
ORIGINAL ARTICLE

An approach for agent modeling in manufacturing
on JADE™ reactive architecture

Venkateswara Rao Komma & Pramod K. Jain &

Narinder K. Mehta

Received: 2 November 2009 /Accepted: 15 June 2010 /Published online: 29 June 2010
Springer-Verlag London Limited 2010

Abstract Java Agent DEvelopment framework (JADE™)
is a leading platform for the development of agent-based
systems that are complaint with Foundation for Intelligent
Physical Agents specifications. Due to the complexity,
concurrency, and dynamic nature of manufacturing, it has
been an important application of agent-based systems.
Application of multi-agent concept in simulation leads to
the agent-based simulation. Modeling the elements of
manufacturing system (such as part, machine, and AGV)
in reactive agent architecture is a better way of modeling
for achieving discrete-event agent-based simulation. This
paper focuses on modeling of different agents in manufac-
turing domain on JADE reactive architecture. Modeling of
different agents on a shop floor in JADE reactive
architecture led to the development of a simulator known
as an agent-based shop floor simulator (ABSFSim). In the
modeling process, different agents in the manufacturing
domain have been identified by physical and functional
decomposition. Internal architecture of individual agents is
finalized based on their behavioral requirements. Modeling
of the agents is an important development step of

ABSFSim. A randomly generated sample manufacturing
system has been used for testing and demonstration of
ABSFSim. The modeling details provided in this paper are
useful for development of agent-based systems in manu-
facturing domain as well as other discrete systems.

Keywords Agent-based modeling . Reactive architecture .

FIPA . JADE . AGVS

1 Introduction

Multi-agent system (MAS), an area of distributed artificial
intelligence, has gained attention of researchers due to its
rich set of capabilities. Manufacturing has been a leading
application of MAS due to its complexity and dynamic
nature [1]. Agents are autonomous, computational entities
that can be viewed as perceiving their environment through
sensors and acting upon their environment through
effectors. A few common properties of an agent are (1)
autonomy, (2) cooperativity, (3) reactivity, and (4) proac-
tiveness [2]. Autonomy is considered as a prerequisite to be
an agent by many researchers. An agent becomes intelligent
due to its cooperativity, reactivity, and proactiveness.

Agent architecture is essentially a map of the internals of an
agent—its data structures, the operations that may be
performed on these data structures, and the control flow
between these data structures. According to the characteristics
of concrete agent architectures, they are classified as four
classes as given below [2, 3]:

(a) Logic-based agents: In this type of agents, decision
making is realized through logical deduction. These
agents are useful where more reasoning is required for
decision making.

V. R. Komma (*)
Department of Mechanical Engineering, Motilal Nehru National
Institute of Technology,
Allahabad 211004, Uttar Pradesh, India
e-mail: vrkomma@gmail.com

P. K. Jain :N. K. Mehta
Department of Mechanical and Industrial Engineering,
Indian Institute of Technology Roorkee,
Roorkee 247667, Uttarakhand, India

P. K. Jain
e-mail: pjainfme@iitr.ernet.in

N. K. Mehta
e-mail: mehtafme@iitr.ernet.in

Int J Adv Manuf Technol (2011) 52:1079–1090
DOI 10.1007/s00170-010-2784-2

(b) Reactive agents: In this type of agents, decision
making is implemented in some form of direct
mapping from situation to action. Behaviors of the
reactive agents are implemented as situation to action
with simple reasoning, and these behaviors can present
in several levels. Behaviors in lower level get higher
priority over higher-level behaviors of the agent.

(c) Belief–desire–intention (BDI) agents: In this type of
agents, decision making depends on the manipulation
of data structures representing beliefs, desires, and
intentions of the agent. These agents are useful for
systems that need human-like behavior.

(d) Layered agents: In this type of agents, decision
making is realized via various software layers. To
have reactive and proactive behaviors for an agent, an
obvious decomposition involves creating separate
subsystems to deal with these different types of
behaviors in a hierarchy of interacting layers. Two
types of control flow among the layers can be
observed in layered architectures, viz., horizontal
layering and vertical layering.

Suitability of agent architecture depends on the type of
application. Reactive agent architecture is suitable for
modeling and simulation of agents in discrete-event
systems such as manufacturing domain. Reactive agents
have several advantages such as simplicity, computational
tractability, economy, robustness against failure, and
elegance. However, the disadvantages of this type of agents
are (1) an agent must have sufficient local information
about its environment to take decision; (2) it is difficult to
design agents that learn from experience to improve its
performance over time; and (3) as number of levels of
behaviors increases, it is difficult to understand the
dynamics of interactions between different behaviors. An
example of such agent architecture is Brooks subsumption
architecture [4, 5], which is arguably the best known
reactive agent architecture [2].

In agent-based modeling, in contrast to traditional top-
down approach, the emphasis is on capturing the individual,
together with all its limitations (both cognitive and computa-
tional) and the interaction of individuals. Agent-based
simulation became an accepted methodology for developing
plausible explanations for emergent phenomena (i.e., change
in global behavior of the system with change in local
interactions). Agent-based simulation is also used for verifying
MAS design in a number of fields from social to natural
sciences [6].

For developing agent-based systems, many multi-agent
programming languages and platforms were developed over
years. Bordini et al. [7] reported a comparison for some of
the programming languages and platforms along several
criteria. Selecting an agent programming language and
platform is important for a specific application, since they

are the limiting factors for building specific features of
agents. Agent platforms differ widely in architecture and
implementation, thereby impeding interoperability of agents
from different software environments. To standardize the
abstract architecture and communication among agents,
specifications for MAS have been tried by a few organiza-
tions. Foundation for Intelligent Physical Agents (FIPA) [8] is
such a non-profit organization, and its specifications are
widely accepted. A few platforms such as FIPA-OS, Java
Agent DEvelopment Framework (JADE) [9], Jack Intelligent
Agents, ZEUS, and Grasshopper were reported in the
literature, which are compliant with FIPA specifications.
Among these platforms, JADE is the leading agent develop-
ment platform that helps in developing FIPA-compliant
agent-based systems.

The agent modeling details presented in this paper
were used in the development of an agent-based shop
floor simulator (ABSFSim) [10]. As the development of
agent-based systems from the scratch is a tedious and
time-consuming task, selecting an existing platform as a
middleware is a better choice. However, many existing
software platforms for multi-agent development were
either specific to an application area or they did not have
compliance with any agent development specifications.
Reuse or extension of the reported platforms was scarce
due to non-compliance with agent development specifica-
tions. It is observed in the literature that reactive
architecture is used for entities in manufacturing entities
followed by BDI architecture. However, modeling details
of individual agents in the manufacturing domain were
seldom reported in the literature.

After conducting a detailed literature survey by the
authors for the capabilities of various available platforms,
flexibility, ease of development, compliance with standards,
and active support from its developer, JADE platform was
selected for the development of ABSFSim. The main
features that justify the selection of JADE platform are (1)
JADE is fully compliant with FIPA specifications; (2)
JADE directly supports reactive agent architecture, which is
useful in modeling discrete-event entities in a manufacturing
domain; and (3) JADE has a good support from its developing
team. Due to simplicity and ease of development, reactive
architecture is used in this paper for modeling agents in
discrete-event simulation of manufacturing domain.
However, individual agents are simple in design; the
interaction among these agents is complex to meet the
complexity of manufacturing domain. Therefore, in this
paper, details of reactive agent modeling of common entities
of manufacturing domain for agent-based simulation are
presented which run on the top of JADE platform. To the
best of our knowledge, modeling details of individual agents
in the manufacturing domain which run on JADE platform
were not reported in the literature. The modeling details

1080 Int J Adv Manuf Technol (2011) 52:1079–1090

reported in this paper are useful for developing commercial
agent-based simulation tools for manufacturing domain.
Availability of agent-based simulation tools for manufacturing
will standardize the agent modeling and enhance the agent-
based research by reducing the effort needed for modeling
manufacturing systems.

2 Literature review

Since research is being carried out aggressively in agent
technology, a vast literature is available on the development
of concepts, architectures, interaction techniques, general
approaches to the analysis, and specification of MAS.
However, these contributions, which are sometimes formal
but often informal, have been quite fragmented, without
any clear way of “putting it all together” and thus
completely inaccessible to practitioners [7]. Due to these
facts, many of the published books are just a collection of
several research articles.

Wooldridge and Jennings [11] gave the most general
definition of agent, which also contains an extensive review
of agent architectures and programming languages. A
collection of answers for the question “what is an agent”
can be found in an article by Müller et al. [12]. Comparison
of object and agent can be found in articles by Parunak [13]
and Odell [14]. Extension of Unified Modeling Language
(UML) from objects to agents and representation of agent
interaction protocols in UML can be found in an article by
Odell et al. [15]. A well-known book in the area of MASs is
by Wooldridge [2], for its wide coverage and sufficiently
enlightening details. Articles by Weiss [13] and Jennings and
Wooldridge [16] are also good collection of literature in the
agent technology. The development of agent-based technology
in different applications and its past, present, and future
developments of roadmap is given in an article by Luck et al.
[1]. A later article by Luck et al. [17] presents the updated
status of the agent technology, its application in various areas,
and several issues with statistics such as deliberative Delphi
Study of impact of agent technology in different areas. In
recent years, the focus of the researchers is towards the
standardization of the developments in agent technology,
which are essential for making them available to the
practitioners [7].

A good review of literature in the area of agent-based
manufacturing system (ABMS) was presented by Shen and
Norrie [18], and the review was updated by Shen et al. [19].
Another article aimed at reviewing ABMS is by Monostori
et al. [6]. Among the several agent architectures and
platforms developed over the years, Manufacturing Agent
Simulation Tool (MAST) [20] is an important agent-based
simulation tool for manufacturing systems designed mainly
for the simulations of material handling systems. MAST was

developed on the top of JADE platform. Although modeling
details of agents were not reported, MAST revealed the
feasibility of building agent-based simulators for manufac-
turing systems on JADE platform. It is observed in the
literature that reactive architecture is used for entities in
manufacturing entities followed by BDI architecture.

In spite of the vast literature available in agent-based
modeling, the contributions are often informal and quite
fragmented. Due to the lack of compliance and non-
availability of modeling details of agent development tools,
their extension or reuse was scarcely reported. After
conducting a detailed literature survey by the authors for
the capabilities of various available platforms, flexibility,
ease of development, compliance with standards, and active
support from its developer, JADE platform was selected for
the development of ABSFSim. Due to simplicity and ease
of development, reactive architecture is used in this paper
for modeling agents in discrete-event simulation. However,
individual agents are simple in design; the interaction
among these agents makes them meet the complexity of
manufacturing domain. To the best of our knowledge,
modeling details of individual agents in the manufacturing
domain which run on JADE platform were not reported in
the literature. Thus, this paper presents the details of
reactive agent modeling of common entities of manufac-
turing domain for agent-based simulation to run on the top
of JADE platform. The modeling details reported in this
paper are useful for developing commercial agent-based
simulation tools for manufacturing domain.

Agents in manufacturing domain are referred here as
“manufacturing agents.” Modeling details of the reactive
manufacturing agents to execute on JADE platform are
presented in the following sections.

3 Defining manufacturing agents and their architecture

A manufacturing system is perceived as a set of several
agent types, which are defined based on physical and
functional roles in it. The manufacturing agents used in
ABSFSim are given in Table 1. Some of these agents such
as resource agents (machine-agents and AGV-agents) and
functional agents exist in the system from the start of the
simulation to the end of the simulation, while others such as
a part-agent start at the arrival time of the part and terminate
after departure of the part.

An abstract view of JADE reactive architecture with
proactive goal for a manufacturing agent is shown in Fig. 1.
The architecture can be adapted for any specific type of
manufacturing agent. JADE agent contains a set of
“behavior” objects, which are designed for specific tasks.
These behavior objects are dynamically added or removed
from the agent's behavior list to make them active and

Int J Adv Manuf Technol (2011) 52:1079–1090 1081

inactive, respectively. This dynamic addition or removal
provides specific characteristics to the agent. When there is
no active task, then these behavior objects are “blocked”
(inactivated) to avoid active utilization of CPU. When an
agent receives a message from another agent in its
environment, a suitable behavior object is activated to
handle the message. In the corresponding behavior, the
content of the message is extracted, and its meaning is
ascertained with the help of the corresponding ontology.
While considering the agent's current state and local
knowledge, a suitable action is performed by the agent that
helps in reaching the goal of the agent. Result of the action
is sent as a reply message to the agent that initiated the
interaction protocol. Thus, manufacturing agent on JADE is
reactive and proactive towards its goal.

Manufacturing agents are generally modeled by extend-
ing java class of JADE library jade.gui.GuiAgent, which
facilitates GUI implementation also for the agents. A typical
manufacturing agent is modeled to contain a set of behavior
instances, which are extended from the JADE behavior
classes. The behavior instances required for an agent depends
upon its functionality and its surrounding environment.
In modeling the manufacturing agents, JADE-specialized
behaviors such as OneShotBehaviour, SimpleBehaviour,
FSMBehaviour (Finite State Machine Behavior), and Paral-
lelBehaviour are used to ease the development process.

4 Modeling of different manufacturing agents

The agents in the developed ABSFSim are classified under
the following three categories:

1. Agent types with single instances such as part-
generator-agent (functional agent), arrival-queue-
agent, and departure-agent;

2. Agent types with multiple instances and long life span
such as machine-agent, AGV-agent, node-agent, and
segment-agent; and

3. Agent types with multiple instances and short life span
such as part-agent.

Before dealing with the modeling of individual agent
types, a brief idea of the attributes and behavior instances,
which serve similar purpose in different manufacturing
agents, is beneficial. Therefore, for a typical manufacturing
agent, a few common attributes or identifiers with their
purposes are given in Table 2 followed by common
behavior instances with their purposes.

Common behavior instances and their role:

(a) TimerBehavior
This behavior is extended from SimulatorBehavior,

which helps the agent to synchronize with the
simulation clock and other agents. The TimerBehavior
updates the local virtual time of the agent in-line with
the global virtual time (i.e., simulation clock time) as
and when required.

(b) StatisticsBehavior
This behavior internally collects and updates the

required statistics of the agent in either of the
following cases: (1) at regular time intervals, (2) when
there is a change of state of the main behavior of the
agent, and (3) when an event occurred in the agent.
Variants of this behavior are used in different
manufacturing agents for collecting the statistics.

(c) SimulationSpecialBehavior
This behavior handles the occasional events during

the simulation such as reaching the warm-up time of
the simulation, which needs the agent to clear the
collected statistics, and end of the simulation, which
needs to finalize the collected statistics and store them
to files.

In addition to the above common attributes and
behaviors (i.e., behavior objects), manufacturing agents

Behavior 1

Behavior 2

--

--

Behavior n

Reactive layer

Local knowledge,
State variables,

Ontology

Reasoning about
message

Suggestion to fire
a suitable action

Reasoning for
Proactive goal

Perception

Action

Interaction
with other

agents in its
environment
with suitable

protocols

Fig. 1 An abstract view of JADE reactive architecture with proactive
goal for manufacturing agent

Table 1 Manufacturing agents in ABSFSim and their roles

Agent Purpose

AGV-agent Represents a typical AGV

Arrival-queue-agent Represents a system arrival-queue

Departure-agent Represents the queue at the system
departure place of parts

Machine-agent Represents a typical machine with its input
and output buffers on the shop floor

Node-agent Represents a node or control point on the
AGV guidepath

Part-agent Represents a typical job or part on the
shop floor

Part-generator-agent Represents an agent that facilitates the arrival
of part-agents at the shop floor

Segment-agent Represents a segment on the AGV guidepath

1082 Int J Adv Manuf Technol (2011) 52:1079–1090

contain several agent-specific attributes and behaviors,
which are discussed below in the modeling details of
different agent types.

4.1 Part-generator-agent

Part-generator-agent is a functional agent and is responsible
for the arrival of different part types at the shop floor in the
given part mix, volume mix, and arrival distribution.
Whenever simulation time reaches the scheduled arrival
time of a new part, a part-arrival-event occurs in the part-
generator-agent. Consequently, the part-generator-agent
sends a request to AMS agent with suitable part information
(such as part type) to start a part-agent. In the next state of
the part-generator-agent, it queries the newly started part-
agent to inform about its complete initialization, which
includes the execution of some of the basic steps such as
request to place the part in arrival-queue. On receiving the
confirmation from the part, the started part-arrival event is
completed by the part-generator-agent. Once the part-arrival
event is completed, the agent checks whether the cumulative
number of parts arrived is less than the maximum permitted
number of arrivals. If parts are due for their arrival, then the

agent waits for the arrival time of the next part. The agent's
key behavior, known as PartsLaunchFSM, is shown as State
Machine Diagram of UML in Fig. 2.

4.2 Queue agents

When parts arrive at the input location, they are placed in
arrival-queue. The agent that represents the arrival-queue is
arrival-queue-agent. Functions of the arrival-queue-agent
are (1) keep the arrived parts in queue, (2) remove the parts
from the head of the queue whenever the agent receives
suitable requests from the corresponding parts, and (3)
notify the position of parts in the queue as simulation time
advances. The arrival-queue-agent maintains two lists of
agent identifiers (AIDs), one representing the parts in queue
and the other representing the parts, which subscribed the
arrival-queue-agent for their current position in the queue.
By default, parts in queue are sorted based on their arrival
times with the help of user-defined comparator to follow
first-in-first-out (FIFO) discipline. Parts can also be sorted
based on the part priority or any other user-defined
comparators (i.e., queue disciplines). Parts subscribe the
arrival-queue-agent with the help of FIPA-subscription
interaction protocol.

An arrival-queue-agent has a responder behavior that
receives requests from part-agents to add or remove from
the queue. This behavior uses FIPA-request interaction
protocol. Arrival-queue-agent has a subscription responder
behavior that handles the part-agents' subscription for their
position in the queue.

Fig. 2 PartsLaunchFSM behavior of part-generator-agent

Table 2 Common attributes of a typical manufacturing agent and
their purposes

Agent
attribute

Purpose

codec This attribute represents the message content
language codec. FIPA-SL0 is used as content
language codec while communicating with platform
domain agents such as AMS or DF. In all other
cases, FIPA-SL is used. FIPA-SL is superset of SL0,
SL1, and SL2 and supports complex content
expressions such as “Queries”

jadeOntology This attribute represents the JADE-Agent-
Management-Ontology, which can be used to
request JADE specific operations to AMS, DF, and
JADE tool agents such as Sniffer and Introspector

fipaOntology This attribute represents the FIPA-Agent-
Management-Ontology, which can be used for
management of agents on FIPA agent platforms

agvsOntology This attribute represents the AGVs-Ontology, which
is specifically developed for ABSFSim and is used
for communicating with the manufacturing agents
on the shop floor

localEventList This attribute represents a list that contains events that
occur in the agent and is useful in achieving agent-
based event-driven simulation

logger This attribute helps in tracing the execution process of
the agent and stores the information in a file that is
useful in analyzing and debugging the model. Each
agent stores the logged information in a different
file. The level of logging the information can be set
during the start of the simulation

Int J Adv Manuf Technol (2011) 52:1079–1090 1083

Whenever current position of a part changes in the
queue, then the corresponding part-agent is duly notified. In
addition, when a part-agent cancels its subscription, it will
be withheld from the notifications by removing the part's
AID from the list of subscribed parts.

Similar to arrival-queue-agent, a departure-agent exists
at the departure location. The departure-agent responds to
the requests from the finished parts to place them in
departure-queue. The agent also collects the relevant
statistics of finished parts such as total number of finished
parts and job completion time.

4.3 Machine-agent

A machine-agent represents a workstation that includes a
machine with its input (IB) and output (OB) buffers. When
a part arrives at the workstation and requests to add in IB,
the machine-agent suitably places the part in the slot
reserved for it in IB or directly loads it on the machine. In
a typical case, where a part is placed in IB, machine-agent
notifies the change in position of the part as a response to
the part-agent's subscription. Working of the subscription
responder behavior of machine-agent is a variant of arrival-
queue-agent subscription responder behavior.

When a part is loaded on the machine, state variable of
the machine-agent is set from idle to busy. After completing
the operation on the part, it will be placed in OB (if space in
OB is available), and the machine state is changed from
busy to idle and looks for another part in IB to load on to
the machine. If OB is full, then the part waits on the
machine, which causes the state of the machine from busy
to blocked state. When an AGV arrives at the machine to
pick up a part, the part-agent requests the machine-agent to
remove its identity from its current location at the machine.

Besides simulating the activities at the machine, machine-
agent responds to the queries of parts about the availability of
space in IB. The machine-agent reserves empty buffer slots for
the parts committed for arrival to avoid any deadlocks at later
stages. If an empty buffer slot is available in the IB, a part is
selected from the parts waiting for the machine and is called to
occupy the empty space. This pulling of parts is performed in
the machine-agent by a specially developed behavior known
as PullBehavior.

Some of the important attributes and their functions of the
machine-agent, which is a key facility on the shop floor, are
briefly discussed here. An important attribute of the machine-
agent is the state variable representing machine state at any
given point of time. A special attribute known as “service” is
used to represent the type of operations that the machine can
perform such as drilling and boring. These services are
registered with the DF (Directory Facilitator) agent of the
JADE platform. The DF aids part-agents to discover the
machine AIDs dynamically, based on the type of services

(operations) offered by the machines. Machine-agent maintains
a few lists of parts' details corresponding to the parts present in
IB, OB, and machine; parts committed to arrive but are in
transit; parts processed at the machine; and parts waiting for
the machine. Statistics of the machine, such as machine
utilization and amount of blocking time, are maintained
separately which will be finalized at the end of simulation.

The behaviors in machine-agent that play important role
are machine finite state machine (FSM) behavior, responder
behavior that places parts in IB or remove from OB, machine
subscription responder behavior, pull behavior, and a special
behavior known as HandlePartCNP that has a set of
PartCNResponder behaviors as sub-behaviors to handle parts'
bidding process for available empty slots at the machine.

Details of some of these behaviors are discussed below.

(a) MachineFSMBehavior
This is the principle behavior of the machine-agent

representing three basic finite states, namely, Machine-
Idle, Machine-Process, and Machine-Blocked, in the
current implementation of ABSFSim. When the
machine-agent enters a specific finite state, some
of the machine-agent's behaviors may be restarted
(activated) or reset, and other behaviors may be
blocked (inactivated) or terminated to suit the current
state of the machine.

(b) HandlePartCNP
This behavior is extended from the JADE ParallelBe-

haviour, and several PartCNResponder behavior instances
are registered as the sub-behaviors. The PartCNRes-
ponder suitably proposes or declines the bids to call for
proposal (CFP) from parts seeking operation at the
machine under FIPA-contract net protocol (FIPA-CNP).
The number of PartCNResponder sub-behavior instances
required is one more than the sum of IB and machine
capacities. In the current implementation of ABSFSim,
machines have unit capacity.

(c) MachineSubscriptionResponder
The machine subscription responder behavior provides

the flexibility of logically rearranging and informing the
parts about their new position according to the selected
machine scheduling. In the current implementation of
ABSFSim, first-come first-served (FCFS) is used as
machine scheduling policy.

(d) PullBehavior
The PullBehavior is a parallel behavior and is

responsible for requesting the parts waiting for the
process at the machine whenever any of the IB slots
becomes empty. The behavior has HandleEmptyIB-
Slots (extension of SimpleBehaviour), as a moderator
behavior, which adds or removes the instances of
PartPullFSM behavior according to the number of
empty IB slots available. Logically, the PartPullFSM

1084 Int J Adv Manuf Technol (2011) 52:1079–1090

is supposed to be the initiator of FIPA-propose
interaction protocol; however, to simplify the commu-
nication process, a selected waiting part is requested to
restart its contract net bidding process.

4.4 AGV-agent

Modeling of AGV-agent is an important task in the develop-
ment of ABSFSim due to complexity in its operation. AGV-
agent modeling in the ABSFSim is specific to the assumptions
made. However, the modeling approach can also be extended
to any other design and operation conditions of AGV System
(AGVS). The considerations made in the system are briefly
introduced before the modeling details.

The ABSFSim considers unit load vehicles, which travel
on a conventional guidepath layout to complete the
requested transport assignment. The layout of the guidepath
consists of several nodes (control points), and any two
successive nodes are connected with segments (i.e., single
lane guidepath). The layout can have all unidirectional or
all bidirectional or mixed uni/bidirectional segments.
Several decision-making issues arise during the operation
of AGVs. An AGV is initially parked at a node. Under
typical conditions, when a request for transportation is
received form a part, the AGV starts from its current node
and travels along a selected path to reach the pickup node.
When the AGV reaches the pickup node, it enters the
parking at the node and indicates about its arrival to the
part. As most of the modern AGVs can perform automatic
loading and unloading operations, the part requests the
AGV for loading operation. After loading the part, the
vehicle starts moving along a selected path until it reaches
delivery node of the part. When the AGV reaches the
delivery node, it enters the parking at the resource and
indicates to the part. Consequently, the part requests the
AGV for unloading operation. This sequence of steps is
repeated for different transportation assignments. However,
modeling this behavior of the AGV has to consider
different other conditions such as vehicle traffic congestion
along the segment of a path, and is the current node of
AGV same as the pickup node?

This AGV behavior can be correlated with a car/cab hire
service system, in which a car picks the passenger from his/
her current location (on receiving a request via telephone or
so) and drops him/her at their destination.

As far as the AGV-agent modeling details are concerned,
an important attribute of the AGV-agent is the list of
transportation tasks. AGV-agent contains several behavior
instances such as AGVFSMBehavior, NegotiateWithPar-
tResponder, CanIGo, RequestToGetReady, LeaveSegment,
LeaveSidingOrParking, and LoadAndUnload. Among these
behaviors, AGVFSMBehavior is the key behavior of the

AGV-agent. The above behaviors are dynamically added or
removed from the agent's behavior list based on the AGV
state. Details of some of these behaviors and their role in
the AGV-agent are discussed below.

(a) AGVFSMBehavior
The AGVFSMBehavior has several finite states

registered with suitable behavior instances to obtain
the required characteristics in the corresponding state
of the AGV. The UML State Machine Diagram of the
behavior is shown in Fig. 3. When the AGV is empty
and idle, as it does not have any task to execute, the
state is represented with Empty-Idle. When an empty
AGV is executing a transportation request but is
waiting for traffic clearance, the state is represented
with Empty-Wait. The state of a moving empty AGV
is represented with Empty-Move. When the AGV is
loaded, the corresponding move and wait states are
represented with Loaded-Move and Loaded-Wait. The
states of the AGV during the part loading and
unloading operation are represented with pickup and

Loaded Wait

Loaded Move

Loaded_Move_To_Deliver

Fig. 3 State Machine Diagram of AGVFSMBehavior

Int J Adv Manuf Technol (2011) 52:1079–1090 1085

delivery, respectively. The state transitions are obvious
from Fig. 3, among them, some are default state
transitions, and others are conditional state transitions.

(b) NegotiateWithPartResponder
This is an important behavior and handles the

transportation requests from the parts.
(c) CanIGo

This behavior is used to ask permission from the
nearest control point (node) to move along the segment
in the selected path. Based on the vehicular congestion
on the segment, a suitable response will be received.

(d) RequestToGetReady
This is the behavior used to inform a part when the

AGV reaches either pickup location or delivery location.
(e) LeaveSegment

This behavior is used to inform a segment when the
AGV is leaving the currently occupied segment.

(f) LeaveSidingOrParking
This behavior is used to inform a segment (if the AGV

is in siding of a segment) or node (if the AGVis parked at
node) when the AGV is leaving the occupied resource.

(g) LoadAndUnload
This behavior handles the loading and unloading of

part at pickup and delivery locations, respectively.
(h) RespondToSegment

When an AGV is standing in either a siding or a
parking and waiting for traffic clearance to move ahead in
its selected path, the segment corresponding to the path
may give green signal for the movement of the AGV. This
behavior handles the message from the segment.

4.5 Node-agent and segment-agent

Node-agent acts as a control point to the flow of AGVs and
helps in avoiding head-on collisions of the AGVs. Node at
the location of a resource has a parking to accommodate the
AGVs arriving at the resource for pickup or delivery
purposes. It is generally considered that the parking at a
node is located off the layout to avoid blocking of the
traffic. A segment connecting a node will have a siding at
the node. This acts as a buffer for vehicles travelling along
the segment for traffic clearance; therefore, siding capacity
is also a design parameter of the AGVS. Finite states of the
segment-agent are unoccupied, occupied, and blocked.
Blocking can occur in a single direction (partially blocked)
or in both the directions (completely blocked).

When anAGVapproaches a node, it seeks permission from
the node-agent to move ahead in its direction. The node-agent
forwards the request to the corresponding segment for further
processing. The segment-agent checks the constraints, for the
proposed motion of AGV, based on direction of AGV
movement and current status of the segment. The segment-
agent conveys the suitable decision, i.e., either permission or

denial to the AGV through the node-agent. The set of
behaviors of the segment-agent and the finite state transitions
of the segment are shown in Fig. 4.

4.6 Part-agent

A part-agent represents any part type on the shop floor.
Several part types exist together on the shop floor. While
part-agent is started on JADE platform, information specific
to part type such as number of processing stages, machine
or process sequence, and processing times are retrieved
from the input data supplied to the simulation model. In the
present context, state of a part-agent represents the physical
condition of the part at a particular time, while stage of the
part represents the number of operations completed in the
part's process sequence. A part-agent is started by AMS on
the request of part-generator-agent. Based on the type of
part, tailor-made behaviors are started in the part-agent.
Part-agent contains several sequential and parallel behaviors
such as PartBehavioralFSM, NegotiateWithMachines,
CNPWithMachines, NegotiateWithAGVs, and Subscribe-
Machine. These behaviors are dynamically added or
removed from the part-agent's behavior list according to
the corresponding state of the part-agent. Among these
behaviors, PartBehavioralFSM plays an important role in
the activity of the part on the shop floor.

The sequence of states that a part enters in different
stages of its manufacturing is similar. However, the number
of stages required to obtain a finished part depends on the
part type. Therefore, the PartBehavioralFSM behavior is
prepared as a set of states through which part-agents pass
during their manufacturing cycle. UML state machine
diagram of PartBehavioralFSM is shown in Fig. 5. Many
of these finite states are registered with multi-step simple
behaviors, which are themselves finite state behaviors.

Behavior classes of different manufacturing agents were
derived from the JADE behavior classes. Table 3 presents
the list of important behavior classes of different manufac-
turing agents and their super classes for understanding their
basic characteristics.

Unoccupied

Partially
Blocked Occupied

Completely
Blocked

Fig. 4 Segment-agent behaviors and finite state transitions of the
agent

1086 Int J Adv Manuf Technol (2011) 52:1079–1090

5 Testing the agent-based simulator

A randomly generated sample manufacturing that was
considered in Komma et al. [21] is considered here for
agent-based simulation on ABSFSim, which is shown in
Fig. 6. The sample manufacturing system has four
machines, two AGVs, one arrival, and one departure
location. Parts arrive at part arrival-queue in unit quantity
at discrete points of time. Three part types were considered,
and the sequence of arrival of part types is considered to
take place in a cyclic manner (i.e., part types 1-2-3-1-2-3

Name of agent class Name of behavior class Name of super class (es)

AGVAgent AGVFSMBehavior jade.core.behaviours.FSMBehaviour

CanIGo jade.proto.AchieveREInitiator

RequestToGetReady jade.proto.SimpleAchieveREInitiator

LeaveSegment jade.proto.SimpleAchieveREInitiator

NegotiateWithPartResponder jade.proto.ContractNetResponder

RespondToSegment jade.proto.SimpleAchieveREInitiator

AGVAgent.TimerBehavior abms.simulator.SimulatorBehavior ←

jade.core.behaviours.SimpleBehaviour

MachineAgent AddRemoveResponder jade.proto.SimpleAchieveREInitiator

HandlePartCNP jade.core.behaviours.ParallelBehaviour

MachineSubscriptionResponder jade.proto.SubscriptionResponder

MachineFSMBehavior jade.core.behaviours.FSMBehaviour

PullBehavior jade.core.behaviours.ParallelBehaviour

PartAgent NegotiateWithMachines jade.core.behaviours.ParallelBehaviour

PartBehavioralFSM jade.core.behaviours.FSMBehaviour

ReplyToPartGenerator jade.proto.SimpleAchieveREInitiator

Respond2AGVRequest jade.proto.SimpleAchieveREInitiator

ResponderToMachineQuery jade.proto.SimpleAchieveREInitiator

PartAgent.TimerBehavior abms.simulator.SimulatorBehavior ←

jade.core.behaviours.SimpleBehaviour

Table 3 Some of the developed
behavior classes and their super
classes

Fig. 5 State Machine Diagram of PartBehavioralFSM

A1

N0
N4

N7

N6

N9

N12

N11

N10
N8

N5

N3

N2

N1

A2

Arrival Departure

Legend: Nx xth Node

Mx xth Machine with its input and output buffers

Ax xth AGV

Sx_y Segment connected node x to node y (x < y)

S0-4 S4-7 S7-9 S9-

12

S1-6 S6-11

S8-10 S5-8 S3-5 S2-3

S1-2

S0-1 S6-7

S5-6
S10-11

S11-12

M1 M2

M3 M4

Fig. 6 Sample model of a manufacturing system for agent-based
simulation on ABSFSim

Int J Adv Manuf Technol (2011) 52:1079–1090 1087

and so on). The AGV layout has 13 nodes and 16 segments.
Simulation results are collected after simulating the system
for a period of 2,000 time units.

All possible paths from the current position of AGV to
any other nodes in the layout are effectively determined by
a recursive path-finding algorithm by searching the entire
solution space. The recursive path-finding algorithm effec-
tively discards the paths with loops. The recursive function
of the algorithm returns to the calling function when it finds
either the destination node or a loop or a node with dead
end. All paths between the source node and destination
node are sorted in ascending order of their path lengths.
The recursive algorithm is repeatedly applied for all pairs of
nodes in the network, and all the paths are stored in the
form of tables. These tables are look-up tables that reduce
the computational time of on-line controller. On failure of
any segment, the affected tables can be selectively updated.
However, in the current implementation of the simulator,

AGVs follow the shortest path between the starting node
and the destination node.

Whenever the simulation clock time reaches the arrival
time of a new part, the part-generator-agent decides the
part type and requests the AMS agent to generate a new
part-agent of the given part type. During the execution,
the part-generator-agent passes through the states given
in Fig. 2. On arrival, the part-agent requests the queue
agent to place in the queue, and the part-agent passes
through the states given in Fig. 5. The number of operation
stages required for a part depends on the part type. While
the part progresses in the manufacturing system, the part
interacts with machines and AGVs with the protocols such
as Part-Machine-AGV and AGV-Node-Segment protocols
reported in [21]. ABSFSim is carefully debugged with
JADE tool agents such as Sniffer-agent and Introspector-
agent. Snapshot of the introspection of the AGV_1 agent
is shown in Fig. 7. The left pane in the snapshot indicates
the agents loaded in different containers of the JADE
platform. Since the inception of introspection for AGV_1,
the messages received and sent by the agent appear in the
upper right panes. Individual messages can be visualized

Fig. 7 Introspection of AGV_1 agent during its operation

Fig. 8 Monitoring the agent communication among selected agents
with JADE Sniffer

Fig. 9 Percentage of time spent by AGVs in different states in
ABSFSim

Fig. 10 Comparison of different machine states of ABSFSim in
ProModel®

1088 Int J Adv Manuf Technol (2011) 52:1079–1090

by double clicking on them. Active behaviors of AGV_1
agent are dynamically displayed in a lower right pane.
Snapshot of the sniffer-agent is shown in Fig. 8, while
monitoring the communication among different selected
agents. In addition to these graphical tools, Java logging
mechanism, which is the most powerful debugging tool, is
used for debugging individual agents. Each agent logs the
agent's execution details in a text file for debugging and
analysis purpose. At the start of the simulation, the user
can set the level of logging the details for an agent.

Some of the simulation output measures of ABSFSim
are used for estimation of other output measures based on
their interrelation. For instance, utilization of machines and
average number of deliveries made by the AGVs are
estimated from the number of finished parts. The cross-
verification of output measures is meant for partial
verification of the developed model on the ABSFSim.
Similarly, the values of loaded travel time were calculated
based on the process sequence and the minimum distance
between the machines in the process sequence.

Total number of parts arrived during the simulation was
134. The number of parts finished by the end of the
simulation was 24, 23, and 24 of part type-0, part type-1,
and part type-2, respectively. Time spent by each AGV in
different states of their FSM behavior has been recorded
during the simulation period and is shown in Fig. 9. For
obtaining higher level of confidence on the model devel-
oped in ABSFSim, the output is compared with an
equivalent model developed in ProModel®, a conventional
simulation environment for manufacturing. The outputs
obtained from both the models are quite in good agreement;
it is evident from Fig. 10, which represents the percentages
of time spent in different finite states by the machines of the
agent-based and conventional simulation models. The
advantage of ABSFSim over the conventional simulation
environments is that it provides higher flexibility for
decision making in dynamic environment with the help of
agent communication.

6 Concluding remarks

Agent-based modeling has a good potential to model
complex systems, which are distributed, dynamic, and having
concurrently behaving entities such as manufacturing domain.
Agent-based simulation of manufacturing system provides
a good insight of the concurrent behaving entities in the
system. Agent-based modeling provides greater flexibility
for dynamic decision making at different levels of shop
floor control system. Better understanding of the concurrent
behaving entities and greater flexibility for dynamic decision
making play a vital role in enhancing the system performance
and flexibility. Due to simplicity and ease of modeling,

reactive agent architecture is selected in this paper for
modeling of agents in manufacturing domain. The manufac-
turing agents are developed on JADE platform, which directly
supports reactive agent architecture and fully compliant with
FIPA specifications.

In this paper, modeling of agents on JADE reactive
architecture is presented, emphasizing on different behaviors
modeled for common manufacturing agents. Different
agents identified in the manufacturing system are part-
generator-agent, arrival-queue-agent, departure-queue-agent,
machine-agent, AGV-agent, node-agent, segment-agent, and
part-agent, and they are suitably modeled to imitate their
counterparts in the real systems. The modeling approach helps
in standardizing the procedure for modeling these agents.
Most of the behavior classes used in manufacturing
agents for achieving required characteristics are the
specialized behaviors classes of JADE FSMBehaviour,
ParallelBehaviour, and SimpleBehaviour (with multi-steps).
Finite states of the agents are identified by critically analyzing
their operation. The developed ABSFSim uses the modeling
details provided in this paper along with the domain-specific
ontology and different agent communication protocols
including the hybrid protocols reported in [21]. A
randomly generated manufacturing system is used for
testing the working of ABSFSim. Verification of ABSFSim
is done by comparing the model outputs with an equivalent
model developed in ProModel® environment.

More research is needed in agent-based modeling of
manufacturing systems thereby producing commercial
agent-based simulators for manufacturing systems. Com-
mercial agent-based simulators need enriched GUI features
and inclusion of omitted states for different agents such as
failure of machines and AGVs. The agent modeling
approach presented in this paper can be easily extended to
any other discrete-event systems, may be within or outside
manufacturing domain.

References

1. Luck M, McBurney P, Preist C (2003) Agent technology: enabling
next generation computing—a roadmap for agent based comput-
ing. AgentLink. http://www.agentlink.org/admin/docs/2003/2003-
48.pdf. Accessed 02 Nov 2009

2. Wooldridge M (2001) An introduction to multiagent systems.
Wiley, London

3. Weiss G (ed) (1999) Multiagent systems—a modern approach to
distributed artificial intelligence. The MIT Press, Massachusetts

4. Brooks RA (1991a) Intelligence without reason. Proceedings of
the 12th International Joint Conference on Artificial Intelligence
(IJCAI-91), Sydney, Australia, pp 569–595

5. Brooks RA (1991b) Intelligence without representation. Artif
Intell 47:139–159

6. Monostori L, Váncza J, Kumara SRT (2006) Agent-based systems
for manufacturing. Ann CIRP 55:697–720

Int J Adv Manuf Technol (2011) 52:1079–1090 1089

http://www.agentlink.org/admin/docs/2003/2003-48.pdf
http://www.agentlink.org/admin/docs/2003/2003-48.pdf

7. Bordini RH, Dastani M, Dix J, Seghrouchni AEF (eds) (2005)
Multi-agent programming languages, platforms and applications.
Springer Science+Business Media, Inc., New York

8. FIPA (2009) Foundation for intelligent physical agents. http://
www.fipa.org. Accessed 02 Nov 2009

9. JADE (2009) Java Agent Development framework. http://jade.
tilab.com. Accessed 02 Nov 2009

10. Komma VR (2009) Agent-based simulation of distributed
automated guided vehicle systems. Ph.D. Thesis, Department of
Mechanical and Industrial Engineering, Indian Institute of
Technology Roorkee, Roorkee, India

11. Wooldridge M, Jennings NR (1995) Intelligent agents: theory and
practice. Knowl Eng Rev 10:115–152

12. Müller J P, Wooldridge M, Jennings N R (eds) (1997) Intelligent
agents III. Lecture Notes on Artificial Intelligence (LNAI), Vol.
1193, Springer, Berlin

13. Parunak HVD (1993) Autonomous agent architectures: a non-
technical introduction. Report. Industrial Technology Institute,
Ann Arbor, Michigan, USA

14. Odell J (2002) Objects and agents compared. J Object Technol
1:41–53

15. Odell J, ParunakHVD, Bauer B (2001) Representing agent interaction
protocols in UML. In: Ciancarini P, Wooldridge M (eds) Agent-
oriented software engineering. Springer-Verlag, Berlin, pp 121–140

16. Jennings NR, Wooldridge M (eds) (1998) Agent technology:
foundations, applications and markets. Springer, Berlin

17. Luck M, McBurney P, Shehory O, Willmott S (2005) Agent
technology: computing as interaction—a roadmap for agent based
computing. Agentlink. http://www.agentlink.org/roadmap/al3rm.
pdf. Accessed 02 Nov 2009. ISBN: 0854328459

18. Shen W, Norrie DH (1999) Agent-based systems for intelligent
manufacturing: a state-of-the-art survey. Knowl Inf Syst Int J
1:129–156

19. Shen W, Hao Q, Yoon HJ, Norrie DH (2006) Applications of
agent-based systems in intelligent manufacturing: an updated
review. Adv Eng Inform 20:415–431

20. Vrba P (2003) MAST: manufacturing agent simulation tool. Proceed-
ings of IEEE Conference on Emerging Technologies and Factory
Automation, September 2003, Lisbon, Portugal, pp. 282–287

21. Komma VR, Jain PK, Mehta NK (2007) Agent-based simulation
of a shop floor controller using hybrid communication protocols.
Int J Simul Model 6:206–217

1090 Int J Adv Manuf Technol (2011) 52:1079–1090

http://www.fipa.org
http://www.fipa.org
http://jade.tilab.com
http://jade.tilab.com
http://www.agentlink.org/roadmap/al3rm.pdf
http://www.agentlink.org/roadmap/al3rm.pdf

	An approach for agent modeling in manufacturing on JADE™ reactive architecture
	Abstract
	Introduction
	Literature review
	Defining manufacturing agents and their architecture
	Modeling of different manufacturing agents
	Part-generator-agent
	Queue agents
	Machine-agent
	AGV-agent
	Node-agent and segment-agent
	Part-agent

	Testing the agent-based simulator
	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

