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Abstract Concurrent design of tolerances by considering
both the manufacturing cost and quality loss of each
component by alternate processes of the assemblies may
ensure the manufacturability, reduce the manufacturing costs,
decrease the number of fraction nonconforming (or defective
rate), and shorten the production lead time.Most of the current
tolerance design research does not consider the quality loss. In
this paper, a novel multi-objective optimization method is
proposed to enhance the operations of the non-traditional
algorithms (Elitist Non-dominated Sorting Genetic Algorithm
(NSGA-II) and Multi-Objective Particle Swarm Optimization
(MOPSO)) and systematically distribute the tolerances among
various the components of mechanical assemblies. The
problem has a multi-criterion character in which three objective
functions, one constraint, and three variables are considered.
The average fitness factor method and normalized weighted
objective function method are used to select the best optimal
solution from Pareto-optimal fronts. Two multi-objective
performance measures namely solution spread measure and
ratio of non-dominated individuals are used to evaluate the

strength of Pareto-optimal fronts. Two more multi-objective
performance measures namely optimizer overhead and algo-
rithm effort are used to find the computational effort of NSGA-
II and MOPSO algorithms. The Pareto-optimal fronts and
results obtained from various techniques are compared and
analysed. Both NSGA-II and MOPSO algorithms are best for
this problem.

Keywords Tolerance design . Alternative manufacturing
process selection . Evolutionary algorithms .

Elitist Non-dominated Sorting Genetic Algorithm
(NSGA-II) .Multi-objective Particle Swarm Optimization
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1 Introduction

Tolerance design bridges the space between design, manufac-
turing, and quality engineers, and as such it plays a key role in
concurrent engineering. Ideally, a smart technique for toler-
ance allocation should take into account coupling between
design, manufacturing, and quality for achieving total cost and
lead-time reduction. However, the same has not been done in
existing work. Traditional practice to tolerance design has
been based on a sequential approach to the design and
manufacturing considerations. Integrated tolerance design
involving simultaneous selection of the design and manufac-
turing tolerances was introduced in the last decade. Choice of
manufacturing processes (or machines) from among the
alternatives, frequently encountered in different stages of
realization of individual dimensions is an important issue in
product development. The problem becomes more compli-
cated if the available alternative manufacturing processes (or
machines) have non-overlapping precision range. This topic
has been the focus of attention of a large number of researchers
for decades.
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In earlier years, researchers focused their attention to obtain
the best tolerance allocation in product design that not only
meets with the functional requirements but also corresponds
to a minimum manufacturing cost. In order to solve the same,
various numerical methods were employed to deal with
complicated computations associated with tolerance design
models. Ye and Salustri [1] introduced a new concurrent
engineering method for tolerance allocation and constructed
a non-linear optimization model to implement it. The model
minimized quality loss and manufacturing cost simulta-
neously in a single-objective function by setting both process
tolerances and design tolerances. Singh et al. [2, 3] explored
the application of genetic algorithms to obtain optimal
solution to a set of tolerance design problems with simple-
dimension chain involving sets of alternative processes.
Prabhaharan et al. [4] used GA for optimal tolerance
allocation to overcome the shortcomings in the conventional
tolerance stack analysis and allocation system. Prabhaharan
et al. [5] introduced a continuous ant colony algorithm, a
kind of metaheuristic approach as an optimization tool for
minimizing the critical dimension deviation and allocating
the cost-based optimal tolerances. Krishna and Mallikarjuna
Rao [6] used scatter search method to simultaneously
allocate both design and manufacturing tolerances based on
minimum total manufacturing cost. Huang and Shiau [7]
obtained the optimized tolerance allocation of a sliding vane
rotary compressor’s components for the required reliability
with the minimum cost and quality loss. Huang and Zhong
[8] established the sequential linear optimization models based
on the process capabilities. This approach can release the
working tolerances, reduce manufacturing costs, and enhance
the acceptance rate of machined parts. Singh et al. [9]
introduced GA to obtain an optimal solution to the advanced
tolerance synthesis problem by considering continuous cost
function. This method works for both single and multiple
tolerance stack-ups that share one or more individual
tolerances. Siva Kumar et al. [10] used a hybrid algorithm
(Tabu search+Heuristic algorithm) for optimum tolerance
allocation in complex assemblies with alternative process
selection. Isabel González et al. [11] developed a methodol-
ogy to allow an automatic tolerance allocation capable of
minimizing manufacturing costs based on statistical approach.
Huang and Zhong [12] used linear programming methods to
concurrently obtain process tolerances for an assembly by
using the information of process planning. Non-linear optimal
models have been established to minimize the total weight
manufacturing cost. Forouraghi [13] developed a methodol-
ogy to allow an automatic tolerance allocation capable of
minimizing manufacturing costs based on particle swarm
optimizer. Siva Kumar and Stalin [14] used Lagrange
multiplier method to simultaneously allocate both design
and manufacturing tolerances based on minimum total
manufacturing cost. Wu et al. [15] developed a methodology

to allow an automatic tolerance allocation capable of both
minimizing manufacturing costs and quality loss based on
Monte Carlo simulation. Muthu et al. [16] used metaheuristic
method to balance the manufacturing cost and quality loss to
achieve near optimal design and process tolerances simulta-
neously for minimum combined manufacturing cost and
quality loss over the life of the product.

From the above literature, the previous work on tolerance
allocation can be summarized as follows:

(1) Scatter searchmethod, sequential linear method, Lagrange
multipliermethod,Monte Carlo simulation, Linear programming
methods, etc. were used to solve the tolerance allocation
problem, (2) a lot of research has been carried out on
minimization of manufacturing cost without considering quality
loss of the product, (3) in some research work, total manufac-
turing cost and quality loss analysis were performed using only
traditional methods, however, these approaches suffer from the
following drawbacks: (1) closed form solution is limited to only a
small portion of the spectrum of the real-world tolerancing
problems. It is applicable to the objective functions involving
only simple cost functions, such as ‘reciprocal power function’
(reciprocal, and reciprocal square functions are the special cases
of this function) and ‘exponential function’, subjected to only
traditional tolerance stack-up constraints (based on theworst case
and the root sum square criteria), (2) it is not applicable to
discontinuous and/or non-differentiable cost functions as it
requires a continuous first derivative, (3) cost functions with
preferred process limits cannot be handled by these method, (4)
assemblies involving interrelated dimension chains (more than
one assembly response functions with some common dimen-
sions) are difficult to handle by these methods, (5) these methods
can be attracted by local minima. In order to overcome this
problem, the process should be started from various initial
guesses. Also, the conventional techniques involve the compu-
tation of the gradient and the Hessian of objective function and
constraints, which imply the continuity of second order must be
ensured. (6) Multi-objective optimization deals with generating
the Pareto front which is the set of non-dominated solutions for
problems havingmore than one objective. A solution is said to be
non-dominated if it is impossible to improve one component of
the solution without worsening the value of at least one other
component of the solution.

To overcome the drawbacks of the conventional optimiza-
tion approaches, non-traditional optimization techniques such
as GA, simulated annealing [4, 17–20], NSGA-II and
MOPSO can be used. Non-traditional algorithms have proven
successful in handling many real-world multi-objective
concurrent engineering problems [21–24]. The advantages
of non-traditional techniques are (1) they are a population-
based search techniques, so global optimal solution is
possible, (2) they do not need any auxiliary information like
gradients, derivatives, etc. (3) They are easier to program and
implement than the methods reported in the literature. (4)
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They can solve complex and multimodal problems for global
optimality. (5) They are problem-independent, i.e., suitable
for solving all types of problems. (6) They are computation-
ally superior and faster than the methods reported in the
literature. (7) They offer Pareto-optimal fronts that offer
more number of optimal solutions for user’s choice. (8) They
use average fitness function method to find best optimal
solution from the Pareto-optimal fronts. (9) They guide the
search toward the true Pareto front (non-dominated solutions)
or approximate the Pareto-optimal set. (10) They generate a
well-distributed Pareto front and (11) they are population-
based algorithms which allow them to explore the different
parts of the Pareto front simultaneously.

The major limitations of the tolerance design works of
Singh et al. [25] is the important objective functions such as
quality loss and stack-up tolerance are not considered. To
overcome the limitations of Singh et al. [25] work, two
evolutionary optimisation techniques (NSGA-II and
MOPSO) are proposed in this paper to do optimal tolerance
design for mechanical assemblies by considering all
objective functions (minimization of manufacturing cost,
quality loss and tolerance stack-up), yield design constraint
and machining tolerance constraints. The average fitness
factor method and weighted objective functions method
used to select the best optimal solution from Pareto-optimal
fronts (optimal solution trade-offs). Two multi-objective
performance measures namely solution spread measure and
ratio of non-dominated individuals are used to evaluate the
strength of Pareto-optimal fronts. Two more multi-objective
performance measures namely optimizer overhead and
algorithm effort are used to find the computational effort
of NSGA-II and MOPSO algorithms.

The significant contributions of our paper to tolerance area
are: (1) it proposes a general purpose approach to do alternative
manufacturing process selection and tolerance allocation. (2)
This paper simultaneously considers the minimization of
tolerance stack-up, manufacturing cost and the quality loss as
objective functions. (3) It improves the recent optimization
model proposed by Singh et al. [25] by adding two new
objective functions (quality loss and tolerance stack-up), and
(4) the proposed approach using NSGA-II and MOPSO solves
all drawbacks of the methods reported in literature [1–29].

The rest of this study is organized as follows: Section 2
deal the problem definition. Section 3 presents the problem
formulation. Section 4 presents the proposed NSGA-II and
MOPSO techniques to obtain the optimal solutions. Section 5
deals two methods and four multi-objective performance
metrics used for evaluating the proposed algorithms.
Section 6 illustrates numerical examples. Running procedure
for NSGA-II andMOPSO algorithms are given in Section 6.1.
In Section 7, the results obtained in various methods are
presented and compared. The conclusions are presented in
the last section.

2 Problem definition

2.1 Stock removal allowances

Singh et al. [25] addressed the stock removal allowances,
Manufacturing tolerance selection is greatly affected by the
amount of stock removal allowance. The stock removal
allowance is the layer of material to be removed from the
surface of a work-piece to obtain the required accuracy and
surface quality through machining. It greatly influences the
quality and the production efficiency of the machined features.
Excessive stock removal allowance will increase the con-
sumption of material, machining time, tool and power, while
machining the work-piece by a more expensive downstream
process, resulting in an increase in the manufacturing cost. On
the other hand, with an insufficient stock removal allowance,
the defective surface layer caused by the preceding operation
cannot be rectified. The concept of stock removal allowance
has been depicted in Fig. 1.

The amount of stock removal allowance is the difference
between the dimensions obtained in the preceding operation
and the current operation. Since the manufacturing dimen-
sions are not fixed, and each of them is associated with some
tolerance, the actual stock removals from work-piece surfaces
vary in a certain range. The stock removal based on the
nominal working dimensions in successive operations is
considered as its nominal value. Variation in the stock removal
is the sum of manufacturing tolerances in the preceding and
the current operation. An appropriate stock removal allowance
is required for each successful manufacturing operation. This
yields a set of necessary constraints during simultaneous
selection of design and manufacturing tolerances.

2.2 Selection of machining process

The selection of machining process including equipment
accuracy, set-up mode, machining sequence and cutting
parameters is strongly affected by the tolerance of the part to

Fig. 1 Machined layers and manufacturing tolerances [25]
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bemachined. So it is important to do the simultaneous selection
of the best machining process while allocating the tolerance.

2.3 Manufacturing cost

Manufacturing cost usually increases with the tight tolerance of
quality characteristics, as more refined and precise operations
are needed and acceptable ranges of output are reduced.
Conversely, large tolerances are less costly to achieve as they
require less precise manufacturing processes; but they usually
result in poor performance, premature wear and part rejection.

The objective function of the tolerance synthesis
problem with the exponential cost function. The following
tolerance-cost function is used to find manufacturing cost
of a process tolerance.

Casm ¼
Xn
i¼0

aixi þ bixie
�cixi tixið Þ ð1Þ

2.4 Quality loss function

Variability in the production process is unavoidable due to
inconsistency in tool work-piece, material and process para-
meters. Noorul Haq et al. [17] suggests that given an ideal
target value, an evaluation function associated with deviations
from the target value can be developed. In this study, it is
referred to as the quality loss function. This loss function is a
quadratic expression for measuring the cost of the average
value versus the target value and the variability of product
characteristics in terms of monetary loss due to product failure
in the eyes of the consumers. The quality loss function (QL) is

QL ¼ A

T2

XI

i¼1

s i
2 ð2Þ

For a three sigma tolerance design,

s i ¼ ti
3

Then, Eq. 2 is rewritten as

QL ¼ A

9T2

XI

i¼1

ti
2 ð3Þ

Where, T is the tolerance stack-up limit of the dimen-
sional chain, A is the quality loss cost.

3 Problem statements

The improved optimization model opens up possibilities for
tolerance control in order to achieve selection of best
manufacturing processes, economical assembly manufac-

turing cost and the minimum quality loss of the product.
Formulation of the simple optimal tolerance synthesis
involves framing of the objective functions and constraints.
The objective functions considered are: minimum tolerance
stack-up (Z1), minimum total manufacturing cost of the
assembly (Z2; summation of the manufacturing cost involved
in the manufacturing of all the toleranced dimensions) and
minimum quality loss function (Z3). The functional require-
ments of the assembly (stack-up conditions), process
precision limits and process selection conditions form the
constraints of the problem. The variables are tolerances of all
part dimensions. Multi-criterion optimization methods used
in this paper are as follows:

3.1 Objective functions

3.1.1 Example A (Assembly A)

Minimize : Z1 ¼ $Y ¼ t1j þ t2j þ t3j ð4Þ

Z2 ¼ Casm ¼
Xn
i¼0

aixi þ bixi e
�cixi tixið Þ ð5Þ

Z3 ¼ QL ¼ A

9T2

XI

i¼1

tij
2 ð6Þ

3.1.2 Example B (Assembly B)

Minimize : Z1 ¼ $Y ¼ t1j þ t2j þ t3j þ t4j þ t5j þ t6j ð7Þ

Z2 ¼ Casm ¼
Xn
i¼0

aixi þ bixi e
�cixi tixið Þ ð8Þ

Z3 ¼ QL ¼ A

9T2

XI

i¼1

tij
2 ð9Þ

Assembly function:

Y ¼ X1 þ X2 þ X3 þ X4 þ X5 þ X6 ð10Þ
Stack-up condition:

t1j þ t2j þ t3j þ t4j þ t5j þ t6j � 0:01 ð11Þ
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3.1.3 Example C (gearbox assembly)

Minimize : Z1 ¼ $Y ¼ t1j þ t2j þ t3j þ t4j þ t5j ð12Þ

Z2 ¼ Casm ¼
Xn
i¼0

aixi þ bixi e
�cixi tixið Þ ð13Þ

Z3 ¼ QL ¼ A

9T2

XI

i¼1

t21j þ t22j þ t23j þ 2 t24j

� �
ð14Þ

Assembly function:

Y ¼ X1 þ X2 � X3 � X4 � X5 ð15Þ

Stack-up condition:

t1j þ t2j þ t3j þ t4j þ t5j � 0:26 ð16Þ

Set-up reduction condition(s):

t1j ¼ t2j and t4j ¼ t5j

3.1.4 Example D (Shaft and housing assembly)

Minimize : Z1 ¼ $Y ¼ t1j þ t2j þ t3j þ t4j þ t5j þ t6j þ t7j

ð17Þ

Z2 ¼ Casm ¼
Xn
i¼0

aixi þ bixie
�cixi tixið Þ ð18Þ

Z3 ¼ QL ¼ A

9T2

XI

i¼1

tij
2 ð19Þ

Assembly function:

Y ¼ �X1 þ X2 � X3 þ X4 � X5 þ X6 � X7 ð20Þ

Stack-up condition:

t1j þ t2j þ t3j þ t4j þ t5j þ t6j þ t7j � 0:3831 ð21Þ

Set-up reduction condition:

t4j ¼ t6j

Fig. 3 Representation of fitness
factor for minimization of an
objective function

Fig. 2 An iteration procedure of the NSGA-II algorithm

Fig. 4 Assembly A

Fig. 5 Assembly B
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3.1.5 Example E (one-way clutch assembly)

Minimize : Z1 ¼ ΔY ¼ @Y

@X1

����
����t1j þ

@Y

@X2

����
����t2j þ

@Y

@X3

����
����t3j

ð22Þ

Z2 ¼ Casm ¼
Xn
i¼0

aixi þ bixi e
�cixi tixið Þ ð23Þ

Z3 ¼ QL ¼ A

9T2

XI

i¼1

tij
2 ð24Þ

Assembly function:

Y ¼ a cos X1 þ X2ð Þ= X3 � X2ð Þ½ � ð25Þ

Stack-up condition:

@Y

@X1

����
����t1j þ

@Y

@X2

����
����t2j þ

@Y

@X3

����
����t3j � 0:0349 ð26Þ

which further reduces to

Xn
i¼1

tij � Tkasm ð27Þ

For a linear assembly

Fig. 7 Shaft and housing assembly [25]

Fig. 6 Gearbox assembly [25]

Fig. 8 One-way clutch assembly [25]

Table 1 Assembly A details

Dimensions Process Parameters of cost function

a b c

X1 1 5.0 34.2245 765

2 4.7 39.9819 782

3 4.36 45.0974 790

4* 500 41.5370 777

X2 1 6.05 53.1921 975

2 5.62 60.0065 995

3 5.29 149.5845 986

4* 500 63.6541 981

X3 1 5.38 72.6260 1386

2 5.31 96.5270 1412

3 5.22 82.8130 1400

4* 500 87.4149 1408
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3.2 Variables

Process precision limits : tmin
ij � tij � tmax

ij

i ¼ 1 to n; j¼ 1 tomi

Where,

Y Assembly response function
Casm Total assembly manufacturing cost
QL Quality loss function
Cij

(tij)
Cost of producing dimension xi by the process j
maintaining tolerance tij

mi Number of the available alternative processes for
producing dimension xi

n Number of the component dimensions
Tkasm Permissible variation in the kth assembly

dimension, known as assembly tolerance,
tij Tolerance on the dimension xi produced by the jth

process.

4 Proposed methods

In this section, the proposed non-traditional optimization
techniques such as NSGA-II and MOPSO are described.

4.1 Elitist Non-dominated Sorting Genetic Algorithm
(NSGA-II)

Kalyanmoy Deb proposed the NSGA-II algorithm [26].
Essentially, NSGA-II differs from non-dominated sorting

Genetic Algorithm (NSGA) implementation in a number of
ways. Firstly, NSGA-II uses an elite-preserving mechanism,
thereby assuring preservation of previously found good
solutions. Secondly, NSGA-II uses a fast non-dominated
sorting procedure. Thirdly, NSGA-II does not require any
tunable parameter, thereby making the algorithm indepen-
dent of the user.

Initially, a random parent population Po is created. The
population is sorted based on the non-domination. A
special book-keeping procedure is used in order to reduce
the computational complexity to O(MN2). Each solution is
assigned a fitness equal to its non-dominated level (1 is
the best level). Thus, minimization of fitness is assumed.
Binary tournament selection, recombination, and mutation
operators are used to create a child population Qo of size
N. thereafter; the algorithm below is used in every
generation.

Rt=PtUQt

F=fast non-dominated-sort (Rt)
Pt+1= � and i=1
Until |Pt+1|+|Fi|≤N
Pt+1=Pt+1U Fi

crowding-distance-assignment (Fi)
i=i+1
Sort(Fi ∝n)
Ptþ1 ¼ Ptþ1UPtþ1 1 : N � Ptþ1j jð Þ½ �
Qtþ1 ¼ make�new�pop Ptþ1ð Þ
t ¼ t þ 1

First, a combined population Rt=PtUQt is formed.
This allows parent solutions to be compared with the
child population, thereby ensuring elitism. The popula-

Table 3 Assembly C: gear box assembly details

Dimensions Process Parameters of cost function

a b c

X1, X2 1 18.50 71.25 214.56

2 20.82 68.44 208.68

3 19.05 69.32 211.05

4 18.32 73.56 220.73

X3 1 42.50 30.254 82.566

2 39.20 33.443 86.688

3 38.05 34.322 79.005

4* 539.32 37.061 78.732

X4, X5 1 32.50 28.25 82.45

2 29.20 30.43 86.70

3 28.05 31.42 80.05

4 29.32 34.16 78.82

Table 2 Assembly B details

Dimensions Process Parameters of cost function

a b c

X1,X4 1 5.0 34.2245 765

2 4.7 39.9819 782

3 4.36 45.0974 790

4* 500 41.5370 777

X2,X5 1 6.05 53.1921 975

2 5.62 60.0065 995

3 5.29 149.5845 986

4* 500 63.6541 981

X3,X6 1 5.38 72.6260 1386

2 5.31 96.5270 1412

3 5.22 82.8130 1400

4* 500 87.4149 1408
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tion Rt is of size 2N. Then, the population Rt is sorted
according to non-domination and non-dominated fronts
F1, F2, and so on are found. The algorithm is illustrated
in the following:

The new parent population Pt+1 is formed by adding
solutions from the first front F1 and continuing to other
fronts successively till the size exceeds N. Individuals of
each front are used to calculate the crowding distance—
the distance between the neighboring solutions. Thereaf-
ter, the solutions of the last accepted front are sorted
according to a crowded comparison criterion and a total of
N points are picked. Since the diversity among the
solutions is important, the crowded comparison criterion
uses a relation αn as follows: solution i is better than
solution j in relation αn if (irank< jrank) or ((irank= jrank) and
(idistance> jdistance)). That is, between two solutions with
differing non-domination ranks the preference is the point
with the lower rank. Otherwise, if both the points belong
to the same front, then the preference is the point which is
located in a region with smaller number of points (or with
larger crowded distance). This way, solutions from less

dense regions in the search space are given importance in
deciding which solutions to choose from Rt. This
constructs the population Pt+1. This population of size N
is now used for selection, crossover and mutation to create
a new population Qt+1 of size N. A binary tournament
selection operator is used but the selection criterion is now
based on the crowded comparison operator αn. The above
procedure is continued for a specified number of gener-
ations. It is clear from the above description that NSGA-II
uses (1) a faster non-dominated sorting approach, (2) an
elitist strategy, and no niching parameter. It has been
proved that the above procedure has O(MN2) computa-
tional complexity. Figure 2 shows an iteration of the
proposed NSGA-II procedure.

4.2 MOPSO

The proposed algorithm which we shall call MOPSO
extends the single-objective particle swarm optimization
(PSO) algorithm to handle the multi-objective optimiza-
tion problems. It incorporates the mechanism of the

Dimensions Process Parameters of cost function

a b c

X1(hub)=55.291 1 15.05 71.24 4.348

2 15.12 70.10 4.015

3 16.54 68.32 4.478

4 18.92 66.98 5.552

X2(roll)=22.86 Vendor supplied (fixed tolerance t2=0.0635; C2=30.00)

X3(cage)=101.6 1 21.55 98.87 18.39

2 21.02 98.12 17.81

3 23.14 99.78 18.94

4 500 101.10 19.24

Table 5 Assembly E: one-way
clutch assembly details

Dimensions Process Parameters of cost function

a b c

X1 Vendor supplied (fixed tolerance t1=0.0381; C1=5.00)

X2 1 5.34 66.43 2.738

2 5.12 62.22 2.340

X3,X7 Vendor supplied (fixed tolerance t3=0.0635; C3=50.00)

X4,X6 1 15.34 69.43 2.728

2 15.12 65.22 2.340

3 14.85 66.87 2.112

4* 500 70.62 2.985

X5 1 11.34 72.43 2.738

2 11.12 68.22 2.340

3 10.85 69.87 2.112

4* 500 73.62 2.985

Table 4 Assembly D: shaft and
housing assembly details
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crowding distance computation into the algorithm of
PSO specifically on global best selection and in the
deletion method of an external archive of non-dominated
solutions. The crowding distance mechanism together
with a mutation operator maintains the diversity of non-
dominated solutions in the external archive. MOPSO also
has a constraint handling mechanism for solving con-
strained optimization problems.

The most striking difference between MOPSO and the
other evolutionary algorithms is that MOPSO chooses
the path of cooperation over competition. The other
optimization algorithms commonly use some form of
decimation, survival of the fittest. In contrast, the
MOPSO population is stable and individuals are not
destroyed or recreated. Individuals are influenced by the
best performance of their neighbors. Individuals eventu-
ally converge on optimal points in the problem domain.
In addition, the MOPSO traditionally does not have
genetic operators like crossover between individuals and
mutation, and other individuals never substitute particles
during the run. So, in MOPSO, all the particles tend to
converge to the best solution quickly, as compared to the
other optimization algorithms. Pseudo Code for MOPSO
is explained in the Appendix section A.

The main advantages of MOPSO method are:

1. It works simultaneously with a set of possible solutions,
the so-called population, and several non-dominated
solutions maybe found in a single run of the algorithm.

2. It gives optimal solution trade-offs with more number
of non-dominated solutions for user’s choice than other
algorithms.

3. It does not require prior knowledge of the relative
importance of the objectives.

4. There is a set of acceptable trade-off near optimal
solutions. This set is called Pareto front or optimality
trade-off surfaces.

5. The algorithm handles constraints in a very simple and
efficient way, as comparing to different solutions.

6. It is less sensitive to the shape or continuity of the
Pareto surface.

4.3 NSGA-II operators

The following are the values of the parameters of NSGA-II
technique used in this study:

Variable type=real variable, population size=100, cross-
over probability=0.6, real-parameter mutation probability=

Techniques Dimensions Process Tolerance Objective function

Z1 Z2 Z3

NSGA-II X1 1 0.0015 0.01 81.707703 0.021044
X2 1 0.0019

X3 1 0.0019

X4 1 0.0015

X5 1 0.0019

X6 1 0.0019

MOPSO X1 1 0.001483 0.01 86.8368 0.0186
X2 1 0.001776

X3 1 0.001734

X4 1 0.001483

X5 1 0.001776

Table 7 Optimization results
for Assembly B

Techniques Dimensions Process Tolerance Objective function

Z1 Z2 Z3

NSGA-II X1 1 0.001500 0.005 40.856503 0.042082
X2 1 0.001900

X3 1 0.001900

MOPSO X1 1 0.001424 0.005 43.3628 0.0374
X2 1 0.001828

X3 1 0.001745

Table 6 Optimization results
for Assembly A
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0.01, real-parameter SBX parameter=10, real-parameter
mutation parameter=100, total number of generations=100.

4.4 MOPSO operators

The following are the values of the parameters of
MOPSO technique that have been used to obtain the
best optimal results: population size=100, mutation
probability=0.5, total number of generations=100, inertia
weight=0.4

5 Performance measures and methods
for multi-objective optimisation

In this section, two methods and four performance
metrics are recommended and applied to examine the
strength and weaknesses of the proposed multi-objective
evolutionary algorithms. Two methods (normalized
weighting objective functions and average fitness factor)
are used to select best optimal solution. Two multi-
objective performance measures namely solution spread
measure and ratio of non-dominated individuals are used
to evaluate the Pareto-optimal fronts. Two more multi-
objective performance measures namely optimizer over-
head and algorithm effort are used to find computational

effort of an optimisation algorithm. These methods and
metrics are chosen since they have been widely used for
performance comparisons in multi-objective optimization
[28].

5.1 Normalized weighting objective functions

Multiple objectives are combined into a scalar objective
via weight vector. Weights may be assigned through
direct assignment, eigenvector method, empty method,
minimal information method, randomly determined or
adaptively determined. If the objective functions are
simply weighted and added to produce a single fitness,
the function with largest range would dominate evolu-
tion. A poor input value for the objective with larger
range makes the overall value much worse than a poor
value for the objective with smaller range. To avoid this,
all objective functions are normalized to have same
range. Also normalizing parameters make all objective
functions as unitless functions. For our problem, the
combined objective function (fc) is defined as follows:

Example A (Assembly A)

Minimize :fc ¼ W1 � Z1=N1 þW2 � Z2=N2

þW3 � Z3=N3 ð28Þ

Table 9 Optimization results for Assembly D (shaft and housing assembly)

Techniques Dimensions Process Tolerance Objective function

Z1 Z2 Z3

NSGA-II X1 Vendor supplied (fixed tolerance) 0.0381 0.291699 393.666779 0.010314
X2 2 0.026594

X3,X7 Vendor supplied (fixed tolerance) 0.0635

X4,X6 2 0.03

X5 2 0.040005

MOPSO X1 Vendor supplied (fixed tolerance) 0.0381 0.2894 393.9548 0.0103
X2 2 0.020013

X3,X7 Vendor supplied (fixed tolerance) 0.0635

X4,X6 2 0.030171

X5 2 0.043949

Techniques Dimensions Process Tolerance Objective function

Z1 Z2 Z3

NSGA-II X1, X2 4 0.015138 0.085751 159.019974 0.002518
X3 3 0.024135

X4, X5 3 0.01567

MOPSO X1, X2 4 0.014416 0.0863 158.5301 0.0025
X3 3 0.024018

X4, X5 3 0.016713

Table 8 Optimization
results for Assembly C
(gear box assembly)
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Example B (Assembly B)

Minimize :fc ¼ W1 � Z1=N1 þW2 � Z2=N2

þW3 � Z3=N3 ð29Þ
Example C (gearbox assembly)

Minimize :fc ¼ W1 � Z1=N1 þW2 � Z2=N2

þW3 � Z3=N3 ð30Þ

Example D (shaft and housing assembly)

Minimize : fc ¼ W1 � Z1=N1 þW2 � Z2=N2

þW3 � Z3=N3 ð31Þ

Example E (one-way clutch assembly)

Minimize :fc ¼ W1 � Z1=N1 þW2 � Z2=N2

þW3 � Z3=N3 ð32Þ

W1, W2, and W3 are weightages given to objective
functions 1, 2, and 3, respectively. Here, normalized
weighting objective functions method is used only to select
the best optimal solution from Pareto-optimal fronts
obtained from NSGA-II and MOPSO. So we can give any
weightage to each objective function. But the condition is
W1 þW2 þW3 ¼ 1. It means the total weightage should be
100%. The value of W1=W2=W3=0.333 (for Assemblies
A, B, C, D, E). It means we are giving equal weightage to
all objective functions.

N1, N2, and N3 are normalizing parameters of objective
functions (Average value of individual objective func-
tions). The values of N1=0.01, N2=10, and N3=0.10 (for
Assembly A), the values of N1=0.10, N2=10, and N3=
0.10 (for Assembly B), the values of N1=1.0, N2=100,
and N3=0.01 (for Assembly C), the values of N1=1.0,
N2=100, and N3=0.10 (for Assembly D), the values of
N1=0.01, N2=100, and N3=0.10 (for Assembly E).

For example A, the original values of first, second and third
objective functions from NSGA-II are 0.005, 40.856503, and
0.042082, respectively. So to bring all objective functions to
have the same range, the first second and third objective
functions are divided by their individual average values 0.01,
10, and 0.10, respectively. Now the normalized values of first,
second, and third objective functions are 0.50, 4.0856503, and
0.42082.

Table 11 Results obtained from NSGA-II and MOPSO algorithms

Techniques Z1 Z2 Z3 μavg

Assembly A

Zmax 0.005 46.111019 0.042082
Zmin 0.0047 40.856503 0.033202

NSGA-II 0.0053 40.8565 0.04208 0

MOPSO 0.005 43.6737 0.0369 0.349137

Assembly B

Zmax 0.01 92.225082 0.021044
Zmin 0.0094 81.707703 0.0166

NSGA-II 0.0106 81.7077 0.02104 0

MOPSO 0.01 87.0292 0.0186 0.347994

Assembly C

Zmax 0.299976 170.50705 0.031356
Zmin 0.072003 131.117508 0.001920

NSGA-II 0.29998 131.118 0.03136 0.333333

MOPSO 0.2507 131.594 0.0227 0.499371

Assembly D

Zmax 0.383566 395.982391 0.016858
Zmin 0.2751 380.940033 0.009854

NSGA-II 0.38357 380.94 0.01686 0.333333

MOPSO 0.3772 381.797 0.0165 0.350938

Assembly E

Zmax 0.0039 228.887527 0.011133
Zmin 0.003748 227.9932 0.010668

NSGA-II 0.00388 227.983 0.01113 0.374279

MOPSO 0.0039 227.994 0.0111 0.356542

Table 10 Optimization results for Assembly E (one-way clutch assembly)

Techniques Dimensions Process Tolerance Objective function

Z1 Z2 Z3

NSGA-II X1 3 0.00254 0.003748 228.885376 0.010669
X2 Vendor supplied (fixed tolerance) 0.01020

X3 2 0.002541

MOPSO X1 3 0.002567 0.0038 228.1188 0.0109
X2 Vendor supplied (fixed tolerance) 0.010200

X3 2 0.002646
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5.2 Average fitness factor (Favg)

The deterministic models proposed in the literature suffer from
real-world optimal tolerance allocation limitation because that a
decision maker does not have sufficient information related to
the different criteria. So he may not know what weightage is to
be given to each objection. In that situation, he may use the
average fitness factor method proposed in this paper.

The average fitness factor given in Fig. 3 is a graphical
representation of the magnitude of each input. The F value is
1 at Zmin and 0 at Zmax for minimizing an objective function
and vice versa for maximizing an objective function.

The proposed fitness factor is as follows:

Fi ¼ Zimax � Zið Þ= Zimax � Ziminð Þ for minimization of
objective function
Zi objective function (i=objective function number,
1… 2 for this problem)
Zmax maximum objective function value
Zmin minimum objective function value

The solution that has the highest average membership
function value (μavg) is the best optimal solution that gives
a non-dominated solution. For our problem, the average
fitness factor is defined as follows:

Proposed algorithm Simulation time Trun (sec) No. of function evolution (Neval) Algorithm effort

Assembly A

NSGA-II 2 45 0.0444

MOPSO 2 77 0.0259

Assembly B

NSGA-II 2 48 0.0444

MOPSO 2 79 0.0253

Assembly C

NSGA-II 2 47 0.0444

MOPSO 2 81 0.0247

Assembly D

NSGA-II 2 39 0.0513

MOPSO 2 71 0.0282

Assembly E

NSGA-II 2 33 0.0606

MOPSO 2 65 0.0308

Table 13 Algorithm effort
obtained from NSGA-II and
MOPSO algorithms

Techniques Z1 Z2 Z3 Combined objective function (Fc)

Assembly A

NSGA-II 0.005 40.856503 0.042082 1.677145

MOPSO 0.005 43.3628 0.0374 1.735023

Assembly B

NSGA-II 0.01 81.707703 0.021044 2.826241

MOPSO 0.01 86.8368 0.0186 2.986903

Assembly C

NSGA-II 0.085751 159.019974 0.002518 0.641941

MOPSO 0.0863 158.5301 0.0025 0.639893

Assembly D

NSGA-II 0.291699 393.666779 0.010314 1.442392

MOPSO 0.2894 393.9548 0.0103 1.442539

Assembly E

NSGA-II 0.003748 228.885376 0.010669 0.922524

MOPSO 0.0038 228.1188 0.0109 0.922473

Table 12 Results obtained from
NSGA-II and MOPSO
algorithms
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Proposed Algorithm SSM RNI OO Computation time (sec)

Assembly A

NSGA-II 0.553736 1 0.2727 2.5

MOPSO 0.533614 1 0.0889 1.2

Assembly B

NSGA-II 0.674728 1 0.1500 2.5

MOPSO 0.640237 1 0.1042 1.2

Assembly C

NSGA-II 0.742259 1 0.1842 2.5

MOPSO 0.92361 1 0.0588 1.2

Assembly D

NSGA-II 0.560891 1 0.1935 2.5

MOPSO 0.544037 1 0.04545 1.2

Assembly E

NSGA-II 0.535718 1 0.1707 2.5

MOPSO 0.636052 1 0.0980 1.2

Table 14 SSM, RNI, and OO
obtained from NSGA-II and
MODE algorithms
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Fig. 9 Tolerance allocation for optimal processes combination of Assemblies A to E from NSGA-II
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Maximize average fitness factor

Favg ¼ F1 þ F2 þ F3ð Þ=3:0 ð33Þ

Where,

F1 ¼ z1 max�z1ð Þ= z1 max�z1 minð Þ;
F2 ¼ ðz2 max�z2Þ= z2 max�z2 minð Þ;
F3 ¼ ðz3 max�z3Þ= z3 max�z3 minð Þ:

5.3 Solution spread measure

While it is desirable to find more Pareto-optimal solutions,
it is also very much desirable to find the ones scattered
uniformly over the Pareto frontier in order to provide a
variety of compromise solutions to the decision maker.

Solution spread measure (SSM) represents the distribution
of the solutions along the Pareto front.

SSM ¼
df þ dl þ

PN�1

i¼1
di � d
���

���
df þ dl þ ðN � 1Þd ð34Þ

Where N is the number of solutions along the Pareto
front, (so there are (N−1) consecutive distances), di is the
distance (in objective space) between each solution, d is the
arithmetic mean of all di and df and dl are the Euclidean
distances between the extreme solutions and the boundary
solutions of the obtained non-dominated set. Thus, a low
performance measure characterizes an algorithm with good
distribution capacity.
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Fig. 10 Tolerance allocation for optimal processes combination of Assemblies A to E from MOPSO
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5.4 Ratio of non-dominated individuals

This performance metric is defined as the ratio of non-
dominated individuals (RNI) for a given population X,

RNIðX Þ ¼ nondom indiv=P ð35Þ
Where nondom_indiv is the number of non-dominated

individuals in population X and P is the size of population
X. therefore the value RNI=1 means all the individuals in
the population are non-dominated, and RNI=0 represents
the situation where none of the individuals in the

population is non-dominated. Since a population size of
more than zero is often desired, there is always at least one
non-dominated individual in the population within the
range of 0<RNI<1.

5.5 Optimizer overhead

Total number of evaluations and total CPU time may be
used for testing the algorithm. This would be useful in
indicating how long and optimization or simulated evolu-
tion process would take in real world and to indicate the
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Fig. 11 Optimal solution trade-offs obtained from NSGA-II for Assembly A to E
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amount of program overhead as a result of the optimization
manipulations such as those by evolutionary algorithm
operators. More quantitatively, the optimizer overhead
(OO) may be calculated by

Optimiser overhead ¼ TTotal � TPFPð Þ=TPFP ð36Þ

Where TTotal is the total time taken and TPFP is the time
taken for pure function evaluations. Thus, a value of zero
indicates that an algorithm is efficient and does not have

any overhead. However, this is an ideal case and is not
practically reachable.

5.6 Algorithm effort

The performance in multi-objective optimization is often
evaluated not only in terms of how the final Pareto front is,
but also in terms of the computational effort required in
obtaining the optimal solutions. For this purpose, the
algorithm effort is defined as the ratio of the total number
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Fig. 12 Optimal solution trade-offs obtained from MOPSO for Assembly A to E
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of function evolutions Neval over a fixed period of
simulation time Trun,

Algorithm effort ¼ Trun=Neval; Trun > T1stgenÞ \ ðTeval / NevalÞ
�

ð37Þ

As shown in above equation, for a fixed period of Trun, a
greater number of function evolutions being performed
indirectly indicates that less computational effort is required
by the optimization algorithm and hence resulting in a
smaller algorithm effort. The condition of Trun>T1stgen,
where T1stgen is the computation time for the first
generation, should be held that Trun and Neval are >0. This
results algorithm effort is bounded in the range of (0,∞).

6 Numerical examples

In this paper, the assemblies Figs. 4, 5, 6, 7 and 8 considered
by Singh et al. [25] are considered as numerical examples.

The assemblies involving only a simple-dimension chain
have been considered to make a comparison of the results
obtained by the two methods possible. Details of the
mechanical assemblies (number of dimensions, number of
processes available for manufacture of each dimension,
revised number of processes for manufacture of each
dimension as applicable to the algorithm, parameters of
cost functions, stack-up conditions, etc.) have been given in
Tables 1, 2, 3, 4 and 5. Assembly B, which is simply
Assembly A doubled, has been considered to study the
effect of the problem size. Assemblies A, B, C, and D are
linear assemblies, while Assembly E is a non-linear
assembly. Processes marked with an asterisk are fictitious
processes, added to fulfil the requirements of the algorithm.
Assemblies C and D involve a few dimensions that can be
produced on the same machine and hence it is desirable to
have the same value of associated tolerances for reducing
the number of set-ups. The impact of all the toleranced
dimensions must be considered in the formulation of the
assembly manufacturing cost and the stack-up condition.
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Assemblies D and E involve a few vendor supplied
components, the tolerances of which are considered fixed
and do not count as decision variables.

6.1 Running NSGA-II and MOPSO algorithms

The objective functions such as tolerance stack-up, assembly
manufacturing cost and quality loss function are minimized
by considering the design constraints based on the assumed
stack-up criteria (Eq. 11 for example B, Eq. 16 for Example
C, Eq. 21 for example D and Eq. 26 for example E).

The steps for running NSGA-II and MOPSO algorithms
are summarized below:

Step 1: The following are inputs to software program of
NSGA-II and MOPSO:

1. Details of mechanical assemblies:

& Parameters cost functions and tolerance limits for
Assembly A (given in Table 1)

& Parameters cost functions and tolerance limits for
Assembly B (given in Table 2)

225

226

227

228

229

230

0.0107
0.0108

0.0109
0.0110

0.0111

0.00376
0.00378

0.00380
0.00382

0.00384
0.00386

0.00388

M
an

u
fa

ct
u

ri
n

g
 C

o
st

Quality loss

Criti
cal D

im
ension Deviatio

n

225
226
227
228
229
230

Assembly E

100

150

200

250

300

350

400

0.005
0.010

0.015
0.020

0.025
0.030

0.10
0.15

0.20

0.25

M
an

u
fa

ct
u

ri
n

g
 C

o
st

Quality loss Criti
cal D

im
ension Deviatio

n

100 
150 
200 
250 
300 
350 
400 

378

380

382

384

386

388

390

392

394

396

398

0.010
0.011

0.012
0.013

0.014
0.015

0.28
0.30

0.32
0.34

0.36
0.38

M
an

u
fa

ct
u

ri
n

g
 C

o
st

Quality loss
Criti

cal D
im

ension Deviatio
n

378 
380 
382 
384 
386 
388 
390 
392 
394 
396 
398 

Assembly C
Assembly D

38

40

42

44

46

48

0.0340.0350.0360.0370.0380.0390.0400.0410.042

0.0047
0.0048

0.0049
0.0050

0.0051
0.0052

0.0053
M

an
u

fa
ct

u
ri

n
g

 c
o

st
Quality Loss

Criti
cal D

im
ensions Deviatio

ns

38
40
42
44
46
48

74

76

78

80

82

84

86

88

90

92

94

96

0.01700.01750.01800.01850.01900.01950.02000.02050.0210

0.0094
0.0096

0.0098
0.0100

0.0102
0.0104

0.0106

M
an

u
fa

ct
u

ri
n

g
 C

o
st

Quality loss Criti
cal D

im
ension Deviatio

n

74 
76 
78 
80 
82 
84 
86 
88 
90 
92 
94 
96 

Assembly A Assembly B

Fig. 14 Pareto-optimal fronts
obtained from NSGA-II
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& Parameters cost functions and tolerance limits for
Assembly C (given in Table 3)

& Parameters cost functions and tolerance limits for
Assembly D (given in Table 4)

& Parameters cost functions and tolerance limits for
Assembly E (given in Table 5)
2. Details of total manufacturing cost and quality loss

formulae:(Eqs. 5 and 6 for Assembly A, Eqs. 8 and
9 for Assembly B, Eqs. 13 and 14 for Assembly C,
Eqs. 18 and 19 for Assembly D, and Eqs. 23 and 24
for Assembly E)

3. The parameters NSGA-II and MOPSO algorithms
(given in Sections 4.3 and 4.4)

4. Formulae to check all the constraints. (Eq. 11 for
example B, Eq. 16 for Example C, Eq. 21 for
example D and Eq. 26 for example E)

Step 2: The software programs of NSGA-II and MOPSO
will find the optimal tolerances values (tij) in such
a way that

1. All objective function (Fc) are minimum.
2. All constraints (tolerance stack-up) are satisfied.
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Fig. 15 Pareto-optimal fronts
obtained from MOPSO
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Step 3: Step 2 will be repeated up to the maximum
number of iterations.

Step 4: The following are the outputs from NSGA-II and
MOPSO algorithms:

1. Optimal solutions obtained from NSGA-II and
MOPSO algorithms. Each solution shall have the
optimal objective functions value, optimal value of
variables and the constraints value.

2. The best optimal solution shall give the minimum
stack-up tolerance, minimum total manufacturing
cost, minimum quality loss and optimal tolerances
values, etc.

7 Results and discussion

Tables 6, 7, 8, 9, and 10 compare the optimum results
obtained from various techniques for all the assemblies (A–
E). From Tables 6, 7, 8, 9, and 10, it is observed that
MOPSO gives better results than NSGA-II in majority of
the cases.

The results of average fitness factor value (Favg), SSM,
RNI, OO and algorithm effort obtained from NSGA-II and
MOPSO are listed in Tables 11, 12, 13 and 14 for all the
assemblies A–E. From Tables 11, 12, 13, and 14, it is
observed that MOPSO technique gives the maximum
average fitness factor (Favg), minimum algorithm effort
and minimum OO than those of NSGA-II for all the
assemblies. From Table 14, it is observed that MOPSO
technique gives the minimum SSM than that of NSGA-II for
Assemblies A, B and D. But NSGA-II gives, minimum SSM
than those of MOPSO for Assemblies C and E. Both NSGA-
II and MOPSO gives the same RNI and minimum combined
objective function (fc) value for all the Assemblies A–E.

The values of the allocated tolerance of part dimensions
of the product with respect to the number of iterations are
shown in Figs. 9 and 10 obtained from NSGA-II and
MOPSO for all the assemblies. From Figs. 9 and 10, the
optimum combination of process that gives a better result
(minimum manufacturing cost) than the other process
combinations for each assemblies is selected.

The best solution is selected by the average fitness factor
method from the optimal solution trade-offs obtained from
NSGA-II and MOPSO. The optimal solution trade-offs
(Pareto-optimal fronts) obtained from NSGA-II and
MOPSO are given in Figs. 11 and 12 respectively for
Assemblies A–E. From Figs. 11 and 12, it is observed that
MOPSO gives the optimal solution trade-offs with more
number of non-dominated solutions for user’s choice than
NSGA-II.

The best solution trade-offs selected by the average
fitness factor method from the optimal solution trade-offs

obtained from NSGA-II and MOPSO are shown in Fig. 13.
From Fig. 13, it is noted that NSGA-II gives the best results
for the objective functions (minimum tolerance stack-up
(Z1) for Assemblies C and E and minimum manufacturing
cost (Z2) for Assemblies A, B and D and minimum quality
loss (Z3 and Z5) for Assembly E). But MOPSO gives the
best result for the objective functions (minimum tolerance
stack-up (Z1) for Assembly D and minimum manufacturing
cost (Z2, Z4) for Assembly C, E and F and minimum quality
loss (Z3) for assemblies A, B, C and D). So both NSGA-II
and MOPSO algorithms are best for this problem.

The Pareto-optimal fronts obtained from NSGA-II and
MOPSO are given in Figs. 14 and 15 for all the assemblies.
From Figs. 14 and 15, it is observed that both algorithms
simultaneously minimize stack-up tolerance, manufacturing
cost and quality loss of the product with respect to the
number of iterations.

8 Conclusions

This study is based on a new general methodology using
NSGA-II and MOPSO for the optimal tolerance alloca-
tion and alternative process selection for the mechanical
assemblies. The average fitness factor method and
normalized weighted objective function method are used
to select the best optimal solution from Pareto-optimal
fronts. Two multi-objective performance measures viz.,
solution spread measure and ratios of non-dominated
individuals are used to evaluate the strength of the
Pareto-optimal fronts. Two more multi-objective perfor-
mance measures namely optimizer overhead and algo-
rithm effort are used to find the computational effort of
NSGA-II and MOPSO algorithms. The Pareto-optimal
fronts (optimal solution trade-offs) and results obtained
from various techniques are compared and analysed. The
results indicate that MOPSO technique gives the maxi-
mum average fitness function (μavg), minimum SSM,
minimum OO, and minimum algorithm effort than those
of NSGA-II in majority of the cases i.e., it is faster than
NSGA-II technique. Also the computational time to find
the optimum solutions in MOPSO is one-third of that in
NSGA-II. MOPSO is faster than NSGA-II. So MOPSO is
superior to NSGA-II for this problem, if the user wants a
best optimal solution quickly. But both MOPSO and
NSGA-II technique gives the same RNI and minimum
combined objective function (fc). Also MOPSO gives the
best Pareto-optimal front with more number of non-
dominated solutions for user’s choice than NSGA-II. So
MOPSO and NSGA-II are the best for this multi-criterion
optimisation problem. This work opens the door for
further investigations on how the evolutionary optimisa-
tion techniques can be used to solve complex problems.
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Appendix A

The pseudo code of MOPSO algorithm is given below:

1. For i=1 to M (M is the population size)

(a) Initialize P[i] randomly (P is the population of
particles)

(b) Initialize V[i]=0 (V is the speed of each particle)
(c) Evaluate P[i]
(d) Initialize the personal best of each particle

PBESTS[i]=P[i]
(e) GBEST=best particle found in P[i]

2. End for
3. Initialize the iteration counter t=0
4. Store the non-dominated vectors found in P into A

(A is the external archive that stores non-dominated
solutions found in P)

5. Repeat

(a) Compute the crowding distance values of each
non-dominated solution in the archive A

(b) Sort the non-dominated solutions in A in descend-
ing crowding distance values

(c) For i=1 to M

1. Randomly select the global best guide for P[i]
from a specified top Portion (e.g., top 10%) of the
sorted archive A and store its position to GBEST.

2. Compute the new velocity:

V i½ � ¼ W � V i½ � þ R1� PBESTS i½ � � P i½ �ð Þ
þ R2� A GBEST½ � � P i½ �ð Þ

(W is the inertia weight equal to 0.4)
(R1 and R2 are random numbers in the range

[0..1])
(PBESTS[i] is the best position that the

particle i have reached)
(A[GBEST] is the global best guide for each

non-dominated solution)
3. Calculate the new position of P[i]:

P i½ � ¼ P i½ � þ V i½ �
4. If P[i] goes beyond the boundaries, then it is

reintegrated by having the decision variable take
the value of its corresponding lower or upper
boundary and its velocity is multiplied by −1 so
that it searches in the opposite direction.

5. If (t<(MAXT×PMUT),
then perform mutation on P[i].
(MAXT is the maximum number of iterations)
(PMUT is the probability of mutation)

6. Evaluate P[i]

d. End for
e. Insert all new non-dominated solution in P into A if

they are not dominated by any of the stored
solutions.

1. Compute the crowding distance values of each
non-dominated solution in the archive A

2. Sort the non-dominated solutions in A in
descending crowding distance values

3. Randomly select a particle from a specified
bottom portion (e.g., lower 10%) which comprise
the most crowded particles in the archive then
replace it with the new solution

f. Update the personal best solution of each particle in
P. If the current PBESTS dominates the position in
memory, the particles position is updated using

PBESTS[i]=P[i]
g. Increment iteration counter t

6. Until maximum number of iterations is reached
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