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Abstract This paper presents a system for automated, non-
contact, and flexible prediction of surface roughness of end-
milled parts through a machine vision system which is
integrated with an artificial neural network (ANN). The
images of milled surface grabbed by the machine vision
system could be extracted using the algorithm developed in
this work, in the spatial frequency domain using a two-
dimensional Fourier transform to get the features of image
texture (major peak frequency F1, principal component
magnitude squared value F2, and the average gray level
Ga). Since F1 is the distance between the major peak and the
origin, it is a robust measure to overcome the effect of
lighting of the environment. The periodically occurring
features such as feed marks and tool marks present in the
gray-level image can be easily observed from the principal
component magnitude squared value F2. The experimental
machining variables speed S, feedrate F, depth of cut D, and
the response extracted image variables F1, F2, and Ga could
be used as input data, and the response surface roughness Ra
measured by Surfcorder SE-1100 (traditional stylus method)
could be used as output data of an ANN ability to construct
the relationships between input and output variables. The
ANN was trained using the back-propagation algorithm
developed in this work due to its superior strength in pattern
recognition and reasonable speed. Using the trained ANN,

the experimental result had shown that the surface roughness
of milled parts predicted by machine vision system over a
wide range of machining conditions could be got with a
reasonable accuracy compared with those measured by
traditional stylus method. Compared with the stylus method,
the constructed machine vision system is a useful method for
prediction of the surface roughness faster, with a lower price,
and lower environment noise in manufacturing process.
Experimental results have shown that the proposed machine
vision system can be implemented for automated prediction
of surface roughness with accuracy of 97.53%. The results
are encouraging that machine vision system can be extended
to many real-time industrial prediction applications.
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1 Introduction

The quality of components produced is of main concern to
the manufacturing industry, which normally refers to
dimensional accuracy, form, and surface finish. Surface
roughness of work parts plays an important role on
mechanical properties. The proper functioning of a ma-
chined part is, in many instances, largely dependent on the
quality of its surface. Engineering properties such as
fatigue, hardness, and heat transfer are affected by surface
finish. The traditional stylus method is the most widely
used technique in industry. A precision diamond stylus is
drawn through the surface being detected and the perpen-
dicular motion is amplified electronically [1–3]. The
accuracy of stylus method depends on the radii of diamond
tips. When the surface roughness falls below 2.5 μm, the
stylus instruments are affected by large system error. The
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major disadvantage for such methods is that they require
directed physical contact and line sampling which may not
represent the real characteristics of the surface [4].

In this study, we investigate the assessment of surface
roughness of end-mill parts using machine vision. Machine
vision allows the assessment of surface roughness without
touching or scratching the surface. It provides the advan-
tages of a measurement process for 100% inspection and
the flexibility for measuring the part under test without
fixing it in the precise position. In contrast to the stylus-
based methods that trace the surface roughness in one
dimension, machine vision can generate many more read-
ings of a 2D surface in a given time, and this makes the
estimation method for roughness measurement more reli-
able. Extensive research has been performed on machine
vision applications in manufacturing because it has the
advantage of being non-contact and as well faster than the
contact methods.

Using machine vision, it is possible to evaluate and
analyze the area of the surface, which makes it a 2D
evaluation [5].

In recent years, many optical measuring methods have
been applied to overcome the limitations of stylus method
in measuring the surface roughness of work parts. Galante
applied an image processing technique for the on-line
control of the surface roughness in the finishing turning
operation by means of tool image detection and processing.
The authors also built a model to estimate the value of the
effective roughness of the work pieces from one related to
the deal profile. Yet, tests varying the cutting speed were
not carried out in their study [6]. Choudhury, I.A. used a
model for surface roughness prediction using the response
surface method by combining its methodology with
factorial design of experiments developed [7]. Dimla, E.
adopted the application of perception-type neural networks
for tool-state classification during metal-turning operation
that has been studied [8]. They investigated both single-
layer networks and multi-layer networks and found that the
multi-layer networks had better performance than the
single-layer tool-state classification. Al-Kindi assessed a
system in the automation inspection of engineering surface.
The parameters they got were based on spacing peaks and
the number of peaks per unit length of a scanned line in the
gray-level image. This one-dimensional (1D) image is
sensitive to lighting and noise [9]. Luk and Huynh used
the gray-level histogram of the surface image to character-
ize surface roughness. They found the “optical roughness
parameter (R)=¼std. dev./rms” to be a non-linear, increas-
ing function of average surface roughness. Since their
method was based on the histogram, it is sensitive to the
uniformity and degree of illumination presented [10]. K.
Venkata Ramana examined the intensity histograms of the
surface image that have been utilized to characterize surface

roughness and quality. Statistical methods such as co-
occurrence matrix approach, the amplitude varying rate
statistical approach, and run length matrix approach have
also been used to compare the texture features of machined
surfaces [11]. Hoy and Yu applied the algorithm of Luk and
Huyuh to characterize surface roughness. They found one
exception where the value of the ratio may lead to incorrect
measurement. So, they used the Fourier transform (FT) to
characterize surface roughness in the frequency domain.
Yet, no quantitative description of FT features for the
measurement of surface roughness is described [12].
Risbood et al. studied the prediction of surface roughness
and dimensional deviation by measuring the cutting force
and vibrations in the turning process. In their work, surface
finish could be predicted with a reasonable degree of
accuracy by taking the acceleration of radial vibration of
the tool holder as a feedback [13]. Lee et al. presented a
system for measuring surface roughness of turned parts
through a computer vision system, and the trained
abductive network was used in this application [14].
Brezocnik et al. proposed a genetic programming approach
to predict surface roughness in end milling process [15].
The genetic programming is an evolutionary computation
method that was first introduced by Koza in the year 1992
[16]. It aimed at finding out computer programs (called as
chromosomes) whose size and structure dynamically
changes during the simulated evolution that best solved
the problem. Cutting parameters, viz., spindle speed, feed,
and depth of cut as well as vibration between tool and work
piece, were used to predict the surface roughness, and the
authors found that the model which involves all these
variables accurately predict the surface roughness. Reddy
and Rao developed an empirical surface roughness model
for end milling of medium carbon steel, whose parameters
were optimized using genetic algorithm (GA) [17]. Oktem
et al. determined the optimum cutting conditions for
minimum surface roughness in milling operation. The
surface roughness was modeled by based on response
surface method, and GA was used for optimizing the
cutting conditions [18]. Reddy and Rao used genetic
algorithm to optimize tool geometry, viz., radial rake angle
and nose radius and cutting conditions, viz., cutting speed
and feed rate to obtain desired surface quality in dry end
milling process [19]. Prakasvudhisarn et al. proposed an
approach to determine optimal cutting condition for desired
surface roughness in end milling. The approach consists of
two parts: machine learning technique called support vector
machine to predict surface roughness and particle swarm
optimization technique for parameters optimization. The
authors found that PSO shows consistent near-optimal
solution with little effort [20]. Chen and Savage used fuzzy
net-based model to predict surface roughness under
different tool and work piece combination for end milling
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process. Speed, feed and depth of cut, vibration, tool
diameter, tool material, and work piece material are used as
input variables for fuzzy system. The authors found that the
predicted surface roughness is within an error of 10% [21].
Iqbal et al. developed a fuzzy expert system for parameter
optimization that includes prediction of tool life and surface
finish in hard-milling (high-speed milling of steel having 45
HRC hardness) process [22]. S.-S. Liu analysis and
discrimination in additive noise processes tend to dramat-
ically alter local spatial variation of intensity while having
relatively uniform representation in spatial frequency [23].

Over the years, the non-contact optical methods have
attracted researchers' attention for the prediction of surface
roughness. Most of the methods are based on statistical
measures of gray-level images in the spatial domain. In
their experiments, they found one exception where the ratio
of the spread and the mean of the gray-level distribution is
not a strictly increasing function of surface roughness and,
therefore, the value of the ratio may lead to incorrect
measurement. Most of the investigations mentioned above
studied the effect of cutting variables on surface roughness
by considering one variable at a time. When previous
studies are taken into consideration, it is seen that there are
still some problems to be resolved. The models that have
been developed for surface roughness must be used in all
process types and must contain all the cutting parameters.

The present paper deals with the cutting variables cutting
speed S, feedrate F, and depth of cut D with the
corresponding response variables such as F1, F2, and Ga

taken simultaneously and, in addition, the cutting variables
corresponding to a desired surface roughness were
obtained. The first and most important task in roughness
assessment with machine vision is to extract the roughness
features of surfaces. Frequency domain features should be
less sensitive to noise than spatial domain features.

Therefore, the major effort that was taken by authors in
this study was to construct a machine vision system for
prediction of the surface roughness in end milling process
automatically. We choose to extract features of surface
roughness in the spatial frequency domain using the 2D FT.
The FT is particularly useful for surfaces in noisy
conditions owing to tool wear marks, dust, and dirt. The
FT characterizes the surface images in terms of frequency
components. The periodically occurring features such as
feed marks and tool marks present in the gray-level image
can be easily observed from the principal component
magnitude squared value F2. Major peak frequency F1,
which represents the frequency (or, inversely, the wave
length) of the feed marks in the image, generally outper-
forms other roughness features for roughness assessment.
Since F1 is the distance between the major peak and the
origin, it is a robust measure to overcome the effect of
lighting of the environment.

It is important for manufacturer that the surface
roughness can be determined according to the machining
parameters like cutting speed (S), feedrate (F), and depth of
cut (D) prior to the operation. When previous studies are
taken into consideration, it is seen that there are still some
problems to be resolved. The models that have been
developed for surface roughness must be used in all process
types and must contain all the cutting parameters. Artificial
neural network (ANN) is popular, and there are many
industrial situations where they can be usefully applied. It is
suitable for modeling various manufacturing functions due
to this ability to learn complex non-linear and multivariable
relationships between process parameters. In this study,
authors used an ANN model as an alternative way to
predict surface roughness in end milling operation.

In order to predict surface roughness in real time, a
neural network back-propagation algorithm is used to
construct the relationships between the input variables
machining parameters (cutting speed S, feedrate F, depth
of cut D), features of extracted image texture (major peak
frequency F1, principal component magnitude squared
value F2, average gray level Ga) and output variable cutting
performance (surface roughness Ra).

Applying ANN can recognize surface roughness without
stopping the machining operation and with reasonable
accuracy. Finally, the computer vision system for measuring
surface roughness prediction system has been established
for the end milling process.

This paper is organized as follows: in section 2, the
extraction of milled surface roughness image features in the
spatial frequency domain is discussed. Section 3 explains
the modeling of surface roughness based on ANN. In
section 4, the experimental setup and training database is
presented. Section 5 deals with the experimental verifica-
tion and discussion and section 6 concluded this paper.

2 Extraction of milled surface roughness image features

The quantitative measures of surface roughness are extracted
in the spatial frequency domain using the 2D FT. The FT
approach has the desirable properties of noise-immunity,
orientation dependency, and enhancement of periodic features.

The term image refers to a two-dimensional light-
intensity function, denoted by g(m,n). Where the value at
spatial coordinate's m, n gives the intensity (brightness) of
the image at that coordinate [24]. As light is a form of
energy, g(m,n) must be non-zero and finite, that is,

0 < g m; nð Þ < 1 ð2:1Þ

The basic nature of g(m,n) may be characterized by two
components: (1) the amount of light incident on the object
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being viewed and (2) the amount of light reflected by the
object. Respectively, they are called the illumination and
reflectance components and are denoted byi(m,n); and d(m,
n).The function i(m,n) and d(m,n) combine as a product to
form g(m,n):

g m; nð Þ ¼ i m; nð Þd m; nð Þ ð2:2Þ

The nature of i(m,n) is determined by light source, and d
(m,n) is determined by the characteristics of the object.

We call the intensity of a monochrome image ‘g’ at
coordinates (m,n), the gray level ‘l’ of the image at that
point. It is evident that ‘l’ lies in the range

Lmin � l � Lmax ð2:3Þ
To be suitable for computer processing, an image

function g(m,n) must be digitized both spatially and in
amplitude. Digitization of the spatial coordinates (m,n) is
called as image sampling, and amplitude digitization is
called as gray-level quantization.

Let f(m,n) be the gray level of a pixel at (m,n) in the
original image of size N×N pixels centered on the origin.
The discrete 2D FT of f(m,n) is given by:

F u; vð Þ ¼ 1

N

XN
2�1

m¼�N
2

XN
2�1

n¼�N
2

f m; nð Þe�j2
Q

uxþvy
Nð Þ ð2:4Þ

For u, v=−N/2, −N/2+1, 0, 1…, N/2−1
The FT is generally complex; that is

F u; vð Þ ¼ R u; vð Þ þ jI u; vð Þ ð2:5Þ
Where R(u,v) and I(u,v) are the real and imaginary

components of F(u,v), respectively.
The power spectrum P(u,v) of f(m,n) is defined by:

Pðu; vÞ ¼ jFðu; vÞj�2 ¼ R2ðu; vÞ þ I2ðu; vÞ ð2:6Þ
The quantitative definitions of these features are given

below. Let

P u; vð Þ ¼ P u; vð ÞP
u;vð Þ6¼ 0;0ð ÞP u; vð Þ ð2:7Þ

be the normalized power spectrum, which has the character-
istics of a probability distribution.

(a) Major peak frequency (F1)

F1 ¼ u1
2 þ v1

2
� �1=2 ð2:8Þ

Where (u1, v1) are the frequency coordinates of the
maximum peak of the power spectrum, i.e.,

P u1; v1ð Þ ¼ max p u; vð Þ; 8 u; vð Þ 6¼ 0; 0ð Þf g ð2:9Þ
Feature F1 is the distance of the major peak (u1, v1)
from origin (0, 0) in the frequency plane.

(b) Principal component magnitude squared (F2)

F2 ¼ l1 ð2:10Þ
Where λ1 is the maximum Eigen value of the
covariance matrix of p (u, v); the covariance matrix
M is given by:

M ¼ Var u2
� �

Var uvð Þ
Var uvð ÞVar v2

� �
" #

ð2:11Þ

For which

Varðu2Þ ¼
X

u;vð Þ6¼ 0;0ð Þ u2:p u; vð Þ� � ð2:12Þ

Var v2
� � ¼

X
u;vð Þ6¼ 0;0ð Þ v2:p u; vð Þ� � ð2:13Þ

Var u; vð Þ ¼ Var v; uð Þ ¼
X

u;vð Þ6¼ 0;0ð Þ uv:p u; vð Þ½ � ð2:14Þ

Features F2 indicate the variance of components along
the principal axis in the frequency plane.
(c) Average gray level (Ga)

Ga is the arithmetic average of gray-level intensity
values. The arithmetic average of the gray level Ga can
be expressed as:

Ga ¼ 1

n

Xn

i¼1
Gijj ð2:15Þ

Where Gi is the average gray level of surface image
deviated from the mean gray value and n is the number
of sampling data.

3 Modeling of surface roughness based on ANN

An ANN is a parallel, distributed information processing
structure that mimics the human brain to learn from
examples or mistakes [25]. Neural networks, based on their
biological counterparts, attempt to model the parallel,
distributed nature of processing in the human brain. Since
this concept was introduced in 1950s, ANN technology has
been adapted in many applications that are complex and
non-linear in nature, with an unknown and hard-to-identify
algorithm [26]. The mathematical model of an artificial
neuron's behavior is the simplification of the biological
brain neuron as shown in Fig. 1:

Various inputs x(n) to the network multiplied by weights
w(n) are sent to a neuron. Performing accumulation and
threshold, the neuron sums the weighted inputs, passes the
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result through a non-linear transfer function, and provides
an output Yi:

Yi ¼ f
Xn�1

i¼0
wixi�q

� �
ð3:1Þ

where the inputs of xi in this study corresponds to feed rate,
spindle speed, depth of cut, and vibration signals; θ is the
internal threshold or offset of a neuron; and f is the non-
linear transfer function. The most commonly used f is
defined by the sigmoid logistic function as:

f ðxÞ ¼ 1

1þ e�x
ð3:2Þ

A neural network provides a networking structure in
which artificial neurons are interconnected as shown in
Fig. 2. Each neuron in a layer receives weighted inputs
from the neurons in the previous layer. The output of the
neuron in the previous layer is, in turn, connected as the
input to several other neurons in the following layer, which
forms a complete network. Beyond the input and output
layers, several other layers of neurons in the middle, called
hidden layers, might be needed to build an effective neural
network that is capable of solving problems. The principle
underlying neural networks is pattern recognition. Among
the variety of neural network algorithms, back-propagation
(BP) is the most commonly used due to BPs superior
strength in pattern recognition and reasonable speed. The
training procedure for a back-propagation network is
usually iterative and involves a trial-and-error approach
that consists of the following steps:

Step 1: Initialize weights and offsets, starting from a small
random value.
Step 2: Present inputs and desired outputs to the neural
network model.
Step 3: Calculate actual outputs, ym.
Step 4: Calculate the error between the output from the
neural network and the desired output by E

E ¼ 1

nm

X
m�
X

n� ym; n� dm; nð Þ:2 ð3:3Þ

Where m is the number of neurons in the output layer (in
this study m=1), and n is the number of training data set. If
E is smaller than the required accuracy, then no other
learning procedures are needed.

Step 5: If E is larger than the required accuracy, adjust the
weights of the networks. The weights are adjusted by:

wij t þ 1ð Þ ¼ wijðtÞ þ hdjx
0
i ð3:4Þ

Where x
0
i is either the output of neuron i or an input, η is

a gain term, and δj is an error term for neuron j.

Step 6: Repeat steps 3–6 until the error of the entire set is
less than the required accuracy.

4 Experimental setup and training database

Building an ANN for a machine vision system that can predict
the surface roughness under a variation of cutting conditions,
a training database needs to be established with regard to
different cutting parameters and surface roughness. A number
of end milling experiments were carried out on a CNCmilling
machine as shown in Fig. 2 (variable speed 0.370 kw PMDC,
0–4000 rpm) using a high-speed steel end-mill cutter (6 mm)
for machining aluminum alloy work pieces.

A digital camera (Olympus C1400L) captures the image
of the surface with 1,280–1,024 resolution, 1/30 s grabbing
speed, and eight-bit digit output as shown in Fig. 3. The
equipment used for measuring surface roughness was a
surface roughness tester, Surfcorder SE-1100. A schematic
diagram of the computer vision system for measuring
surface roughness is shown in Fig. 4:

The feasible spaces of the cutting parameters were
selected by varying the cutting speed in the range 28–
47 m/min, the feed rate in the range 0.002–0.0466 mm per
revolution, the depth of cut in the range 0.6–1.0 mm. The
average surface roughness Ra, which is the most widely

Fig. 2 Machining status in CNC milling

Fig. 1 The behavior of an artificial neuron
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used surface finish parameter in industry, is selected in this
study. It is the arithmetic average of the absolute value of
the heights of roughness irregularities from the mean value
measured within the sampling length of 8 mm and
measurement speed of 0.5 mm/s.

The features of surface image texture were shown in
Fig. 5. The image of work piece surface captured by the
digital camera was shown in Fig. 5a. The major peak
frequency extracted from surface texture was shown in
Fig. 5b. Extracting the digital data on the central line of
Fig. 5a, the distribution of gray level of image could be

obtained and was shown in Fig. 5c. The major peak
frequency (F1) and the principal component magnitude
squared (F2) could be calculated from the image texture by
FT. The average gray level (Ga) in spatial domain also
could be got by the statistic method. Those were the
parameters for training the ANN.

Fig. 3 Rapid 1 computer vision system for acquiring the images

Fig. 5 Experimental results for texture analysis: a milled work piece
surface image (cutting condition: cutting speed 28 m/min, feed
0.002 mm/rev, depth of cut 0.6 mm), b major peak frequency, and c
gray level

Fig. 4 Schematic diagram of
the machine vision system for
measuring surface roughness in
end milling
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In the experiments, 27 milled specimens were operated
based on the range of cutting conditions. The experimental
results are listed in Table 1 for the training database.

The neural networks model for the surface roughness
prediction was trained in the following training procedure.
In the training process, the “trial-and-error” method is
employed to determine the number of hidden layers, the
neurons in each hidden layer, the learning rate, and the
momentum factor in the neural networks model. A few neural
network structures with varied numbers of hidden neurons are
compared and the structure of 6-10-1 that creates the least
prediction errors is selected as the system model.

Fig. 7 Network architecture 6-10-1
Fig. 6 Structure of the ANN for predicting the surface roughness by
vision system

Table 1 Experimental features of image texture of work piece and surface roughness for training database

Sl. no. Cutting speed
(V), m/min

Feed rate
(F), mm/rev

Depth of cut
(D), mm

Frequency Gray level (Ga) Stylus instrument measured
roughness (Ra), μm

F1 F2

1 28 0.0020 0.6 121.35 33.42 109.563 0.6371

2 28 0.0020 0.8 88.45 38.84 140.910 0.5705

3 28 0.0020 1.0 102.38 42.76 124.460 0.5039

4 28 0.0333 0.6 60.58 39.24 139.622 0.777

5 28 0.0333 0.8 95.36 41.26 109.787 0.670

6 28 0.0333 1.0 92.86 40.72 110.750 0.644

7 28 0.0466 0.6 51.26 36.52 165.813 0.9183

8 28 0.0466 0.8 73.68 35.72 153.845 0.8517

9 28 0.0466 1.0 107.82 36.21 123.449 0.687

10 38 0.0020 0.6 56.75 39.81 143.451 0.370

11 38 0.0020 0.8 118.93 34.82 117.280 0.3025

12 38 0.0020 1.0 65.38 40.87 138.275 0.2359

13 38 0.0333 0.6 97.62 37.82 125.892 0.5097

14 38 0.0333 0.8 62.65 37.02 150.378 0.4431

15 38 0.0333 1.0 59.86 38.84 145.970 0.3765

16 38 0.0466 0.6 97.59 39.64 111.837 0.6503

17 38 0.0466 0.8 58.88 37.33 144.170 0.5837

18 38 0.0466 1.0 59.24 38.17 144.985 0.587

19 47 0.0020 0.6 72.86 42.26 134.268 0.178

20 47 0.0020 0.8 62.92 40.52 26.100 0.0345

21 47 0.0020 1.0 71.82 41.82 24.210 0.0321

22 47 0.0333 0.6 83.28 40.32 141.670 0.2417

23 47 0.0333 0.8 64.11 39.86 138.334 0.236

24 47 0.0333 1.0 96.34 36.72 81.840 0.1085

25 47 0.0466 0.6 65.68 38.34 148.220 0.3823

26 47 0.0466 0.8 112.38 37.74 122.400 0.3157

27 47 0.0466 1.0 92.60 41.28 128.623 0.286
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By following the same procedure, the learning rate is set
as 1 and the momentum factor is set as 0.5. As a result, the
architecture of the ANN model is specified as 6-10-1, as
shown in Figs. 6 and 7.

After the training procedure, the weights between each
neuron and the bias of each neuron were obtained.
Performance of neural network (6-10-1) is shown in Fig. 8.

This neural network model can be used for predicting
surface roughness in real time.

5 Experimental verification and discussion

Verifying the developed networks to predict the surface
roughness of end milling, ten more milled specimens using
different cutting parameters were performed. As the cutting
speed, feedrate, depth of cut, major peak frequency, principal
component magnitude squared value, and the average gray

level is fed into the ANN, the surface roughness measured by
the vision system can be calculated directly. A comparison of
Ra′ (measured by vision system) and Ra (measured by stylus
method) has been presented in Table 2.

As the cutting speed, feedrate, depth of cut, major peak
frequency, principal component magnitude squared value,
and the average gray level is fed into the ANN, the surface
roughness measured by the vision system can be calculated
directly. The percent of error between the predicted value
and experimental value is calculated by the given formula.

% of Error ¼ Predicted value� Experimental

Experimental value

The predicted roughness values through machine vision
result validated by the ten sets of testing data from the
experimental value of the surface roughness in end milling
is shown in Fig. 9:

The result shows the average error of the prediction of
surface roughness in milling using ANN is 2.47%, i.e., the
accuracy is 97.53%.

Fig. 9 Validation of predicted and experimental values in end milling
process

Fig. 8 Performance of neural network (6-10-1)

Table 2 Experimental end milling parameters and surface roughness for verification tests

Sl. no. Cutting speed
(V), m/min

Feed rate
(F), mm/rev

Depth of
cut (D), mm

Frequency Gray level (Ga) Vision measured
roughness
(Ra′), μm

Stylus measured
roughness
(Ra), μm

Error (%)

F1 F2

1 32 0.0120 0.7 50.5200 58.9230 171.8620 0.6753 0.6633 1.5

2 30 0.0220 0.9 41.7300 57.8090 186.2800 0.5718 0.5543 3.15

3 34 0.0320 0.95 41.0780 60.4100 187.8700 0.4266 0.4391 −2.83
4 36 0.0400 0.97 66.4000 61.5680 142.3800 0.6523 0.6358 2.59

5 37 0.0380 0.8 71.2650 62.0100 26.4400 0.4191 0.3971 5.5

6 40 0.0420 0.98 83.4700 63.9200 140.4800 0.8274 0.8164 1.34

7 42 0.0360 0.85 92.0460 65.0910 129.8600 0.7751 0.7866 −1.07
8 44 0.0280 0.75 100.6100 66.2600 128.6800 0.8298 0.8153 1.77

9 45 0.0180 0.65 104.9900 66.8200 116.9200 0.6443 0.6633 −2.86
10 46 0.0450 0.90 108.6760 67.2980 121.7900 0.6919 0.6774 2.14
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6 Conclusions

In this paper, we have proposed a non-contact machine
vision system for the determination of surface roughness in
end milling. It proves a reliable assessment of surface
roughness over a given 2D area rather than single 1D trace.
Since end-milled surfaces are directional patterns with the
appearance of periodic, parallel feed marks, the roughness
features are extracted in the spatial frequency domain based
on the 2D Fourier transform.

The FT approach characterizes the surface image in
terms of frequency components. The magnitude of frequen-
cy components enhances the periodically occurring features
present in the surface image, and the directionality of
frequency components preserves the lay direction of a
surface. Major peak frequency F1, which represents the
frequency (or, inversely, the wave length) of the feed marks
in the image generally outperforms other roughness features
for roughness assessment. Since F1 is the distance between
the major peak and the origin, it is a robust measure to
overcome the effect of lighting of the environment.

The computational time of the Fourier transform with
size 256×256 is approximately 2 s on a Pentium 100 MHZ
personal computer. It compares favorably with the tradi-
tional stylus-based methods. We believe the computational
time can further be reduced with the higher-performance
personal computer or workstations, or with hardware
implementation of the Fourier transform for on-line, real-
time assessment of surface roughness.

A self-organized ANN to model vision measuring
system on surface roughness inspecting has been estab-
lished. Several verification tests have shown that the
maximum absolute error between the surface roughness
measured by vision system and that measured by the stylus
instrument is less than 5.5%, the average error of the
prediction is 2.47%, i.e., the accuracy is 97.53%. As the
fluctuation is the nature property of surface roughness, the
error is considered to be acceptable. In other words, the
developed measuring system using machine vision can be
used effectively to predict the surface roughness over a
wide range of cutting conditions in end milling. The direct
imaging approach is effective and easy to apply in the shop-
floor level.

The proposed methodology can be applied to the
machined surface in a manufacturing environment where
the on-line surface inspection can be implemented. There-
fore, the machine vision system and ANN approaches could
very well be used for the on-line prediction of roughness.

The cutting parameters in the testing stage were
randomly set but different from the original experimental
design, and the desired surface roughness was set following
industrial norms. The success of being able to perform the
successful prediction of surface roughness indicated that the

proposed system was flexible enough to meet cutting
conditions in industry settings.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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