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Abstract Accuracy of numerical models based in finite
elements (FE), extensively used for simulation of cutting
processes, depends strongly on the identification of proper
material parameters. Experimental identification of the
constitutive law parameters for simulation of cutting
processes involves unsolved problems such as the complex
testing techniques or the difficulty to reproduce the stress
triaxiality state during cutting. This work proposes a
methodology for the inverse identification of the material
parameters from cutting test. Two hybrid approaches are
compared. One of them based on FE and artificial neural
networks (ANN). The other one based on FE and local
polynomial regression (LPR). Firstly, a FE model is
validated with experimental data. Then, ANN and LPR
are trained with FE simulations. Finally, the estimated ANN
and LPR models are used for the inverse identification of
material parameters. This identification is solved as an
optimization problem. The FE/LPR approach shows good
performance, outperforming the FE/ANN approach.

Keywords Inverse technique . Cutting simulation . FE .

ANN . Local polynomial regression

Nomenclature
Parameters of constitutive equation
σY Equivalent stress
A Yield limit
B Strain hardening coefficient

n Strain hardening exponent
C Strain rate hardening coefficient
m Thermal softening coefficient
εpl Equivalent plastic strain
�"pl Equivalent plastic strain rate
�"0 Reference strain rate
θ Temperature
θref Reference temperature
θmelt Melting temperature

Description of the methodology
μ Friction coefficient at the interface
Fc Cutting force
Ft Thrust force
σ11 Tensile residual stresses at

machined surface in direction 1
σ33 Tensile residual stresses at

machined surface in direction 3
A(i), B(i), n(i) Random values being the input

variables of RBFN or LPRbFcðiÞ; bFtðiÞ; bs11ðiÞ; bs33ðiÞ Estimated values of forces and
residual stress

RBFN and LPR models
X ¼ X1;X2; :::;Xp

� �0
Predictor input variables

Y Response variable

RBFN
K(•) Univariate kernel function
||•|| Euclidean distance
J Number of hidden units
vj Output of the j-th hidden unit
Cj Vector of centres of the j-th hidden unit
Tj Width of the kernel functionbY Estimated value of response variable
w0k wjk Weights associated with the output unit k
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LPR
xi; yif g; i ¼ 1; 2; . . . ; n Sample observations

wi Weight for the ith observation
βj Regression coefficient
d Grade of the polynomial
hj Bandwidth (smoothing parameter)
Kh (uj) Univariate kernel for the

variable Xj

KH Kernel function product of
univariate kernels

Models estimation
M Number of iterations
N Number of observations of the dataset
Nv Validation observations
s Number of output variables
y Real valueby Estimated value
MARE Mean absolute relative error
MSE Mean square error
APE Absolute percentage error
MAPE Mean absolute percentage error

1 Introduction

Manufacturing processes should ensure not only competi-
tive time and cost production, but also the development of
components with high quality, especially in the case of high
responsibility applications. Simulation tools are widely
used in all steps of product design, not only for structural
calculations, also for processing route design, being this
step related with final service behaviour of the component.
Numerical models based on finite elements (FE) have been
extensively used for machining simulation [1, 2], however
many aspects related with numerical simulations remain
unsolved.

The identification of material parameters for cutting
simulation, strongly influent in the numerical results, is an
objective that should be achieved. Many problems remain
unsolved when a representative constitutive law should be
stated. Firstly, the inexistence of experimental tests able to
reproduce the special conditions involved during cutting.
Current characterization tests induce stress states in the
specimen quite different from those obtained during
machining. Another problem is performing typical tests at
high strain rates (for instance using metallic sheets in tensile
tests) for the same material treatment and the same format
as used in machining tests (as an example, bars in turning
operations). The work path suffered in different manufacture
process leads to different mechanical properties. Different
works in scientific literature show reasonable doubts related
with the convenience of applying constitutive equation

parameters obtained in traditional test to simulate cutting
processes. The best solution could be using machining tests to
identify the constitutive equation parameters [3].

Artificial neural networks (ANN) and local polynomial
regression (LPR) techniques could help in the identification
of constitutive law parameters for specific machining
conditions. These nonparametric techniques require no
assumptions about the form of the relationship between a
set of variables.

Hence, they are particularly useful when little information
about the model structure is available.

ANN have been extensively used in a wide variety of
applications related with manufacturing processes (see for
instance [4–6]).

On the other hand LPR techniques [7] have not been
commonly used for the analysis of manufacturing processes.
These statistical tool provide similar characteristics and
requirements as ANN to threat complex relationships, with
little information about the interdependence of the input and
output variables, however their use has been limited to other
fields.

Despite of the potentiality of ANN and LPR models, the
main drawback of these techniques is the requirement of a
large amount of data for training process. In our context, it
is really difficult to have a large amount of experimental
data. The variety of materials that should be involved to
reproduce a wide range of variation of constitutive
parameters would be extremely high. Furthermore, it is
not possible to control the constitutive parameters of the
materials tested. Thus, the use of validated FE models is an
alternative way to generate numerical data to find the best
ANN and LPR models.

The hybrid FE/ANN approach has been used in different
analysis of manufacturing processes and other fields. For
instance, Umbrello et al. [8] used this combined method to
predict machining induced residual stresses during hard
turning; and Chamekh et al. [9] proposed a hybrid
procedure for the identification of HILL anisotropic
parameters based on deep drawing of a cylindrical cup.
Fernández-Fdz and Zaera [10] used the combined approach
to predict the penetration behaviour of ceramic targets
under the impact of different projectiles.

In this work, we propose a hybrid procedure for the
inverse identification of material parameters from cutting
tests. The aim is obtaining constitutive equation parameters
suitable to be implemented in FE codes for accurate
simulation of cutting. Two approaches, one based FE/
ANN and the other one based on FE/LPR are compared in
order to find the best hybrid procedure. These approaches
are based on the following variables: (1) the forces and the
friction coefficient at the interface, measured/estimated
during cutting tests. (2) The machining induced residual
stresses, measured on the machined surface. These variables
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are highly sensible to variations of the material parameters.
Residual stresses were selected because of both its depen-
dence on material parameters and due to their relevance as
surface integrity indicators [11].

Thus, the methodology proposed in this work relates
experimental data obtained from orthogonal cutting tests
and subsequent measurements on the machined workpiece,
with the values of the parameters of the constitutive
equation. This approach could simplify significantly the
experimental devices needed for research in this field.

The proposed FE/ANN and FE/LPR approaches are
divided in three different stages. In the first stage, a FE
model is developed using experimental data. Then, the
validated model is used to perform a great number of
simulations, changing the input data and obtaining a wide
range of cutting forces and level of residual stresses for the
different ranges of material parameters covered. In the
second stage, both ANN and LPR models are trained by
using a large set of numerical results obtained from FE
model. The neural network used is the Radial Basis
Function Network (RBFN). Finally, the last stage
involves the inverse identification procedure. In this
stage the objective is the prediction of the constitutive
parameters according to specific values of cutting forces
and residual stresses obtained from cutting tests. The
identification problem is solved as an optimization
problem using the estimated RBFN and LPR models
from second stage.

The rest of the article is organized as follows. Section 2
describes the steps of the proposed FE/ANN and FE/LPR
procedures. Section 3 describes the FE model and its
experimental validation. Theoretical concepts related with
RBFN and LPR techniques are briefly explained in section
fourth. Sections 5 shows the results, and finally section 6
summarizes the conclusions of the work.

2 Methodology

The methodology is illustrated in Fig. 1. At the first stage
(corresponding with the upper box of Fig. 1), the FE model,
able to predict both cutting forces and residual stresses, was
developed and validated with experimental data. The
Jonhson-Cook [12] constitutive law (see Eq. 1) was used
in this work due to its ability to simulate mechanical
processes involving high strain and strain rate and thermal
softening. This constitutive law is commonly used in
simulations of cutting processes [13].

sY ¼ Aþ B "pl
� �n� � � 1þ C ln

�"pl
�"

� �� �
� 1� q � qref

qmelt � qref

� �m� �
ð1Þ

being σY, equivalent stress; A, yield limit; B, strain
hardening coefficient; n, strain hardening exponent; C,
strain rate hardening coefficient; m, thermal softening
coefficient; εpl, equivalent plastic strain; �"pl, equivalent
plastic strain rate; �"0, reference strain rate; θ, temperature;
θref, reference temperature; and θmelt, melting temperature.

Cutting tests of AISI 316L were used for the validation of
the FEmodel. This alloy is similar (mechanical behaviour and
physical properties) to those materials that will be studied in
the last section of the paper. The experimentally validated FE
model was used to generate a large dataset for the second
stage. This data set was obtained by varying the parameters of
constitutive equation, A, B and n; and the friction coefficient
at the interface, μ. The output variables were the cutting and
thrust force, Fc, and Ft, and the level of tensile residual
stresses in machined surface in direction 1, σ11, and in
direction 3, σ33. (see Fig. 2). These directions correspond,
respectively, with circumferential and axial directions of the
orthogonal cutting tests performed to validate the FE model.
Cutting forces are significant parameters related with the
mechanical behaviour of the workpiece material, and they
are relatively easy to measure during machining tests.
Residual stresses in machined surface, which should be
measured in a post mortem analysis of the machined
specimen, are related with both mechanical and thermal
phenomena during cutting. The sensibility of residual stress
to variations of constitutive parameters A, B and n, have
been analyzed recently in scientific literature [14]. Also the
terms of the constitutive equation related with strain rate
sensitivity and thermal softening (C and m, respectively)
could influence the residual stresses and the cutting
forces. However, the prediction of these parameters
would involve a large number of simulations. Thus, despite
of the interest of a full approach involving all terms of
constitutive equation (strain hardening, strain rate hardening
and thermal softening) this work is restricted to the three
coefficients A, B, n.

At the second stage (corresponding with intermediate
box of Fig. 1, see also Fig. 3) RBF and LPR models are
estimated by using the dataset from FE model. The input
and output variables of these models are the same used
in FE model. That is, the input variables are the
parameters A, B and μ, and the output variables were Fc,
Ft, σ11 and σ33.

Finally, at the third stage (lowest box in Fig. 1, see also
Fig. 4) the inverse identification is performed. During this
stage, an optimization problem was solved. Now the
input variables are a set of specific values of Fc, Ft, σ11,
σ33 and μ. The objective is to find the values of A, B and n
according those input values. The estimated RBFN and
LPR models of the second stage are used to related input
and output variables. At the iteration i of the optimization
problem, a set of random values A(i), B(i) and n(i) along
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with the value μ are the input variables of RBFN or LPR
models. For these values, the corresponding bFcðiÞ; bFtðiÞ;bs11ðiÞ and bs33ðiÞare estimated. The values A(i), B(i) and n(i)
that minimize the difference between bFcðiÞ; bFtðiÞ; bs11ðiÞ andbs33ðiÞ and Fc, Ft, σ11, σ33, are the predicted constitutive
material parameters.

Concerning the limitations of the method proposed, it
should be noted that the RBFN and LPR models could
be used to predict parameters A, B and n, corresponding
to materials showing thermal softening and strain rate
hardening behaviour similar to those used during the
training process of the models. Further application of the

Fig. 1 Scheme of the hybrid methodology using nonparametric approach and FE modelling

Fig. 2 Boundary conditions and
type of contour used in the
model. Regions 1, 2, 3 com-
bined sliding and Lagrangian/
Eulerian boundaries; region 4
was Eulerian
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proposed methodology to predict also visco-plasticity and
thermal softening terms of the constitutive equation,
should involve the generation of wider amount of data
from numerical models and, the training of the models
varying the corresponding parameters in Eq. 1.

3 Description of FE model and experimental validation

3.1 Finite elements model

A plane strain Arbitrary Lagrangian Eulerian (ALE) model
was developed using the commercial finite element code
ABAQUS/Explicit [15]. A thermo-mechanical coupled
analysis was performed using the CPE4RT element type,
being plane strain, quadrilateral, linearly interpolated, and
thermally coupled for ALE formulation [16].

One of the most important requirements for the model
was avoiding mesh distortion for all sets of parameters A,
B, n simulated. In addition, the residual stress distribution
in the machined surface had to be stabilized and steady
state conditions reached. The ALE model uses sliding,
Lagrangian and Eulerian contours allowing the material to
flow across an internal Eulerian zone surrounding the tool
tip (see Fig. 2). This approach avoided extreme mesh
distortion, allowing the simulation of a long machined
surface (larger than 10 mm, 100 times the value of the
uncut thickness of the chip equal to 0.1 mm). The details
about the boundary conditions of the model (Eulerian at the
entrance of the workpiece and at the exit of the chip; and
Lagrangian at the end of the workpiece) can be found in

Miguélez et al. [17] with a brief description of the main
advantages obtained with the implementation of these
boundary conditions.

Feed rate was 0.1 mm/rev, and the cutting edge radius
was 20 μm. Cutting speed was fixed equal to 120 m/min
for all calculations performed in the paper. Although cutting
forces and residual stresses are dependent on this parameter
[18], the paper is not focused on this phenomenon.

A value of the Quinney–Taylor coefficient equal to 0.9
was assumed. An initial temperature of 293 K was
imposed. Conduction and convection to air (only in
freshly machined surface) were taken into account, while
radiation was neglected. The coefficient of heat convection
was 20 W/m2K and sink temperature was 293 K.
Thermal flux was allowed in the attached contour of the
tool [17].

Concerning the contact properties at the tool-chip
interface, a constant friction coefficient along the tool/
workpiece contact length is assumed. Although it is a
simple approach it has been widely used in metal cutting
simulation [19].

The friction coefficient was stated as an input parameter
for the non-parametric models, thus the value was varied in
the range 0.3–0.8, in order to generate numerical results
(cutting forces and residual stresses) dependent on friction.
The heat partition between tool and workpiece was
assumed to be 50–50%.

The analysis was carried out in two steps: cutting,
using an explicit integration scheme and cooling and
unloading, using an implicit integration scheme proposed
in [20]. The cutting forces are obtained from the first step.
The residual stress distribution (in directions 1 and 3, see
Fig. 2), was obtained from de second step, in a section of
the workpiece corresponding to stationary conditions during
cutting.

As was explained before, the workpiece material was
modelled using the Johnson–Cook constitutive model. The
starting point for initial simulations and experimental
validation of the model was a constitutive law obtained
from literature for the workpiece material, AISI 316L [3],
presented in Table 1.

Fig. 3 Stage 2 of the methodology: RBFN and LPR model estimation

Fig. 4 Stage 3 of the methodol-
ogy: prediction of A, B and
n using RBFN and LPR
models
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Physical properties of cutting material (carbide) and
workpiece material were obtained from scientific literature
(references [14, 21]) and are presented in Tables 2 and 3.

3.2 Experimental validation

The model was validated with experimental data obtained
from orthogonal cutting tests (AISI316L) and subsequent
measurement of residual stresses in the machined surface.
The value of the friction coefficient equal to 0.4 reproduced
accurately the resultant residual stresses observed in
experimental tests performed in the laboratory.

Orthogonal dry cutting tests with air cooling were
carried out in a lathe (PINACHO model Smart-Turn 6/
165) with the following parameters: cutting speed 120 m/
min, feed rate 0.1 mm/rev, depth of cut equal to 2 mm. The
workpiece material was a tube of AISI 316L steel with a
wall thickness equal to 2 mm.

The tool geometry was generated by electro-discharge
machining in a hard metal preform. Cutting edge radius was
20 μm. The rake angle and the clearance angle were
respectively 0° and 5°, obtained by positioning the insert in
the tool holder. The support of the tool was instrumented
with strain gauges allowing measurement of the cutting
force during orthogonal cutting of the tube (see Fig. 5). The
cutting edge of the insert was located coaxially with the
axis of the support, avoiding the effect of torque during
cutting. Cutting and trust forces predicted with numerical
model matched reasonably the values measured in the
cutting tests in the lathe. Errors below 15% were obtained
for cutting force prediction. However, the model does not
predict accurately thrust force. As is well known, the
inaccuracy in predicting thrust force is a common problem
of FE cutting models.

The distribution of residual stress in circumferential
direction was measured in the Technological Centre
IDEKO (see http://www.ideko.es). The in depth distribution
of residual stresses, both in circumferential and axial
directions, were approximately predicted with the model

(see Fig. 6). Experimental tensile value in the machined
surface is larger than predicted value (error around 20%).
This behaviour could be related with the effect of the
previous cut that appears in the turning tests. In the
experimental tests used to validate simulations, the main
cutting edge cuts the machined surface generated in the
previous revolution of the lathe. In the case of difficult to
cut material like AISI 316L, this zone is strongly affected
by the previous cut [22] increasing the induced residual
stresses in the workpiece. This increment could explain the
differences observed between predicted and measured
residual stresses.

4 Theoretical concepts of RBFN and LPR

The RBFN and LPR are nonparametric techniques to
estimate the conditional expectation of a response variable,
Y, given a set of p predictor variables X ¼ X1;X2; :::;Xp

� �0
.

RBFN is a feed-forward network with three layers:
input, hidden and output layer [23]. The input layer is
composed of the input variables, X. The hidden layer of J
units transforms the data from the input space by applying a
kernel function, K(•). The output vj of the jth hidden unit is
obtained as:

vj ¼ K
X� Cj

�� ��
Tj

� �
ð2Þ

where Cj is the vector of centres, Tj controls the width of
the kernel function and ||•|| denotes the Euclidean distance.
Thus, vj is near to 1 when the input vector is near to the
centre, and as the input vector is moved away from the
centre, vj decreases. Finally, the output layer applies a linear
combination of all hidden layer outputs. That is, the kth
output unit has the output bYk obtained as:

bYk ¼ w0k þ
XJ
j¼1

wjkvj ð3Þ

where w0k and wjk are weights associated with the output
unit k. The degree of accuracy of the RBFN can then be
controlled by the shape of the kernel function, the number

Table 3 Material properties [14]

Properties AISI 316L

Young modulus (GPa) 202

Poisson coefficient 0.3

Density (kg/m3) 7,800

Specific heat (J/kg°C) 542

Thermal expansion coefficient 1.99 E-5

Thermal conductivity (W/m°C) 20

Table 2 Tool properties [21]

Properties Carbide tool

Density (kg/m3) 14,900

Specific heat (J/kg°C) 138

Thermal conductivity (W/m°C) 79

Table 1 Constitutive parameters for AISI 316L [3]

A (MPa) B (MPa) n C m �"0 s�1ð Þ

514 514 0.508 0.042 0.533 10−3
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of hidden units, their centres and their widths, and the
output layer weights. A training data set should be used to
carry out the model parameters selection (learning stage).

LPR is a statistical approach to fitting curves to data by
smoothing [7]. The fit at X=x is the value of a polynomial
function fitted only to those observations in a neighbour-
hood of x. LPR uses weighted least squares regression to
locally fit a dth degree polynomial to data. For example, for
univariate predictor variable, X, and polynomials of degree
d=2, the LPR model minimizes:

Xn
i¼1

Wi yi � b0 � b1 xi � xð Þ � b2 xi � xð Þ2
� �2

ð4Þ

where {xi, yi}, i=1,2,...,n, are the n sample observations, wi

is the weight for the i-th observation, and βj,s are the model
parameters. The predicted value with this model is, then,bf ðxÞ ¼ _by ¼ _bb

0
. The weights wi depend on the distance

between xi and x and are defined as:

Wi ¼ h�1K
xi � x

h

� �
¼ Kh uið Þ ð5Þ

where Kh (•) is a kernel function, similar to the one used in
RBFN. In this case, the parameter h is a smoothing parameter
called the bandwidth, and the centre is the value x at which
the response variable Y is to be estimated. The smoothing
parameter regulates the size of the neighbourhood around x.

In the case of multivariate predictor variables,
X ¼ X1;X2; :::;Xp

� �0
, the kernel function can be computed

as the product of univariate kernels. That is, the kernel
denoted as K(•) can be obtained as:

KH ðuÞ ¼ Kh1 u1ð Þ � ::: � Khp up
� � ð6Þ

where Kh (uj) is the univariate kernel for the variable Xj.
The bandwidths, hj, can be the same or not for all univariate
kernel functions.

Strain gages Insert 

a bFig. 5 Orthogonal cutting
device used for testing: a CNC
lathe b cutting insert attached to
the instrumented tool holder

0 0,0001 0,0002 0,0003 0,0004 0,0005 0,0006 0,0007 0,0008

σ 
11

 (
P

a)

numerical

Depth into machined surface (m)

0 0,0001 0,0002 0,0003 0,0004 0,0005 0,0006 0,0007 0,0008

Depth into machined surface (m)

experimental

σ 
33

 (
P

a)

experimental

numerical

-5 108

0

5 108

1 109

1,5 109

-5 108

0

5 108

1 109

1,5 109

Fig. 6 Experimental and numerical residual stresses in circumferential
and axial directions (corresponding with directions 1 and 3 in the
numerical model, respectively)
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The accuracy of the LPR model is, then, controlled by
the shape of the kernel functions, the bandwidth hj and the
polynomial degree d. As in RBFN models, a training data
set should be used in order to select these model parameters.

5 Modelling results and discussion

5.1 First stage: finite element results

Numerical simulations were performed with different sets
of Johnson–Cook equation parameters and values of
friction coefficient. Total number of sets used in numerical
simulations was 320, large enough to train both non-

parametric models (RBFN and LPR). The values of the
terms of the constitutive equation were ranged from the
initial values (given in [3]); Table 4 shows the intervals of
A, B, n and friction μ, implemented in the numerical work.
The intervals were selected covering representative values
characteristics of different type of steel behaviour found in
scientific literature.

Residual stresses results from the interaction of different
coupled phenomena. Temperature increase implies both
thermal softening and enhanced thermal expansion contri-
bution, having opposite effects in resultant residual stress
[11]. During cutting simulation, significant influence of
input parameters in chip morphology and stress and
temperature fields was observed. Some examples of the
temperature and σ11 fields during cutting are shown in
Figs. 7 and 8. In the simulations presented in Fig. 7, the
same value of parameters A=514 and B=800 MPa were
considered, while n was equal to 0.4, 0.5 and 0.6. Figure 8
shows the influence of B, being equal to 514 and 800 MPa,
respectively, while the other parameters were A=514 MPa
and n=0.5. The increment of A, being the elastic limit, led
to decreased values of tensile residual stresses. The increment
of B and n, representing increased hardening originated larger
values of residual stresses. These trends observed in this work
are in agreement with those presented in [20].

Fig. 7 Temperature (K) and stress field σ11 (Pa, direction 1) obtained for A=514 B=800 a n=0.4 b n=0.5, c n=0.6

Table 4 Intervals of input parameters for numerical simulations and
corresponding intervals of output parameters used for training non
parametric models

Input parameters Output parameters

A (MPa) 300–600 Fc (N/mm) 156–470

B (MPa) 500–900 Ft (N/mm) 76–386

n 0.3–0.6 σ11 (MPa) 162–1,540

μ 0.3–0.8 σ33 (MPa) 272–1,420
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5.2 Second stage: RBFN and LPR models estimation

In order to find the best RBFN model, as well as, the best
LPR model, the dataset of N=320 cases generated from
FEM is used. The selection of the best models is based on
Monte Carlo cross-validation (MCCV) technique [24].
Figure 3 illustrates this stage.

The MCCV is a method for estimating the prediction
error based on resampling. In MCCV, the dataset, of N
observations, is randomly split into two parts. The first part,
of N–Nv observations, is denoted as training set and used to
fitting the model. The second part, of Nv observations, is
denoted as validation set and used to measure how well the
model fits this new data, that is, to compute the prediction
error. This procedure is repeated a large number of times,
M. Then, the best model is the one with the smallest

average prediction error, computed based on the M different
ways of data splitting.

Here, two metrics, the mean square error (MSE), and the
mean absolute relative error (MARE), were used to
evaluate the alternative models. Then, the global errors of
the model, MSEG and MAREG, are computed as:

MSEG ¼ sNvMð Þ�1
XM
i¼1

Xs

j¼1

XNv

k¼1

yijk �byijk� �2
ð7Þ

MAREG ¼ sNvMð Þ�1
XM
i¼1

Xs

j¼1

XNv

k¼1

yijk � byijk		 		
yijk

ð8Þ

Fig. 8 Temperature (K) field and stress field σ11 (Pa, direction 1), A=514, n=0.5, a B=514 b B=800

Fc Ft σ11 σ33 MSEG or MAREG

RBFN MSE 0.00041 0.00051 0.00171 0.00164 0.00107

MARE 0.02036 0.02371 0.06640 0.05216 0.04066

LPR MSE 0.00035 0.00048 0.00158 0.00152 0.00098

MARE 0.01875 0.02296 0.06241 0.04963 0.03844

Table 5 MSE and MARE of
best RBFN and LPR models
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where, s is the number of output variables, y is the real
value, and by the estimated value.

The results showed in this section are based on a
validation set of Nv=25 observations, and a value of M=
5,000 iterations. The number of output variables is s=4.
Because variables span over different ranges, all variables
are normalized between 0 and 1. Since the selection of
kernel functions is not critical to the performance of the
nonparametric fit [7], the kernel in all models (RBFN or
LPR) is the Gaussian function.

Therefore, for RBFN models, the parameters that
should be determined were Tj, Cj, wjk, in Eqs. (2) and
(3), and the number of hidden neurons, J. For LPR models,
the parameters were the bandwidths hj, in Eq. (6), and the
polynomial degree d.

In the case of LPR models, since variables have been
normalized between [0,1], all bandwidths are set the same,
that is, hj=h, j=1,2,3,4.

For RBFN models, the orthogonal least square (OLS) is
used as learning procedure [25]. The OLS uses the same
value Tj (that is, Tj=T) for all hidden neurons. For a given
T, the algorithm optimized the number of hidden neurons, J,
their centres Cj, and the output layer weights, wjk. Hence, in

order to select the best RBFN model, only the parameter
h is controlled.

The Matlab is used for this analysis. The parameters of
the best estimated models were the following:

& RBFN: T=2.27 and J=120 hidden neurons. The
location of the centres Cj, and the output weights, wjk,
are not listed for simplicity.

& LPR: h=0.13 and d=3.

Table 2 shows the MSE and the MARE for these
models. We can conclude that both models have similar
performance with LPR showing a better overall perfor-
mance. Both metrics have very low values, showing the
efficiency of the models. The MARE for variables Fc,
and Ft, has a value around 2%. In the case of variables
σ11and σ33,this error has a value around 6% and 5%,
respectively.

5.3 Third stage: prediction of constitutive parameters A, B
and n

In this stage, a set of Fc, Ft, σ11, and σ33, as well as, the
parameter μ (obtained as the ratio between thrust and

Table 6 APE (%) of the constitutive parameters using RBFN model

A bA APE (%) B bB APE (%) n bn APE (%)

363 302.27 16.73 742 775.81 4.56 0.46 0.40 12.78

385 387.68 0.70 533 500.00 6.19 0.38 0.46 20.82

457 491.95 7.65 624 764.34 22.49 0.44 0.39 10.25

464 549.13 18.35 818 847.45 3.60 0.57 0.51 9.84

471 366.81 22.12 752 851.26 13.20 0.41 0.35 14.17

532 509.24 4.28 596 672.92 12.91 0.52 0.51 2.38

565 563.23 0.31 810 852.39 5.23 0.33 0.31 5.48

567 587.25 3.57 876 899.90 2.73 0.34 0.32 6.18

592 542.53 8.36 846 713.84 15.62 0.54 0.59 8.94

641 614.07 4.20 641 889.94 38.84 0.55 0.44 19.24

Table 7 APE (%) of the constitutive parameters using LPR model

A bA APE (%) B bB APE (%) n bn APE (%)

363 430.20 18.51 742 725.42 2.23 0.46 0.48 4.74

385 355.93 7.55 533 500.10 6.17 0.38 0.45 18.34

457 524.92 14.86 624 627.31 0.53 0.44 0.45 1.84

464 402.08 13.34 818 807.46 1.29 0.57 0.56 2.30

471 379.84 19.35 752 857.07 13.97 0.41 0.35 15.15

532 552.97 3.94 596 556.21 6.68 0.52 0.57 9.96

565 584.21 3.40 810 822.65 1.56 0.33 0.32 2.39

567 547.99 3.35 876 798.91 8.80 0.34 0.34 1.41

592 526.60 11.05 846 899.76 6.35 0.54 0.51 4.98

641 646.73 0.89 641 629.26 1.83 0.55 0.58 5.82
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cutting force) are known (Table 5). The objective is to
predict the values of parameters A, B and n. As mentioned
in section 1, an optimization problem is solved. At iteration
i, a set of random values A(i), B(i) and n(i) along with the

value μ are used as input variables of RBFN or LPR model.
Then, the values bFcðiÞ; bFtðiÞ; bs11ðiÞ and bs33ðiÞ are estimated.
These values are used to compute the error, E, as:

E ¼
Fc � bFcðiÞ
			 			

Fc
þ

Ft � bFtðiÞ
			 			

Ft
þ s11 � bs11ðiÞ

		 		
s11

þ s33 � bs33ðiÞ
		 		

s33
ð9Þ

The genetic algorithm is used to minimize the error E [26].
The values A(i), B(i) and n(i) that minimize E are the
predicted parameters.

Here, we show the predicted parameters bA; _bB and bn, for a
set of ten cases. These cases are obtained from the FEM and
they have not been used in stage 2. The error used to evaluate
the prediction performance is the absolute percentage error
(APE):

APEð%Þ ¼ y� byj j
y

� 100 ð10Þ

Table 6 shows the real values of the parameters A, B and
n, the values estimated with the RBFN model, and the
corresponding APE. Table 7 shows the same information
for the LPR model. Figure 9 compares the errors of these
tables. Table 8 summarizes the errors of Tables 6 and 7
showing the mean error (MAPE), for each parameter and
each model. The MAPE is lower than 13% in the case of
RBFN and lower than 10% for LPR. On the basis of
these results we may conclude that LPR outperforms the
RBFN model. Thus, LPR is used in the next section to
predict constitutive law parameters from a set of experimental
data. The procedure described in this stage is shown in
Fig. 4.
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Fig. 9 Absolute percentage error obtained with both RBF and LPRN
methods

Table 8 MAPE (%) of the constitutive parameters from RBFN and
LPR models

A B n

RBFN 8.62 12.54 11.01

LPR 9.63 4.94 6.69

Table 9 J–C parameters for AISI 1045

Reference A bA B bB n bn
[27] 375 552 0.457

[28] 375 580 0.500

[29] 553.1 600.8 0.234

[30] 451 819.5 0.173

Estimated values 427 772 0.21

Int J Adv Manuf Technol (2011) 54:21–33 31



5.4 Inverse identification from experimental data

Since LPR model gives the better prediction, it is used for
inverse estimation of constitutive law parameters of two
types of steels: AISI 1045 and AISI 316L. Experimental
data for these steels were obtained from the scientific
literature to be used as an input for the inverse identification
method.

Experimental data for stainless steel AISI 1045, obtained
from comparable cutting conditions were obtained from
reference [27]. The data from [27] were Fc=652N/mm, Ft=
338N/mm and σ11=530MPa. The value of σ33 was
considered to be approximately the same as σ11, because
no data was found about this parameter. Table 9 shows the
estimated values for A, B and n obtained by using the
proposed inverse identification methodology and those
values of Fc, Ft, σ11 and σ33 and also summarizes the
values of these parameters for the AISI 1045, found in
the literature [28–31]. As shown in Table 9, the results
provided by the proposed inverse methodology lied in
the range of the available material parameters. The
results were especially very close to those proposed by
Özel [31].

The methodology is also applied to the data given in the
work of Outeiro et al. [32] concerning the machining
induced residual stresses in AISI 316L. The values used are
Fc=291 N/mm, Ft=237 N/mm, σ11=900 MPa and σ33=
600 MPa. In this case, the material constants obtained with
the proposed method are shown in Table 10. These values
are in the range proposed in the works [33–35] and
summarized in Table 10.

In order to check the material parameters by inverse
identification, the values given for both materials (AISI
1045 and AISI 316L) by the LPR model were implemented
in the numerical model. Numerical output (forces and
residual stresses) were compared with those presented in
the references [26–32]. The error values for cutting forces
obtained from numerical simulation were similar to those
obtained in the experimental validation of the numerical
model presented previously. The same trend was observed
for residual stresses. The level of tensile residual stresses in

the machined surface was underestimated with an error
close to 20%; however as was explained before, this
phenomenon could be related with the effect of previous
passes inducing subsurface hardening in the workpiece.
These results are reasonably, having into account that the
errors are due not only to the estimation method. Also
the inexactitude derived from the use of experimental
values obtained from literature (due for instance to
possible different treatments or processing routes of the
workpiece material, or to uncertainties of the measure-
ment in each experiment) influences the errors of the
final result.

6 Conclusions

The main contribution of this paper is the exploration of the
potentiality of the methodology developed, that has proved
its ability to perform inverse identification of material
parameters from cutting tests. RBFN and LPR models were
used to identify these parameters from experimental data
obtained from cutting tests. These models are useful tools
in prediction of variables with complex dependence on
input data. Finite element analysis was performed to train
the nonparametric models. Different methodology stages
were covered successfully. Firstly the numerical model was
developed and validated showing reasonably accuracy
when compared with experimental data. Secondly, the
nonparametric models were trained with FE output and
were able to predict material parameters with acceptable
errors. Finally, the method was applied to experimental
data (cutting forces and residual stresses) obtained from
literature focused on machining of two types of stainless
steel. Although LPR has not been commonly used in
analysis of manufacturing processes, this method presented
lower level of error. In fact the constitutive parameters
obtained with the LPR model agreed reasonably with the
range of values presented in literature for each material
analyzed.

The proposed methodology could be easily extended to
predict also strain rate hardening and thermal softening
terms of the constitutive equation. Future work in the
topic presented in the paper would also involve improved
testing procedure with the measurement of other signif-
icant variables during cutting (mainly temperature).
Furthermore, other representative parameters obtained
from numerical simulation could be used, for instance
the geometrical characteristics of the chip morphology,
strongly dependent on constitutive law parameters. Also
the numerical modelling could be improved considering
3D codes and more sophisticated contact laws or other
advanced constitutive equations. The improvement of
each stage involved in the presented methodology would

Table 10 J–C parameters for AISI 316L

Reference A bA B bB n bn
[32] 305 1,161 0.61

[32] 305 441 0.10

[33] 301 1,472 0.807

[34] 280 1,750 0.8

[3] 514 514 0.508

Estimated values 330 822 0.4

32 Int J Adv Manuf Technol (2011) 54:21–33



lead to improvements in the final inverse identification
procedure.
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