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Abstract A workpiece hybrid representation method based
on quadtree-array is presented to improve the geometric
simulation efficiency on three-axis milling process. The
method takes the advantages both of Z-Map and quadtree in
simulation model representation. The discrete points man-
aged by using Z-Map algorithm is to represent the whole
model, while the points used to represent the simulated
surface detail are managed with quadtree-array. The method
can reduce the levels of a quadtree without losing
simulation accuracy. A dynamic optimization algorithm to
the quadtree structure is highlighted to reduce its total
nodes in simulation process. As a result, the simulation
efficiency can be improved significantly. A three-axis
milling process simulation system based on quadtree-array
representation was developed and used to evaluate the
performance of the presented method. The evaluated results
show that quadtree-array-based hybrid representation method
of workpiece can improve the simulation efficiency signifi-
cantly, and reasonable division number of array cells is also
recommended.
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1 Introduction

Machining process simulation, which simulates and evaluates
the actual numerically controlled (NC) machining process by

means of computer simulation, is an important technology in
computer NC (CNC) machining process optimization. The
geometric representation method, which directly influences
much on the simulation accuracy and speed, is one of
important research aspects in NC machining process simu-
lation [1]. An appropriate workpiece representation in
simulation is required not only reflecting the details on the
simulated surface accurately but also performing the simu-
lation efficiently.

Many researchers devoted their efforts to the geometric
representation of workpiece, and several methods had been
proposed. These methods can be classified into three
categories. They are image space-based method, solid
modeling-based method, and discrete method. The image
space-based methods such as Z-buffer method [2] and Ray-
casting method [3] utilize attribute setting of pixels in
image space to represent workpiece and simulate machining
process. The methods are easy to put into practice due to its
simple algorithm and good visualization, but the view
orientation is fixed during simulation, and the simulation
accuracy is not high enough. The solid modeling-based
method simulates the material removal process by Boolean
subtraction operation between workpiece model and cutter
swept volume [4]. The method is typically exampled by
constructive solid geometry and boundary representation
(B-Rep). Sungurtekin and Velcker [5] utilized the Boolean
operation among primary bodies to simulate machining
process. Fleisig and Spence [6] studied on the rough
machining simulation of 2-1/2D cavity based on B-Rep.
The methods are of higher simulation accuracy, but the
simulation efficiency will be decreasing as the simulation
goes, and a modeling kernel is needed.

Discrete method is a category of approximate methods to
represent workpiece by discretizing it within a given
accuracy. The method simplifies the complicated 3D
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Boolean subtraction operation into simple 1D or 2D one in
simulation. It has been focused on and widely applied due
to their simple algorithm. Chappel [7] proposed discrete
vector intersection method based on point-vector model to
simulate material removal process. Hsu and Yang [8] put
forward a simulation method which was suitable for three-
axis milling by discretizing workpiece into a set of discrete
points (i.e., Z-Map). Wastra et al. [9] proposed even space
decomposition (i.e., voxel) to simulate multi-axis machin-
ing process. Navazo et al. [10] proposed an octree-based
representation method by recursive division of 3D space,
and Liu et al. [11] proposed a quadtree representation
method similarly. Liu et al. [12] introduced the idea of level
of detail (LOD) into three-axis milling simulation and put
forward a sampling extraction algorithm based on even
adaptive mesh represented with quadtree. LOD representa-
tion methods including octree and quadtree have gotten
further research and application because they can represent
the model in LOD and solve the contradiction between
simulation accuracy and simulation speed to certain extent.
Multi-axis machining process was simulated with octree
representation to optimize the federate in reference [1]. Roy
and Xu [13] proposed an extended octree to improve
machining simulation speed and efficiency, and based on
the extended octree, Li et al. [14] did their research works
on cutting parameters optimization via machining process
simulation. Wang et al. [15] simulated three-axis milling
process by adopting adaptive dynamic quadtree algorithm
to improve simulation accuracy. He and Bin [16] presented
a geometric model called G-LODs for NC machining
simulation. The G-LODs used a type of progressive mesh
to construct the surface simulation grid. However, the
above-mentioned references related to the discrete meth-
ods did not discuss the simulation efficiency but the
methods. Karunakaran and Shringi [17] presented an
algorithm for instantaneous workpiece conversion from
octree (quadtrees) into B-Rep to unprocess the data traversal
efficiency.

Three-axis NC machining technology is widely applied
in mechanical manufacturing firms. To improve the
simulation efficiency of three-axis NC machining, a
quadtree-array-based hybrid representation of workpiece is
presented in this paper, which takes advantages both of Z-
Map and quadtree method to represent workpiece in three-
axis milling process simulation.

2 Principle of quadtree-array representation

As a kind of hierarchical data structure, quadtree represen-
tation can dynamically control the density of discrete facets
so that the complicated surface can be represented in an
LOD manner. To improve the simulation efficiency based
on quadtree further, quadtree-array-based representation of
workpiece is presented. Firstly, the whole surface is evenly
divided into a set of sub-surfaces (i.e., cells) then each sub-
surface is represented with quadtree. For the whole surface,
forest-like quadtree-array will be generated. The level
number of each quadtree is decreased for the whole surface
represented with quadtree-array compared to that only with
a single quadtree. The shortened access path to leaf nodes
results in the improvement of simulation efficiency.

2.1 Z-Map model

Z-Map is used to approximately represent the workpiece
upper surface by sampling it into a set of discrete points
according to simulation accuracy, and the height values of the
discrete points are recorded and refreshed during simulation.
In machining process simulation, the height values of the
discrete points are modified, and then the simulated surface is
constructed and rendered real-time to simulate material
removal process. This simulation model is with particular
advantages, such as simple data structure and rapid to access
and modify the data. However, the discrete accuracy
influences on simulation speed and accuracy greatly.

Workpiece 

Tool

Fig. 1 Quadtree represented
milling process simulation
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2.2 Quadtree model

To construct a quadtree, a square is evenly divided into four
sub-squares corresponding to four child nodes, and each
sub-square can be subdivided further in the same way till
the simulation accuracy is reached. This recursive subdivision
results in a quadtree. This model can represent a surface in
different LOD with less deal of data dynamically. Figure 1
shows an example of milling simulation represented with
quadtree. However, the access speed will be slowed down
when the level number of a quadtree gets higher.

Two key aspects of quadtree structure should be considered
when simulation is carried out. They are listed as follows:

1. The crack between meshes with different resolutions
must be eliminated when the surface is subdivided
(please refer to reference [12] for more details).

2. Over-refined redundant nodes of a quadtree must be
merged dynamically. The operation is called optimization
on quadtree. It will be discussed in a following section in
detail.

2.3 Quadtree-array model

As shown in Fig. 2, the bounding square of the upper
surface of workpiece is divided evenly into a set of sub-
squares (i.e., cells) firstly. Each quadtree manages the
discrete geometric data of a sub-surface corresponding to its
sub-square. It is called quadtree-array representation in this
paper. Before the simulation, each quadtree is initialized to
represent the upper sub-surface of the raw stock. Many of
the quadtrees will be refreshed to accurately represent the
feature of sub-surfaces via recursive subdivisions as the
simulation process is going. Meanwhile, the structure of a
quadtree is optimized as it grows, and its data is modified.
Then, each quadtree is traversed, and the represented sub-

surface is displayed to present a visualized simulation
result. A reasonable division number of array cells will not
only reduce the levels of a quadtree but also decrease the
data amount and time consuming on computation as well.

3 Structure of quadtree-array

The minimum bounding square S of a surface can be
divided into several sub-squares Si according to the division
number of array cells, and then each sub-surface in sub-
square Si is represented with quadtree according to a given
simulation accuracy. All of the quadtrees relevant to the
sub-squares is managed in a form of array. In our research,
the upper surface of the raw stock is evenly discretized and
represented by a set of discrete points according to the
given simulation accuracy, i.e., represented with Z-Map,
and then the available discrete points are managed with
quadtree to construct the detail feature of the surface. In
order to dynamically optimize the structure of the quadtree
during simulation process, two new data structures for
quadtree and discrete points are built, respectively.

3.1 Management of discrete points

For a workpiece with given dimensions, the upper surface
can be discretized into a set of discrete points according to
simulation accuracy. The discrete points are managed with
an array (e.g., PointArray in Fig. 3). The data of a discrete
point in our research mainly includes a height value z and a
label Flag (Flag is to indicate whether this discrete point is
available to construct facet to present the surface detail). In
machining process simulation, the data of a discrete point

Fig. 2 Quadtree-array model

z1 z2 z3 zn… …Height

Label Flag1 Flag2 Flag3 … … Flagn

PointArray

Fig. 3 Data structure of discrete points on curved surface

Corner vertex

Edge vertex

Central vertex

Fig. 4 Mesh model of a node (nine discrete points in total)

struct node

{ 

int  m_pPt_Flag[9]; 

int m_pPt[9]; 

int m_uNo; 

struct node *m_pChild[4]; 

struct node *m_pParent, *m_pPrev, *m_pNext;

}; 

Fig. 5 Data structure of quadtree node
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can be directly accessed from the array PointArray via the
coordinates of the vertex of a quadtree node.

3.2 Structure of quadtree node

Figure 4 shows the mesh model of a quadtree node, and
Fig. 5 is the corresponding data structure in C in our
research. In Fig. 5, m_pChild points to its four child nodes
of a node, m_uNo represents the sequential number of a
node. m_pPt stores the index of nine discrete points (i.e.,
four corner vertexes, four edge vertexes, and a central point
shown in Fig. 4) in PointArray, which are used to obtain the
data of the points, and m_pPt_Flag stores the labels of the
nine discrete points to identify whether the points are used
to construct facets. To dynamically optimize the quadtree in
simulation, its original hierarchy structure must be re-
constructed into a list in an ascent order of the sequential
number of each node. m_pParent, m_pPrev, and m_pNext
link to the parent node, precursor, and successor, respec-
tively. They are added to a node and used to construct a
complicated bidirectional list from a hierarchal structure.

4 Dynamic optimization on quadtree in simulation

As the machining process simulation goes, large amount of
nodes are inserted into the quadtree to describe the dynami-
cally modeled details. However, part of the neighboring nodes

represents the same geometric properties, which will decrease
the efficiency of simulation. In order to represent the
geometric details with the less number of nodes, some nodes
and meshes should be merged and deleted after surfaces are
subdivided in the given accuracy. By using the dynamic
optimization through merging and deleting the redundant
nodes, the data amount exponentially growing in simulation
will be weakened effectively.

For a quadtree, the optimization is to merge and delete
the redundant nodes of the modified quadtrees to improve
the simulation efficiency. The following research on
optimization takes single quadtree as an example. The
nodes of a quadtree can be classified into three types, i.e.,
root node, intermediate node, and leaf node. In the
optimization algorithm, the treatment method of the root
node is similar to that of the intermediate node.

The optimization on quadtree is performed on geometric
level and data structure level simultaneously. The optimi-
zation on geometric level is to evaluate the position
deviations of the discrete points used by a node, and
optimization on data structure level is to change the
connection ship among the nodes. Three aspects should
be considered emphatically when optimization on quadtree
is carried out:

1. Evaluate the discrete points on the meshes according to
simulation accuracy, and determine whether they are
reserved or removed.
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Fig. 6 Vertex evaluation in leaf
node evaluation. a Evaluation
on edge points. b Evaluation on
central point

(a) (b)

H 

N21 

N22 

N11

H

Fig. 7 Evaluation of edge
vertex. a Estimate the sharing by
the nodes on lower level. (b)
Estimated the existence of the
nodes on lower level
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2. Determine whether the node is reserved or not.
3. Merge and delete the redundant nodes.

4.1 Evaluation on the leaf node

Leaf node only needs an evaluation on geometric level
because it does not have any child node. The evaluation on
geometric level consists of edge vertex evaluation and
central vertex evaluation. Taken ideal point E on line CA
shown in Fig. 6(a) as an example, the deviation (hence δE)
between actual point E′ and ideal point E in Z direction
should be calculated firstly. If δE is larger than a given
threshold ε (e.g., simulation accuracy), which means that
point E′ is an absolutely necessary point to represent the

geometric detail of the surface, reserve the point E′.
Otherwise, remove point E′ and line OE′ and merge
triangular OAE and OEC into a larger triangular OAC.
Since each discrete point (indicated by m_pPt in Fig. 5) has
a label (the value is stored by m_pPt_Flag in Fig. 5) to
indicate whether it's an available vertex of a node to
construct triangular facets, the evaluation can be carried out
on those vertexes with Flagi=1.

If the labels of all of the four edge vertexes equal to 0, an
evaluation on the central vertex is necessary. As shown in
Fig. 6(b), the distances from point O to line AD and BC in
Z direction are calculated, respectively, and take the bigger
one as the deviation δC. Similar to the treatment method of
the edge vertex, point O and the leaf node are removed if

0 

1 2 4 

12 18 20

0 1 2 4 12 18 20

Fig. 8 Translation from
quadtree to list

Start

Translate quadtree into bidirectional list

Let variable P point to the tail node of the list

Get data of ith edge vertex

All edge vertex
treated?

Flagi = 0?

Edge vertex: 
δEi<ε?

The node is
leaf node?

The ith edge
vertex shared?

Flagi =0 

The next edge vertex, i=i+1

Parent is
root node?

Each
Flagi=0?

Central vertex:

Delete the node

P=P m_pPrev

P is the root
node?

Treat the root node

End
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Fig. 9 Flow chart of dynamic
optimization of quadtree
structure
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δC is smaller than the given threshold ε; otherwise, reserve
them to enhance the detail of the surface.

4.2 Evaluation on the intermediate node

To avoid cracks during subdivision, the intermediate nodes
which connect the nodes of upper level (with lower
resolution) and lower level (with higher resolution) play a
transitional role to guarantee the continuity and integrity of
the meshes. An obvious feature distinguishing the interme-
diate node from the leaf node is that the edge vertex of the
former may be shared as a corner vertex by the higher
resolution nodes. As shown in Fig. 7(a), the edge vertex H
of node N11 is shared by higher resolution nodes N21 and
N22 as their corner vertex, respectively. The algorithm is
begun with determining whether the edge vertex (e.g., point
H) is shared. If the vertex H is shared, then reserve it and
continue to examine the existence of the higher resolution
nodes which share the vertex H; otherwise, evaluate the
vertex H with the same method to the leaf node.

As shown in Fig. 7(b), edge vertex H is shared by more
than one node. Existence estimation of the higher resolution
nodes must be carried out to determine the vertex H is
reserved or deleted. Note that the label of each node is set
to 1 when the node is inserted into the quadtree. So, the
problem of existence estimation of the higher resolution
nodes is translated into an estimation problem of the central
vertex according to its label. If one label of all central
vertexes of the higher resolution nodes is at least 1, vertex
H should be reserved; otherwise, treat the edge vertex H
with the same method to the leaf node.

4.3 Implementation of optimization

According to the optimization principle mentioned above,
optimization is begun with the classification of the nodes of
a quadtree, and the nodes are accessed from the leaf nodes
to the root level by level. Considering that the optimization

process and modeling process are carried out alternatively,
the optimization algorithm is based on the incomplete
quadtree structure, and a complicated bidirectional list is
created to represent the quadtree so that the traversal of the
quadtree can be realized easily.

In the data structure of quadtree node, pointers m_pParent,
m_pPrev, and m_pNext are included. m_pParent is used to
access its parent node, m_pPrev and m_pNext are used to
access its precursor and successor in the list, respectively. In
the process of node merging, the hierarchal structure of
quadtree is translated into a list without losing the original
connection ship via accessing to m_pParent, m_pPrev, and
m_pNext (Fig. 8).

Start

Define the parameters of cutter, discretize the surface of workpiece

Execute a NC block

Subdivision of machining region

Refresh Z coordinate of discrete points

Dynamic optimization on quadtree

Traverse the quadtree-array, and construct simulated surface

To the end of
NC program ?

End

N 

Y 

Movement simulation of cutter relative to workpiece

NC program

Fig. 11 Flow chart of milling simulation algorithm

(a) (b)

Fig. 10 Comparison of
representation with and without
optimization on quadtree. a
Without optimization (21,845
nodes in total). b With
optimization (4,168 nodes in
total)
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On the data structure level, optimization process is
carried out by accessing the nodes of the list from the tail
to the head in an order of their sequential numbers. The
sequence number of each list node is same to that of the
corresponding quadtree node. Based on the list, optimiza-
tions on leaf node and intermediate node are carried out,
respectively. Figure 9 shows the flow chart of dynamic
optimization on quadtree structure.

Figure 10 shows a controlled comparison example of a
quadtree-array represented cosine surface without and with
dynamic optimization, respectively. For the represented
surface without dynamic optimization, the total number of
nodes is 21,845, and the meshes are very dense. It results in
screen flicker when animation is performed. Contrasting to
it, the total number of the quadtree nodes is reduced to
4,168 when the optimization is applied. The screen is
refreshed smoothly in animation. A conclusion can be
drawn that dynamic optimization on quadtree can reduce
the data amount in simulation significantly. It is effective to
improve simulation efficiency.

5 Implementation of milling process simulation based
on quadtree-array

Machining process simulation is realized via Boolean
subtraction operation of the cutter swept volume from the
workpiece model driven by an NC program. Figure 11
shows the flow chart of algorithm of three-axis milling
process simulation based on quadtree-array. In the algorithm,
subdivision of represented region is the key module. The
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Fig. 13 Flow chart of function Luminate(...)
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Fig. 12 Flow chart of function L(...)
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Fig. 15 Relationship of the total
number of nodes to simulation
step in experiment 1

Fig. 14 Simulated surface of
experiment 1

Table 1 Simulation results of experiment 1

Division number of
array cells

Maximum number of
quadtree levels

Total number
of nodes

Total number
of facets

Simulation
time (s)

Frame rate (frames/s)

Minimum Maximum Average

1×1 9 6,605 28,024 3,310.55 1 39 1

2×2 8 6,604 28,024 929.19 2 63 3

4×4 7 6,660 28,024 237.28 7 62 9

8×8 6 6,660 28,068 75.50 24 62 29

16×16 5 6,656 28,408 54.84 47 63 51

32×32 4 7,108 30,462 40.83 49 63 54

64×64 3 9,294 39,944 49.50 40 62 44
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module is to determine whether subdivision and creation of
new nodes should be carried out or not based on the estimation
of the relationship between a discrete point and a quadtree
node. The function of the module is implemented by two
functions which called each other. In this paper, the two
functions are expressed as Luminate(...) and L(...) for
example, respectively.

Function L(...) is to determine whether a region needed
to be subdivided according to the position of a discrete
point related to the region. Function Luminate(...) is mainly
to subdivide the region and create new quadtree nodes. To
avoid cracks in construction of the simulated surface, other
neighboring square regions should also be subdivided till
the accuracy which the cracks can be eliminated is reached.
The maximum levels of a quadtree, named nMaxLevel, are
determined by the division number of array cells and
simulation accuracy. The subdivision is stopped when the
levels of the quadtree equals to nMaxLevel. Figures 12 and
13 show the flow chats of function L(...) and function
Luminate(...), respectively. In the figures, pTree points to
the current node of a quadtree, pSquare to the square region
to be subdivided, PointArray is the array of discrete points,
and Q is a discrete point to be evaluated. Before the
subdivision begins, pTree points to the root node of a
quadtree.

6 Performance evaluation of quadtree-array

A three-axis milling process simulation system based on
quadtree-array representation was developed by using
Microsoft Visual C++ 6.0. Graphic display is supported
by OpenGL. Dynamic optimization on quadtree is also
added to the system. The development and performance
demonstrations of the system were conducted on a personal
computer with a configuration of AMD Athlon 64 X2 Dual
Core Processor 4000+ 2.11 GHz, memory 1.0 GB, and
NVIDIA GPU GeForce 8500GT with 128bit/512 MB. The
performance evaluations of quadtree-array were conducted
through three milling simulation experiments on surfaces
with different complexity and different division number of
array cells.

6.1 Experiment 1

In this experiment, the dimension of the cylindrical surface
is 512×512 mm in XY plane, simulation accuracy is
1.0 mm, and modeling error of cutter is 0.06 mm. The
experiment is to simulate three-axis rough machining
process. The surface with features such as ball slot, plane,
and hole will be machined with a ball-end cutter, a flat-end
cutter, and a slot cutter, respectively. Figure 14 shows the
simulated surface, and Fig. 15 shows the relationship of
total number of quadtree-array nodes to simulation step with
different division number of array cells. The experimental
results are tabulated in Table 1.

As shown in Fig. 15, each curve can be divided into
three segments, i.e., AB, BC, and CD. Segment AB
corresponds to the machining process simulation of slot
feature with the ball-end cutter. In this process, the feature
detail of the ball slot needs a great deal of small triangular
facets to represent. Therefore, the total numbers of nodes
and triangular facets are increased linearly as the simulation
runs. Segment BC corresponds to the machining process
simulation of the planar feature machined with the flat-end
cutter. In this process, optimization on quadtree plays an
important role. However, as new nodes with higher
resolution are inserted to the quadtree in simulation, a lot

Un-machined 
surface

Machined 
surface

Tool

Fig. 16 Simulated surface in experiment 2

Table 2 Simulation results of experiment 2

Division number
of array cells

Maximum number
of quadtree levels

Total number
of nodes

Total number
of facets

Simulation
time (s)

Frame rate (frames/s)

Minimum Maximum Average

1×1 9 21,813 91,792 9,565.37 2 62 3

8×8 6 21,792 91,792 648.64 13 63 31

16×16 5 21,728 91,792 585.34 16 62 34

32×32 4 21,505 91,875 587.88 16 62 34

64×64 3 20,737 92,612 616.45 13 61 31
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of nodes are been merged and deleted simultaneously in
optimization. As a result, the total number of nodes tends to
be constant. Section CD corresponds to the machining
process simulation of hole feature with a drill. The detail of
the hole feature should be represented by a lot of triangular
facets. The number of nodes is increased.

FromTable 1, the bigger the division number of array cells
is, the smaller the number of quadtree levels will be. When
the division number is quite small, the path to access the data
of leaf nodes of a quadtree level by level is prolongated,
which leads to a great amount of intermediate data and
computation of subdivision in simulation, and simulation
efficiency is decreased. The path to access the data of leaf
nodes of a quadtree is shortened when the division number is
increased so that the amount of data and computation of
subdivision is reduced and simulation efficiency is improved
remarkably. However, the total number of nodes will be
increased as the division number is increased over a
reasonable value. The reason is that the effect of optimization
on node mergence is weakened in simulation.

6.2 Experiment 2

This experiment aims to evaluate the performance of
quadtree-array to represent the complicated surface in

milling process simulation. In the experiment, a surface is
“machined” with a ball-end cutter along zigzag tool-paths.
The diameter of the ball-end cutter is 20 mm, and the step-
over is 10 mm. Figure 16 shows the simulated surface and
the experimental results are listed in Table 2.

From Table 2, different division number of array cells
has little effect on the total number of quadtree nodes, but
much on the simulation efficiency. The simulation efficiency
is improved as the division number of array cells is increased.
In the experiment, the total number of quadtree-array nodes
keeps nearly constant because the total number of leaf nodes,
which represents the details of the simulated surface, is
prominent over that of other nodes. The simulation efficiency
is better when the division number of array cells is set to 16×
16 or 32×32. The same conclusion can be drawn in
experiment 1.

6.3 Experiment 3

This experiment is to evaluate the quadtree-array represen-
tation in simulation of milling planar surface with a flat-end
cutter. Figure 17 shows the simulated surface, and the
simulation results are listed in Table 3.

From Table 3, different division number of array cells
has great influence on the total number of quadtree nodes
and the simulation efficiency. As the division number of
array cells is increased, the total number of nodes is also
increased. It is because the increased array cells become an
obstacle to the node emerging in optimization. However,
the simulation efficiency is also improved due to the
reduction of the levels as the increase on the division
number of array cells, but there is a reasonable value. In
this experiment, better simulation performance is also
achieved when the division number of array cells is set to
16×16 or 32×32.

7 Conclusions

The representation of workpiece in machining process
simulation plays a more important role in simulation

Table 3 Simulation results of experiment 3

Division number
of array cells

Maximum number
of quadtree levels

Total number of nodes Simulation time (s) Frame rate (frames/s)

Minimum Maximum Minimum Maximum Average

1×1 9 86 948 6,352.33 2 62 3

8×8 6 90 952 233.11 60 99 71

16×16 5 280 1,094 202.70 60 164 97

32×32 4 1,045 1,764 212.14 60 132 86

64×64 3 4,113 4,640 259.42 19 70 62

Tool

Un-machined 
surface 

Machined 
surface

Fig. 17 Simulated surface in experiment 3
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accuracy and simulation efficiency. Up to now, it has still
been highlighted. To improve geometric simulation effi-
ciency of three-axis milling process, a novel workpiece
representation based on quadtree-array is presented and
discussed in detail in this paper. Several conclusions are
drawn from the evaluation experiments and listed as
follows:

1. Compared to single quadtree, workpiece representation
based on quadtree-array in machining process simulation
can improve simulation efficiency significantly.

2. The effect of dynamic optimization of quadtree structure
on simulation efficiency is obvious in simulation.

3. There are several reasonable division numbers of array
cells which will lead to better simulation performance.
The recommended values are 16×16 and 32×32
according to the experimental results.
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