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Abstract Productivity of a modern generation blast furnace
was modeled with the help of a leading supervised learning
tool viz. Support Vector Machines in the form of (1) minimum
error, maximummargin classification function in binary setting
of productivity classes (low/high) and (2) the class-specific
regression functions for real values of productivity based on
epsilon sensitive loss function and minimum regulated risk.
The SVMs were trained with large number data-points each of
which consisted of a setting of 21 critical input parameters of
blast furnace, corresponding productivity value observed, and
the productivity class (low/high) attributed. During the training
session of the SVMs, the vectors of critical input parameters
were required to be mapped into high-dimensional feature
space via Radial basis kernel as function and the optimum
SVM-RBF classifying function with chosen setting of its
hyperparameters that had good generalization property was
found using quadratic optimization. The SVM-RBF classify-
ing function could be used to predict the class of productivity
(low/high) for any given setting of the critical input parameters.
Class-specific SVM-RBF regression models were also devel-
oped for both low as well as high-productivity classes and
these models could be used to predict real value of productivity
for any given setting of the critical input parameters. The
SVM-RBF regression model fitted to the high-productivity
class was subjected to constrained nonlinear optimization
treatment to find the optimum setting of the critical input
parameters that gave maximum productivity. The optimum
setting of the critical parameters could be used as the target
setting obtaining high productivity in the blast furnace.

Keywords Blast furnace productivity . Supervised
learning . Support vector classification . Support vector
regression . Nonlinear optimization .Maximum productivity

1 Introduction

Recurring spells of low productivity in a modern generation
(having provision of pulverized coal injection facility) blast
furnace in an integrated steel plant was the motivation behind
the present study. The blast furnace (BF) that was designed to
give higher productivity was commissioned about 5 years
back. After attaining stability since commissioning, the BF did
give increased productivity initially for a period of about
3 years. The problem of low productivity started thereafter.
The problem was investigated by in-house teams of experts
who reportedly used established mathematical models for
simulating BF operations and recommended quite a few
solutions. None of the solutions gave lasting improvement in
BF productivity. Under the situation, the present study was
undertaken and it was decided to use altogether a new
approach involving one of the recent and leading supervised
learning machines, viz. Support Vector Machines (SVM) for
modeling the BF productivity. This approach was not yet used
in BF although reports of application of machine learning
approach appeared in diverse fields like, biomedical prob-
lems, magnetic resonance imaging, linear signal processing,
speech recognition, image processing, wireless communica-
tion problems, spread spectrum receiver design, channel
equalization, [1–13], and even for modeling burden layer
thickness in blast furnace with neural network [14].

The use of a supervised learning machine like SVMs in the
present study had quite a few practical implications. An
enormous amount of rich information generated by the blast
furnace year after year was almost left unused. The informa-
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tion contained an enormous number of data-points each
consisting of a setting of the critical input parameters
x1; x2; . . . ; xnf gof the blast furnace and the associated

productivity y1; y2; . . . ; ynf g values that were recorded on
real time basis. To address the problem of recurring low
productivity in the blast furnace, it was therefore ideal to
explore the unknown dependency between the high dimen-
sional vectors of the critical input parameters and the
observed productivity y (i.e., output, scalar, or vector) by
training a leading supervised learning machine, viz. Support
Vector Machines with these available data-points arranged in
suitable form (i.e., describing the BF productivity associated
with each setting of the critical input parameters either in two
classes viz. low/high productivity classes or, in terms of its
real value). The necessity of using SVMs with high-speed
capabilities and “learning” abilities of support vectors was all
the more felt because, use of traditional models (thermody-
namic and kinetic etc.) by the operating team did not provide
any lasting solution to the problem of low productivity. It
was contemplated that, the off-line-trained SVMs would
bring out the unknown dependence (linear or nonlinear)
between the two sets of variables (i.e., vectors of critical
input parameters and class/real value of productivity) either
in the form of optimal classification function fa x;wð Þ � y or
minimum error regression function. The optimal SVM
classification function with good generalization ability
(ensured during training session) would be able to predict
whether any given setting of the critical input parameters of
the BF at any given time-point would be associated with
high productivity or low productivity. Similarly, the SVMs
could also be trained to express the unknown dependence
between the vectors of critical input parameters and real
value of productivity in the form of regression models for
both low- and high-productivity classes. The class-specific
regression model could then be used to predict the real value
of BF productivity y corresponding to any given setting of
the critical input parameters x1; x2; . . . ; xnf g both in low- and
high-productivity classes. Prediction of either the class of
productivity (low/high) or real value of productivity for any
x1; x2; . . . ; xnf g would enable the operating team of the BF

to work out suitable control strategy and to take appropriate
preventive/corrective actions whenever needed (particularly
when low productivity was predicted).

The second major implication of the present study was
that the SVM regression model fitted to the high-
productivity class could be subjected to nonlinear optimi-
zation treatment in constrained space of the critical input
parameters (as defined by the observed/allowable lower and
upper bounds of each critical input parameter) with a view
to obtain the optimal setting of the critical input parameters
that would most likely give maximum BF productivity. The
optimum setting would serve as a good guideline for the BF
operating team who could try to operate in the nearest

neighborhood of this optimum setting after having treated
the same as the target setting.

The third major implication of the study was that, the
off-line-trained SVMs could be implemented in control
system hardware and embedded on any device for knowing
real-time prediction on BF productivity based on on-line
learning. In on-line learning, the SVMs would update (fine-
tune) the current classification function or, the current class-
specific regression functions with each new data-point
x1; x2; . . . ; xn; yif g and would be able to predict more

accurately both the class (low/high) or the real value of
BF productivity for any given setting of the critical input
parameters. If the constrained nonlinear optimization
algorithm is integrated with the control system of the blast
furnace, it would also be possible to obtain the updated
optimum setting of the critical parameters (i.e., target
setting) associated with the maximum BF productivity.

Thus, the objectives of the present study were formulated
as follows:

1. Finding an appropriate classification function by which it
would be possible to predict with minimum error whether
a given setting of the critical input parameters would be
associated with high- or low-productivity class.

2. Finding the adequate SVM-regression models for the
two productivity classes (low and high) such that, real
value of the productivity can be predicted for a given
setting of the critical input parameters within a class.

3. Determining the optimum setting of the critical input
parameters corresponding to maximum productivity by
subjecting the SVR-regression model of the high produc-
tivity class to constrained nonlinear optimization treatment.

2 Review of literature

A large number of mathematical models (both analytical and
empirical) have been developed to characterize BF operations.
These models are of the following types: heat and mass balance
models, reaction-kinetic models and thermodynamic models,
simulation models, neural network models etc. The thermody-
namic and kinetic models are based on thermodynamic and
kinetic characteristics of various processes of BF and expressed
in terms of differential equations and difference equations
which were solved against the boundary conditions obtained
from chosen values of the process variables [15]. Muchi et al.
[16] originally proposed a one-dimensional model which
considered major chemical reactions and heat transfer and
gave the distributions of process variables along furnace
height. Many models were developed later extending this
modeling technique. Chenl et al. [17] designed an expert
system for continuously monitoring blast furnace performance
that included a journal, in addition to the usual three major
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components viz. the knowledge base, the global database, and
the inference engine to account for the time complexities.
Bilik et al. [18] developed a model for monitoring the
performance of a blast furnace by combining a thermody-
namic model (which estimated the minimal theoretically
possible fuel rate in the condition of reaching the thermody-
namic balance of wüstite reduction), a kinetic model (based
on kinetic characteristics of the individual component of the
iron-bearing burden), and a coke degradation model (which
estimated the in-furnace changes of coke). Danloy et al. [19]
modeled a blast furnace in steady state using the system of
differential equations. The solutions were obtained by the
finite differences method with the input data like, BF
geometry and process data, the chemical and physical
properties of the raw materials, the chemical composition of
hot metal and slag, description of ore and coke layers, etc.
Babich et al. [20] developed a model on the basis of the
interrelations of material and heat balances equations. The
model simulated the effect of coke, burden and blast
parameters on the blast furnace productivity, hot metal heat
and quality, slag volume and basicity, top gas volume,
chemistry and temperature, etc. Nogami et al. [21] developed
a multi-dimensional blast furnace operation simulator based
on multi-fluid theory and reaction kinetics. The mathematical
expression of reduction behavior of carbon composite
agglomerates (CCB) was introduced into the blast furnace
simulator and the effect of charging CCB to blast furnace and
accompanying reduction in temperature were numerically
examined. Dong et al. [22] developed a model to describe the
behavior of fluid flow, heat and mass transfer, as well as
chemical reactions in a BF in which gas, solid, and liquid
phases affect each other through interaction forces, and their
flows compete for the space available. Process variables that
characterize the internal furnace state, such as reduction
degree, reducing gas and burden concentrations, as well as
gas and condensed phase temperatures were described
quantitatively. Saxen [23] presented a BF model that
described the steady-state operation of the furnace in one
spatial dimension using real process data sampled at the
steelworks. The measurement data were reconciled by an
interface routine which yielded boundary conditions obeying
the conservation laws of atoms and energy. Azadeh et al. [24]
developed an integrated simulation model for a BF by
considering all the major and detailed operations and
interacting systems of the blast furnace. The model considered
maintenance, repairs, quality control activities, systems'
limitations and interaction with other systems, and introduced
a set of optimizing alternatives through sensitivity analysis.
Man-Sheng et al. [25] developed a multi-fluid blast furnace
model that was used to investigate the performance of blast
furnace under the condition of top gas recycling together with
plastics injection, cold oxygen blasting and carbon composite
agglomerate charging. Yagi et al. [26] developed another

multi-fluid blast furnace model and showed that the efficiency
of blast furnace improved due to the decrease in heat
requirements for solution loss, sinter reduction and silicon
transfer reactions, and less heat outflow by top gas and wall
heat loss. Jindal et al. [27] presented a reduced order BF
model based on real time simulation of process variables for
process monitoring, control and optimization. Pettersson et al.
[14] developed a neural network-based model of the burden
layer thickness in blast furnace that was estimated from a
single radar measurement of the burden (stock) level inside
the furnace. The model described the dependence between the
layer thickness and key charging variables. An evolutionary
algorithm was applied to train the network weights and
connectivity by optimizing the model structure and parameters
simultaneously. Xuegong Bi et al. [28, 29] developed a one-
dimensional prediction model having considered increased
blast temperature, oxygen enrichment of the blast, coal
injection alone, coal injection combined with oxygen enrich-
ment and changed coke quality. Matsuzaki et al. [30]
developed the mathematical model of a blast furnace by
combining models for material transfer, reaction and heat
transfer of lumpy zone or cohesive zone. De Castro et al. [31]
developed a comprehensive two-dimensional transient math-
ematical model to evaluate productivity, energy efficiency and
transient phenomena for different injection rates of pulverized
coal to the blast furnace. The model was built upon the
conservation equations of mass, momentum, thermal energy
for all phases, phase transformations and chemical reactions,
moisture evaporation, reduction of iron oxides, solution loss,
coke and pulverized coal combustion, silica reduction, gas
phase reactions, etc.

Use of SVMs for modeling BF productivity in the
present study was justified because there were no published
reports on such applications.

3 Support vector machines—classification
and regression

SVMs are quite a recent and leading supervised machine
learning approach that constitutes very specific class of
algorithms characterized by large margin hyperplanes, usage
of kernels, geometrical interpretation of kernels as inner
products in a feature space, absence of local minima, sparseness
of the solution and capacity control obtained by acting on the
margin, or on number of support vectors [32–41].

In binary classification setting, the SVMs learn from the
training data x1; x2; . . . ; xnf g that are vectors in some space
� R

d . Their labels are given y1; y2; . . . ; ynf g where, yi
belongs to yi 2 �1:1f g. The task of learning from training
dataset can be formulated in the following way. Given a set
of decision functions and data points of the training set
drawn from an unknown distribution P(x, y), a function
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fa(x, w; w=weight vector wn learned in training; x training
instances) is found that provides the minimum expected risk.

RðwÞ ¼
Z

fa x;wð Þ � yj jP x; yð Þdxdy ð1Þ

The function fa(x, w) usually belongs to a hypothesis
space of candidate functions H fa 2 Hð Þ which very often
include nonlinear kernel functions that are used to
transform input data to a high-dimensional feature space
in which the input data would become more separable
compared with the original input space. The expected risk
is a measure of how good a hypothesis is at predicting the
correct level of y for a given setting of x.

If the data points in the training set are linearly separable
into two classes, the goal of SVMs would be to find the
best canonical hyperplane from among the set of canonical
hyperplanes that correctly classify the data, the one with
minimum norm, or equivalently the minimum j w2

�� ��j. The
hypothesis space in this case is therefore the set of functions
given by,

f w; bð Þ ¼ sign wxþ bð Þ ð2Þ
Then set of hyper-planes that satisfy the additional constraint

mini¼1;2;...;l wxi þ bj j ¼ 1 are called canonical hyper-planes
where, x1; x2; . . . ; xnf g are the points in the dataset. Linear
separability means that it is possible to find a pair (w, b) such
that

wxi þ b � 1 for all xi 2 Class1 ð3Þ

wxi þ b � �1 for all xi 2 Class1 ð4Þ

Minimizing w2 (in the case of linear separability) will be
equivalent to finding the separating hyper-plane for which the
distance (i.e., the margin) between the two convex hulls (i.e.,
the two classes of training data points), measured along a line
perpendicular to the hyper-plane is maximized. To construct
the maximal margin or, optimal separating hyper-plane, the
vector xi of the training set x1; y1ð Þ; x2; y2ð Þ; . . . ; xl; ylð Þf g;
xi 2 R

n should be correctly classified into two different
classes yi 2 �1; 1f g using the smallest norm of the coef-
ficients. This can be formulated as,

min
w;b

ΦðwÞ ¼ 1

2
w2 ð5Þ

subject to yi wxi þ bð Þ � 1; i ¼ 1; 2; . . . ; l
At this point the problem can be solved by Quadratic

programming optimization technique. For solving this
optimization, the dual problem may also be formulated
and the technique of Lagrangian multiplier can be used.
The Lagrangian is:

L w; b;Λð Þ ¼ 1

2
w2 �

Xl

i¼1

li yi wxi þ bð Þ � 1½ � ð6Þ

where, Λ ¼ l1; l2; . . . ; llð Þ is the vector of non-negative
Lagrange multipliers corresponding to the constraints
yi wxi þ bð Þ � 1; i ¼ 1; 2; . . . ; l:

The solution to this optimization problem is determined by
a saddle point of this Lagrangian which has to be minimized
w.r.t. w, b and maximized w.r.t. Λ � 0. Differentiating the
Lagrangian function w.r.t., w and b, and solving the
equations, w and b can be estimated and finally the decision
function can be written as

f w; bð Þ ¼ sign
Xl

i¼1

yil
»

i xxi þ b
»

� �( )
ð7Þ

The extension to more complex non-linear decision surface
is done by mapping the input variables x in a higher
dimensional feature space via kernel function into vector of
feature variables and by working with linear classification in
that space. x ! fðxÞ ¼ a1f1ðxÞ; a2f2ðxÞ; . . . ; anfnðxÞ; . . .f g
where, anf g1n¼1 are some real numbers fnf g1n¼1 are some
real functions. The soft margin version of the SVMs is then
applied substituting the variable x with the new feature space
fðxÞ. Under themapping, the solution a SVMhas the following
form

f w; bð Þ ¼ sign
Xl

i¼1

yil
»

i xxi þ b
»

� �( )

¼ sign
Xl

i¼1

yil
»

i fðxÞf xið Þ þ b
»

� �( )
ð8Þ

A key property of the SVM is that the only quantities
that ate required to be computed are scalar products of the
form fðxÞ:fðyÞ. It is therefore convenient to introduce the
kernel function K:

K x; yð Þ ¼ fðxÞ:fðyÞ ¼
X1
n¼1

a2nfnðxÞ:fnðyÞ ð9Þ

Using this quantity the solution for the decision surface will
be of the form

f w; bð Þ ¼ sign
Xl

i¼1

yil
»

i K x:xið Þ þ b
»

� �( )
ð10Þ

and the quadratic programming problem becomes:

F Λð Þ ¼ Λ:1� 1
2 Λ:D:Λ

subject to
Λ:y ¼ 0
Λ � C:1
Λ � 0

9>>>=
>>>;

ð11Þ

where, D is a symmetric semi-positive definite l by l matrix
with elements Dij ¼ yiyjK xi; xj

� �
.
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In SVM regression, the input x is first mapped onto an
m-dimensional feature space using some fixed non-linear
mapping, and then a linear model is constructed in the
feature space. The linear model is given by

fa x;wð Þ ¼
Xm
j¼1

wjgjðwÞ þ b ð12Þ

where, gjðxÞ; j ¼ 1; 2; . . . ;m denotes a set of nonlinear
transformations and b is the bias term. The quality of
estimation is measured by some loss function lðy; fa x;wð Þ.
SVM regression uses a new type of loss function, known as
ε–insensitive loss function:

l y; fa x;wð Þð Þ ¼ 0 if y� f x;wð Þj j � "
y� f x;wð Þj j � " otherwise

�
ð13Þ

The empirical risk is

RempðwÞ ¼ 1

n

Xn
i¼1

l y; fa x;wð Þð Þ ð14Þ

The SVM regression is formulated as minimization of the
following functional:

Minimize 1
2 w

2 þ C
Pn
i¼1

xi þ x
»

i

� �
subject to

yi � f xi;wð Þ � "þ x
»

i
f xi;wð Þ � yi � "þ xi

xi:x
»

i � 0

; i ¼ 1; 2; . . . ; n

9>>>>>>=
>>>>>>;

ð15Þ

The optimization problem can be transformed into a
Dual problem and its solution is given by,

f ðxÞ ¼ PnSV
i¼1

ai � a
»
i

� �
K xi; xð Þ

subject to
0 � a

»
i � C

0 � ai � C

9>>>>=
>>>>;

ð16Þ

when, nSV=the number of support vectors and the kernel
function is

K xi; xð Þ ¼
Xm
j¼1

gjðxÞ:gj xið Þ ð17Þ

It is well known that the SVM generalization perfor-
mance (estimation accuracy) depends on a good setting of
meta-parameters C, ε and kernel parameters. Parameter C
determines the trade-off between model complexity (flat-
ness) and the degree to which deviation larger than ε are
tolerated in optimization formulation. Parameter ε controls
the width of the ε–insensitive zone. The value of ε can
affect the number of support vectors used to construct the
regression function. The bigger ε, the fewer support vectors
are selected.

4 Blast furnace and critical input parameters

A BF is essentially a moving bed reactor inside which
five phases viz. gas, lump solids (iron ore, sinter, pellets
and coke), liquids (pig iron and molten slag) and
powders (tuyere injectants: pulverized coal, coke fines,
or dust from the lump coke) interact with one another
while consuming sinter, pellets, coke as resources, or
raw materials. These five phases directly affect the BF
productivity through numerous physical, chemical,
physico-chemical, mechanical, and hydraulic processes,
homogeneous and heterogeneous reactions which occur
simultaneously affecting each other. Blast furnace con-
verts iron oxides (ores) to hot metal (pig iron) that is
used for steel making. Customarily, the BF Productivity
was measured as per the standard definition adopted in
steel plant w.r.t. coke consumption that goes as follows:
(productivity=coke burning intensity/coke rate).

Blast Furnace 

Coke 

Nut Coke 

LD Slag 

Iron Ore lump 

Sinter

Hot Blast 

Coal Dust Injection 
Top Pressure

... etc.

Productivity
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The critical input parameters which were most likely
to influence the productivity of the blast furnace were
tracked down based on survey of literature [18–20, 25–
29] and expert views available within the organization.
All the critical process parameters which were derived
from basic input variables were: Coke rate, Iron ore lump,
Coke, Nut coke, Sinter percentage, Coal dust injection,
LD slag, Oxygen enrichment, Blast temperature, Coke
ash, Coke M10, Coke M40, Coke CRI, Coke CSR,
Average Al2O3 in slag, Total number of casting, Not-dry
Cast, Raceway adiabatic flame temperature, Average
Silicon content in hot metal, Solution loss Carbon and
ETA CO.

The critical input parameters were required to be
computed by using the following formulae.

CokeRate¼ CokeActualþCokeNut
ProductionTheoretical

�1; 000 ð18Þ

where

ProductionTheoretical¼
FeOreLump�Ore� 0:96
� �þ FeSinter�Sinterf g

þ IronLDSlag�LDSlag
� �� 	

FeFactor

ð19Þ

FeFactor¼ 100� HMSiþHMMnþHMSþHMPþHMTiþHMCð Þ
ð20Þ

SinterPercentage¼
SinterActualþ LimeStoneð ÞReported

SinterActualþOreActualþ LimeStoneð ÞReported
�100

ð21Þ

O2ð ÞEnrichment¼
79� O2ð ÞVolume

BlastVolumeþ O2ð ÞVolume

ð22Þ

Raceway
Adiabatic
Flame

Temperature
ðRAFTÞ

¼

1570þ 0:808� BlastTemperature

� �
�5:85� Steam� 1000:0

BlastVolumeþ O2ð ÞVolume

� �
�16:67

n o
þ15

h i
þ43:7� O2ð ÞVolume

BlastVolumeþ O2ð ÞVolume
�100

�2:2� CDI� 1000
ProductionTheoretical

� �

0
BBBBB@

1
CCCCCA� 4100� Tar

O2ð ÞVolumeþBlastVolume


 �� 1440� BlastOffð Þ

" #

ð23Þ

Solution Loss Carbon ¼ TopGasð ÞC�cmeta�TuyerC
hmp

�1; 000

ð24Þ
Where,

cmeta¼ 12� HotMetalð ÞPressure
100

� 	
� 2

28
�Siþ 1

55
�Mnþ 2:5

31
�0:15

� 	

ð25Þ

HotMetalð ÞPressure¼
TopO2

�TuyerO2

0:392
ð26Þ

ETACO¼
TopCO2

TopCOþTopCO2

ð27Þ

It was decided to consider all these critical input parameters
for modeling the BF productivity.

5 Data collection and processing

Data on production/productivity and the corresponding
settings of the critical input parameters of the blast furnace
were routinely recorded by the Research and Control

Laboratory of the organization in all the three shifts of a
day. Every day, at the end of the third shift, the data thus
collected were averaged to get average daily production,
productivity and average values/levels of the variables
related to raw materials, charging and process. These data
were kept stored in a database made with FOXPRO by the
Computer and Automation division of the organization. The
same data were used to compute the values of the critical
input parameters.

For the present study, the same database was used to
collect required data for a continuous period of 2 years
(2006–2008) and also for a period: (2003–2006) in discrete
time domains. The period (2006–2008) pertained to the low
productivity regime (as the blast furnace was endemically
giving low productivity during this period) and the period
(2003–2006) was termed as the high productivity regime.
The values of the critical input parameters were computed
using the same database.

The data were fed into Excel database and inappropri-
ate data points (such as outliers, technically untenable data
etc.) were excluded after consulting the experts in the
field. The total number of data points considered for the
study was 1344.
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Scrutiny of the observed productivity values indicated
that, it was quite logical to classify the data points into
two classes, viz., High Productivity Class and Low
Productivity Class as follows:High Productivity Class:
Productivity>Median value of Productivity (=1.63) in
the given period. Low Productivity Class: Productivity<
Median value of Productivity (=1.63) in the given
period.

Out of the total of 1,344 data points, High Productivity
Class contained 746 and the Low Productivity Class had
598 data points.

A sample data sheet containing labeled productivity
values and corresponding setting of the critical input
parameters of the blast furnace is shown in Annexure-1.

A random sample containing 90% (=1,210) of the total
number of data-points (1,344) was considered as the
Training set and the remaining data-points constituted the
Test set for SVM learning.

It was interesting to find that, most of the critical input
parameters of the blast furnace were inter-correlated (as
revealed by the correlation coefficient matrix) and majority
of them had high auto correlation with different time lags
(as revealed by ACF and PACF plots). Such a scenario was
not conducive for taking to any statistical modeling
approach which required distributional and other restrictive
assumptions about the residuals to be satisfied. It was thus
fully justified to use Support Vector Machines for modeling
BF productivity because this approach did not require any
distributional and other restrictive assumptions about the
residuals.

6 SVM classification function

The dataset consisted of settings of the 21 critical input
parameters (as described in section 4) as the input variable
vector xi corresponding to the observed class (low and
high) of BF productivity, considered as the output variable
yi;yi=1,2.

A training set consisting of 90% of the labeled data
chosen at random from the total data set was considered for
supervised learning by SVMs. Remaining 10% of the data
was used for testing the fitted model. The SVMs mapped
the data to a predetermined high-dimensional space via
defined kernel function. Several inner-product kernels such
as, linear, polynomial, radial basis function etc. were tried
with a view to find the best classification function. As it
may be seen from Table 1, the classification was most
accurate when the Radial Basis function (RBF) of the form
given in (Eq. 28) was used.

k x; xið Þ ¼ exp � 1

2s2
x� xik k

� 	
ð28Þ

The fitted SVM classification function was:

CðxÞ ¼
Xn
i¼1

ai � ai
0� �
yik x; xi

0� �

¼
Xn
i¼1

ai � ai
0� �
yi exp � 1

2s2
x� xik k

� 	

¼
Xn
i¼1

biyi exp � 1

2s2
x� xik k

� 	
ð29Þ

where, b
0
i s; i ¼ 1; . . . ; n were obtained using the SVM

Module in MATLAB. These b
0
i
s; i ¼ 1; . . . ; n values are

given in Annexure-2. In this case the value of s2 was taken as
1

2�gamma.
It may be seen from Table 1 that, the highest level of

accuracy (95.7983) was obtained with the fitted RBF
Kernel in classifying the given dataset to the two
productivity classes with the following parameter set.

C ¼ 10; and g ¼ 0:0001:

The kernel functions and/or, the parameter combinations
within a kernel function for which the accuracy was not
significant have not been shown in Table 1.

7 Support vector machine regression

Using the ε– insensitive loss function, the SVM regression
models as function of critical input parameters were
developed for the two (low and high) productivity classes
by minimizing the empirical risk.

7.1 High Productivity Class

After having explored different SVR kernel functions with
various parameter combinations within a kernel, the Radial
Basis Function kernel (Eq. 30) gave the best fit regression
model with a given combination of its parameters to the
given dataset of the high productivity class in Table 2.

The fitted support vector regression model is given by

PðxÞ ¼
Xn
i¼1

ai � a
0
i

� �
k x; x

0
i

� �
¼

Xn
i¼1

ai � a
0
i

� �
exp � 1

2s2
x� xik k

� 	

¼
Xn
i¼1

bi exp � 1

2s2
x� xik k

� 	

ð30Þ
where b

0
i
s; i ¼ 1; . . . ; n were obtained using the SVM

Module in MATLAB and prediction and are shown in
Annexure-3.

The best parameter set obtained for the fitted Radial
Basis Function was as follows:

C ¼ 4:8; and g ¼ 0:000001:
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The accuracy level with which the fitted SVR predicted
the productivity value for a given setting of the critical
input parameters of the blast furnace belonging to the high
productivity class is given in Table 2.

7.2 Low Productivity Class

The Radial Basis Function gave the best fit regression
model to the given dataset of low productivity class after

exploring with different kernel functions and various
parameter combinations within a kernel. The SVM-RBF
regression function is given in (Eq. 31).

PðxÞ ¼
Xn
i¼1

ai � a
0
i

� �
k x; x

0
i

� �
¼

Xn
i¼1

ai � a
0
i

� �
exp � 1

2s2
x� xik k

� 	

¼
Xn
i¼1

bi exp � 1

2s2
x� xik k

� 	

ð31Þ

Table 1 The values of various hyperparameters of different kernels and the corresponding classification accuracy obtained

Polynomial function Radial basis function Linear function

C S R Degree Accuracya C Gamma (γ) Accuracya C Accuracya

1e-007 0.00901 0.00501 4 92.437 10 0.0001 95.7983 1e-006 93.2773

1e-007 1e-005 1e-005 2 91.5966 100.5 0.0001 94.958 2e-006 94.1176

1e-007 1e-005 0.00101 5 90.483 0.1 4e-005 94.1176 8e-006 90.1875

1e-007 1e-005 0.00201 5 82.367 0.1 0.00013 92.437 7e-006 84.1688

1e-007 1e-005 0.00501 5 90.432 0.1 0.000146 91.5966 0.0002 94.1176

1e-007 1e-005 0.00701 5 88.764 0.1 0.000147 90.7563 0.00037 88.6884

1e-007 0.00101 0.00301 4 91.421 0.1 0.000151 89.916 0.00048 89.5643

1e-007 0.00101 0.00901 3 87.231 0.1 0.000156 88.2353 0.00059 82.1134

1e-007 0.00201 0.00501 2 81.598 0.1 0.000159 87.395

1e-007 0.00201 0.00901 3 88.760 0.1 0.000161 86.5546

1e-007 0.00301 0.00101 2 84.866 0.1 0.000167 85.7143

0.1 0.00017 84.8739

0.1 0.000174 84.0336

0.1 0.000183 84.0336

0.1 0.000155 89.0756

0.1 0.000185 82.3529

0.1 0.000192 80.6723

0.1 0.000184 83.1933

0.1 0.000193 79.8319

a If the predicted class of productivity of a data point was equal to the observed class of productivity of the data point in the test set, then accuracy was
incremented by (1/no. of data points in test set)

Radial basis function Polynomial function Linear function

C Gamma Accuracya C S R D Accuracy C Accuracy

4.8 0.000001 100 0.1 1 1 2 88.5906 0.1 81.2081

0.1 0.000001 99.3289 0.1 1 1 3 76.3758 1.8 85.2349

0.3 0.000001 92.3421 0.1 6 11 7 86.1324 1.5 79.8658

0.3 0.000008 93.3956 0.1 1 11 7 88.5842 0.9 82.5503

0.4 0.000009 89.8934 0.1 6 11 2 82.5463 1.0 83.2215

0.7 0.000004 84.3865 0.1 6 21 3 84.4683 0.6 84.5638

0.7 0.000009 88.9453 1.9 81.8792

0.9 0.000009 99.6574 2.0 69.1275

1.2 0.000004 92.1654

1.4 0.000003 87.1276

1.6 0.000005 88.7645

Table 2 Prediction accuracy of
different kernel fitted SVR in
high-productivity class

a If the productivity value as
predicted by the fitted RBF kernel
function for a given setting of the
critical parameters was in the
interval (0.95 productivity/1.05
productivity) of the test set, then
the accuracy was incremented by
(1/no. of data points in test set)
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where b
0
i
s; i ¼ 1; . . . ; n were obtained using the SVM

Module in MATLAB and 1
2s2 ¼ 0:0000045 and these

b
0
i
s; i ¼ 1; . . . ; n were estimated exactly the same way they

were estimated for the SVM-RBF regression model of the
high productivity class.

The best parameter set obtained for the Radial Basis
Function was:

C ¼ 45; and g ¼ 0:0000045:

The accuracy level with which the fitted SVM-RBF
regression model predicted the productivity value for a
given setting of the critical input parameters in the low
productivity Class is given in Table 3.

8 Model adequacy check

The observed productivity values were obtained from the blast
furnace for 50 consecutive days in the post-study period
corresponding to randomly chosen settings of the critical input
parameters. The SVM-RBF regression models fitted to both
low and high productivity classes were used to predict the
productivity value corresponding to each of the 50 settings of
the critical input parameters randomly chosen. Depending on
whether the observed productivity value belonged to the high
or, low productivity class, the corresponding SVM-RBF
model was used for prediction. Assuming normality, the
95% lower and upper confidence bounds of the predicted
productivity values were estimated as shown in Table 4. It
may be seen that there is very good agreement between the
observed and predicted values of BF productivity.

9 Optimal blast furnace productivity

The primary objective of the present study was to achieve
maximum productivity in the blast furnace and hence the

SVR-RBF regression model fitted to the high productivity
class was subjected to constrained non-linear optimization
treatment for identifying the optimal setting of the critical
input parameters that gave maximum productivity.

The optimization problem was formulated as follows:

Max:
Pn
i¼1

bi exp
�
� 1

2s2 x� xik k
�

Subject to
maxi¼1;...;N xij � xj � mini¼1;...;N xij

9>>=
>>; ð32Þ

The optimal setting of the critical input parameters in the
high productivity class is given in Table 5.

The maximum productivity value of the blast furnace
that was obtained corresponding to the optimum setting of
the critical input parameters given in the Table 5 was:
2.0765 and this was quite high when compared to other
productivity values obtained in the high productivity class.

10 Results and discussion

Highly complex nature of dependency between the vectors of
the 21 critical input parameters and the productivity y (i.e.;
output scalar or, vector) observed in the blast furnace was
revealed during the training session of the Support Vector
Machines with the given training set via quadratic optimiza-
tion. It was evident that, the training set was not linearly
separable into low and high productivity classes. Hence, the
original space of the critical input parameters of blast furnace
was effectively mapped into a high dimensional feature space
via Radial Basis Kernel Function (RBF kernel) where the
same training set was linearly separable and the linear
separators in the high dimensional feature space corresponded
to highly complex non-linear separators in original space of
input vectors. The optimum (maximum margin and mini-
mum risk) SVM-RBF classification function with reasonably
good generalization property was developed on the basis of a
trade-off done between the generalization ability and fitting
to the training data. The classification function could
successfully be used for predicting the class of productivity
(low or, high) for any given setting of the 21 critical input
parameters at any given time point and was thus immensely
useful to the operating team of the blast furnace. Similarly,
the class-specific adequate SVM-RBF regression models for
BF productivity that were developed using the ε–insensitive
loss function and minimizing the regulated risk function (i.e.;
the distance between the input point set and the function.) for
both low and high productivity classes were equally useful to
the operating team for predicting the real value of the BF
productivity corresponding to any given setting of critical BF
parameters within a class.

Subjecting the SVM-RBF regression model of the high
productivity class to constrained nonlinear optimization

Table 3 Prediction Accuracy with fitted SVR-RBF model for low-
productivity class along with parameter combinations

C Gamma(γ) Accuracya

45 4.5e-006 80.7018

0.4 1e-006 78.9474

0.2 2e-006 77.193

0.2 4e-006 75.4386

0.2 5e-006 73.6842

0.3 1e-006 71.9298

0.4 1.1e-005 70.1754

0.8 1e-005 68.4211

0.1 3e-005 66.6667

a Accuracy level was computed as per the procedure described
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treatment was another challenging task because of its highly
complex and nonlinear nature. However, using the SAS
optimization module, convergence could be achieved and the
optimum setting of the critical parameters that was obtained
corresponding to the maximum productivity could be treated
as the target setting by the operating team for obtaining high
BF productivity.

Based on the value of the gradient objective function, the
coke, coke rate, blast temperature emerged as very important
factors insofar as their influence on the BF productivity were
concerned and this was quite consistent with theory of BF.
The present study also offered good scope for implementing
the off-line-trained SVM-RBF classification model, class-
specific regression models in control system hardware for on-
line learning of SVM. In that case, the SVMs would update
their current classification and regression models in response
to each new data point x1; x2; . . . ; xn; yf g considered in the
training set and the prediction capability of these up-dated
SVM models would continue to improve. Constrained
nonlinear optimization software when integrated with the
hardware would give updated optimum setting of the critical

parameters every time the SVM classification or, regression
models are updated and thus optimum region of critical
parameters rather than optimum point setting may be
obtained. The task of devising an appropriate control scheme
for the optimum region of critical parameter set would be
easier than that required for the optimum point setting of the
critical parameter set.

11 Implementation

The SVM-RBF classification model as well as the class-
specific regressionmodels developed for both low productivity
and high productivity classes of the blast furnace were made
available to its operating team for direct implementation into
their online system so that they could readily predict the class
or, real value of the BF productivity corresponding to a given
setting as also the target setting of the critical process
parameters. The task of implementing the off-line-trained
SVM models in the hardware for BF control system was also
taken up by the management.

Table 4 Observed and predicted values of BF productivity with 95% confidence bounds

Observed
Productivity

Productivity
Predicted By
Fitted Model

Lower 95%
confidence
Bound

Upper 95%
confidence
Bound

Observed
Productivity

Productivity
Predicted By
Fitted Model

Lower 95%
confidence
Bound

Upper 95%
confidence
Bound

1.44 1.368 1.512 1.45488 1.55 1.4725 1.6275 1.43877

1.31 1.2445 1.3755 1.29539 1.41 1.3395 1.4805 1.3783

1.19 1.1305 1.2495 1.13966 1.47 1.3965 1.5435 1.3345

1.36 1.292 1.428 1.34835 1.41 1.3395 1.4805 1.40387

1 0.95 1.05 1.19627 1.51 1.4345 1.5855 1.42634

1.32 1.254 1.386 1.32973 1.57 1.4915 1.6485 1.4686

1.6 1.52 1.68 1.46899 1.5 1.425 1.575 1.453

1.56 1.482 1.638 1.43212 1.39 1.3205 1.4595 1.39818

1.4 1.33 1.47 1.39955 1.44 1.368 1.512 1.41362

1.52 1.444 1.596 1.49214 1.53 1.4535 1.6065 1.42064

0.33 0.3135 0.3465 1.27308 1.49 1.4155 1.5645 1.4448

0.46 0.437 0.483 0.127434 1.41 1.3395 1.4805 1.42588

0.79 0.7505 0.8295 0.770252 1.41 1.3395 1.4805 1.41033

0.53 0.5035 0.5565 0.396362 1.42 1.349 1.491 1.40077

1.39 1.3205 1.4595 1.35107 1.43 1.3585 1.5015 1.39549

1.45 1.3775 1.5225 1.41011 1.44 1.368 1.512 1.44642

1.48 1.406 1.554 1.34514 1.46 1.387 1.533 1.43602

1.25 1.1875 1.3125 1.17155 1.41 1.3395 1.4805 1.41803

1.01 0.9595 1.0605 0.886303 1.3 1.235 1.365 1.30418

1.37 1.3015 1.4385 1.32807 0.67 0.6365 0.7035 0.770003

1.37 1.3015 1.4385 1.37471 1.48 1.406 1.554 1.47994

1.47 1.3965 1.5435 1.4395 1.58 1.501 1.659 1.52756

1.4 1.33 1.47 1.40662 1.52 1.444 1.596 1.53922

1.11 1.0545 1.1655 1.09345 1.56 1.482 1.638 1.52709

1.34 1.273 1.407 1.33276 1.26 1.197 1.323 1.2221
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12 Conclusion

1. To address the problem of recurring spells of low
productivity in a modern generation blast furnace,
Support Vector Machines were trained with large
number of labeled data points each consisting of a
setting of 21 critical input parameters and the
corresponding class (low/high) of productivity ob-
served in the blast furnace with a view to develop
optimum classification model. After mapping the
vector space of the critical input parameters of the
blast furnace into high dimensional feature space via
Radial basis function (RBF) kernel, the optimum
SVM-RBF classification model with given combina-
tion of its hyper-parameters that had good general-
ization property and low misclassification error, was
developed. The SVM-RBF classification model
could be effectively used to predict the productivity
class for any given setting of the critical input
parameters.

2. Class-specific adequate SVM-RBF Regression models
for BF productivity involving the 21 critical input
parameters were also developed for both low and high
productivity classes using the ε–insensitive loss
function and minimizing the regulated risk function.
The observed and the predicted values of productivity

at randomly chosen settings of the critical input
parameters agreed quite well. Early prediction of real
value of productivity corresponding to any given
setting of critical input parameters of the blast furnace
with the help of the class-specific SVM-RBF regres-
sion models offered the operating team of the blast
furnace the opportunity to decide on appropriate
preventive/corrective action system.

3. The optimum setting of the 21 critical parameters of
blast furnace that gave maximum productivity was
found by subjecting the SVM-RBF regression model
fitted to the high productivity class to constrained non-
linear optimization treatment. The operating team of
the blast furnace was given the option of treating the
optimum setting of the critical input parameters as the
target setting and operating within its nearest neigh-
borhood with a view to obtain high productivity in the
blast furnace.

4. Implementation of the off-line-trained SVM-RBF
classification and regression models in the hardware
of the control system of the blast furnace along with
integration of constrained nonlinear optimization
software was recommended to the operating team to
facilitate continuous on-line updating of the models
and optimal setting of the critical input parameters
with the arrival of new data-points.

Number Factor code Factor name Estimate Gradient objective function

1 ×1 Coke rate 459.1805 −0.00085
2 ×2 Actual coke 1893 0.000486

3 ×3 Nut coke 144 0.000123

4 ×4 Actual ore 2135 0.000008629

5 ×5 Sinter percentage 79.62545 0.000057521

6 ×6 Coal dust injection (CDI) 224 0.000027648

7 ×7 LD slag 0 −0.000064
8 ×8 O2 enrichment (calculated) 0 −0.000001938
9 ×9 Blast temperature 1,020 0.000113

10 ×10 Ash 16.65377 −1.30E-11
11 ×11 M10 7.666667 −0.000001035
12 ×12 M40 83.33333 0.000014273

13 ×13 CSR 69.8 0.000029591

14 ×14 CRI 26.5 0.000002397

15 ×15 Average Al2O3(SLG) 8.515052 2.21E-15

16 ×16 Top pressure 1.15 0.00000062

17 ×17 Total number of casting 12 0.000008572

18 ×18 Not dry cast 0 −0.00000118
19 ×19 Raft 1,949.632 3.01E-15

20 ×20 HM average Si 0 −0.000001757
21 ×21 Solution loss carbon 135.6709 0.000038456

22 ×22 ETA CO 0.551559 −7.62E-09

Table 5 The optimum setting of
the critical input parameters for
maximum (point) productivity in
high-productivity class
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Annexure-1

Sample data sheet
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Annexure-2

b
0
i
s; i ¼ 1; . . . ; n values for support vector classification
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Annexure-3

b
0
i
s; i ¼ 1; . . . ; n values for support vector regression, high-

productivity class
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