example shown in
section 2.2 and once for the medium-scale problem of
Thomopoulos [30] using both Lingo 8.0 software and the
proposed GA. For the former problem, the obtained results
are the same, and the GA provides the global optimum
solution. In the latter case, the novel GA provides a solution
with an objective function value of 176 during 2—3 min.
However, having interrupted the Lingo 8.0 solver, which
was being run for about 49 h, provided a solution with an
objective function value of 170. Although this solution was
not reported as a global optimum, simple calculations
indicate that it is a global optimum solution. As can be
seen, for the medium-scale problem the GA presents a
solution with 3.53% error from the global optimum solution
in negligible CPU time. It is worth noting that for large-
scale problems, such as Kim and Arcus test problems, no
comparable results for those obtained via our proposed GA
exist. Thus, at this time, it can be said that the proposed GA
performs well and is able to solve large-scale problems
within acceptable CPU times.

5 Conclusion

A widespread supposition on mixed-model assembly line-
balancing problems is to allow the assignment of a task
which is shared between two or more models to a single
station. Bukchin and Rabinowitch [7] relaxed the limitation
and allowed tasks common to multiple models to be
assigned to different stations. They also proposed an integer
programming formulation for mixed-model straight line-

Table 11 Solutions for the given test problems if tournament
selection method is employed

Problem set Objective Total number CPU time, s
function value of iterations
Thomopoulos 176 1,191 197
Kim 528 2,714 2,141
Arcus problem 1 2,860 3,222 6,501
Arcus problem 2 2,463 3,920 8,417
Arcus problem 3 2,029 4,501 9,316
Arcus problem 4 2,211 4,881 10,229
Arcus problem 5 1,878 3,466 7,460

@ Springer

1122

Int J Adv Manuf Technol (2011) 55:1111-1122

balancing problem. However, we modified their model in a
way that our presented model could be applied in U-shaped
assembly systems. A comparison was made between U-
lines and traditional straight lines by solving a simple
example with both models carried out. This comparison
gave you an idea about how switching from traditional
straight lines to U-lines reduces costs of a typical
production system. Subsequently, in order to cope with
medium- and large-scale problems of real world, a novel
two-stage genetic algorithm was proposed.

In an attempt to fully explain the proposed model and
the novel GA a medium-scale problem with 22 tasks and
four models was developed and solved. The duplication
situation was elaborated, and the related balance for the
solution of the medium-scale problem on a U-line layout was
illustrated. To assess the performance of the proposed GA,
some standard data sets were used while overlooked data were
generated randomly. Furthermore, effectiveness of the pro-
posed GA was evaluated by solving the modified model using
both the novel GA and Lingo 8.0 software for a small- and a
medium-scale problem. The result of this comparison is that
the GA can solve these types of problems in negligible CPU
times. It is worth mentioning that, for large-scale problems,
such as Kim and Arcus test problems, no analogous results for
those obtained by our proposed GA exist. Thus, at this time, it
can be said that the proposed GA performs well and is able to
solve large-scale problems within acceptable CPU times. In
addition to what was stated before, a comparison between
roulette-wheel selection method and tournament selection
method was also provided in this paper.

References

1. Ajenblit DA, Wainwright RL (1998) Applying genetic algorithms
to the U-shaped assembly line balancing problem. In: Proceedings
of the 1998 IEEE International Conference on Evolutionary
Computation (ICEC’98), part of WCCI, Anchorage, Alaska,
May 4-9, pp. 96—-101

2. Baykasoglu A, Ozbakir L (2007) Stochastic U-line balancing using
genetic algorithms. Int J] Adv Manuf Technol 32(1-2):139-147

3. Betts J, Mahmoud KI (1989) A method for assembly line
balancing. Eng Costs Prod Econ 18:55-64

4. Bowman EH (1960) Assembly-line balancing by linear program-
ming. Oper Res 8(3):385-389

5. Boysen N, Fliedner M, Scholl A (2008) Assembly line balancing:
which model to use when? Int J Prod Econ 111:509-528

6. Bukchin J, Dar-El EM, Rubinovitz J (2002) Mixed-model
assembly line design in a make-to-order environment. Comput
Ind Eng 41:405-421

7. Bukchin Y, Rabinowitch I (2006) A branch-and-bound based
solution approach for the mixed-model assembly line balancing

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

problem for minimizing stations and task duplication costs. Eur J
Oper Res 174:492—-508

. Chen Cheng-Wu (2009) Modeling and control for nonlinear

structural systems via a NN-based approach. Expert Syst Appl
36:4765-4772. doi:10.1016/j.eswa.2008.06.0622009

. Chen C, Lin J, Lee W, Chen C (2010) Fuzzy control for an

oceanic structure: a case study in time-delay TLP system. J Vib
Control 16:147-160. doi:10.1177/1077546309339424

Chiang WC, Urban TL (2006) The stochastic U-line balancing
problem: a heuristic procedure. Eur J Oper Res 175:1767—1781
Erel E, Gokcen H (1999) Shortest route formulation of mixed-model
assembly line balancing problem. Eur J Oper Res 116:194-204
Gokcen H, Erel E (1998) Binary integer formulation for mixed-
model assembly line balancing problem. Comput Ind Eng 34:451—
461

Gokcen H, Agpak K, Gencer C, Kizilkaya E (2005) A shortest
route formulation of simple U-type assembly line balancing
problem. Appl Math Model 29:373-380

Gokcen H, Agpak K (2006) A goal programming approach to
simple U-line balancing problem. Eur J Oper Res 171:577-585
Gutjahr AL, Nemhauser GL (1964) An algorithm for the line
balancing problem. Manage Sci 11:308-315

Hwang R, Katayama H (2009) A multi-decision genetic approach
for workload balancing of mixed-model U-shaped assembly line
systems. Int J Prod Res 47:3797-3822

Hwang R, Katayama H, Gen M (2008) U-shaped assembly line
balancing problem with genetic algorithm. Int J Prod Res
46:4637-4649

Kara Y, Tekin M (2009) A mixed integer linear programming
formulation for optimal balancing of mixed-model U-lines. Int J
Prod Res 47:4201-4233

Kim YK, Kim YJ, Kim YH (1996) Genetic algorithms for
assembly line balancing with various objectives. Comput Ind Eng
30(3):397-409

Lapierre SD, Ruiz A, Soriano P (2006) Balancing assembly lines
with Tabu search. Eur J Oper Res 168:826—837

Liang S, Lu S, Chang J (2008) A novel two-stage impulse noise
removal technique based on neural networks and fuzzy decision.
IEEE Trans Fuzzy Syst 16(4):863—873

Miltenburg J, Wijngaard J (1994) The U-line line balancing
problem. Manage Sci 40:1378—-1388

Noorul Haq A, Jayaprakash J, Rengarajan K (2006) A hybrid
genetic algorithm approach to mixed-model assembly line
balancing. Int J Adv Manuf Technol 28(3—4):337-341

Patterson JH, Albracht JJ (1975) Assembly line balancing: zero-
one programming with Fibonacci search. Oper Res 23:166—172
Rekiek B, Dolgui A, Delchambre A, Bratcu A (2002) State of art
of optimization methods for assembly line design. Annu Rev
Control 26:163—174

Sabuncuoglu I et al (2009) Ant colony optimization for the single
model U-type assembly line balancing problem. Int J Prod Econ
120(2):287-300

Scholl A, Klein R (1999) ULINO: optimally balancing U-shaped
JIT assembly lines. Int J Prod Res 37:721-736

Sparling D, Miltenburg J (1998) The mixed-model U-line
balancing problem. Int J Prod Res 36:485-501

Tasan SO, Tunali S (2008) A review of the current applications of
genetic algorithms in assembly line balancing. J Intell Manuf 19
(1):49-69

Thomopoulos NT (1970) Mixed model line balancing with
smoothed station assignments. Manage Sci 16(9):593-603

http://dx.doi.org/10.1016/j.eswa.2008.06.0622009
http://dx.doi.org/10.1177/1077546309339424

	A novel two-stage genetic algorithm for a mixed-model U-line balancing problem with duplicated tasks
	Abstract
	Introduction
	Single-model line
	Mixed-model line
	Multi-model line

	Model description
	Integer programming formulation for the MMULBP
	Illustrative example

	The proposed algorithm
	Solution representation
	Crossover operator
	Mutation operator
	Fitness function and selection

	Computational results
	Numerical problem
	Test problems

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

