
ORIGINAL ARTICLE

An improved hybrid multi-objective parallel genetic
algorithm for hybrid flow shop scheduling
with unrelated parallel machines

E. Rashidi & M. Jahandar & M. Zandieh

Received: 15 August 2009 /Accepted: 1 December 2009 /Published online: 27 February 2010
Springer-Verlag London Limited 2009

Abstract In this paper, we address the hybrid flow shop
scheduling problems with unrelated parallel machines,
sequence-dependent setup times and processor blocking to
minimize the makespan and maximum tardiness criteria.
Since the problem is strongly NP-hard, we propose an
effective algorithm consisting of independent parallel
genetic algorithms by dividing the whole population into
multiple subpopulations. Each subpopulation will be
assigned with different weights to search for optimal
solutions in different directions. To further cover the
Pareto solutions, each algorithm is combined with a novel
local search step and a new helpful procedure called
Redirect. The proposed Redirect procedure tries to help
the algorithm to overcome the local optimums and to
further search the solution space. When a population stalls
over a local optimum, at first, the algorithm tries to
achieve a better solution by implementing the local search
step based on elite chromosomes. As implementing the
local search step is time-consuming, we propose a method
to speed up the searching procedure and to further increase

its efficiency. If the local search step failed to work, then
the Redirect procedure changes the direction and refreshes
the population. Computational experiments indicate that
our proposed improving procedures are thriving in
achieving better solutions. We have chosen two measures
to evaluate the performance of our proposed algorithms.
The obtained results clearly reveal the prosperity of our
proposed algorithm considering both measures we have
chosen.

Keywords Hybrid flow shop .Multi-objective
optimization . Non-dominated solution . Blocking
processor . Sequence-dependent setup times

1 Introduction

Hybrid flow shop scheduling problem (HFS) is an
extension of the classical flow shop. It incorporates all the
difficulties and complexities of its predecessor flow shop
(FS) and is more complex than the FS because of the
additional need to determine the assignment of operations
to the machines in each stage. Each stage may be separated
by finite intermediate storages (capacities or buffers). Every
job requires processing at exactly one machine per stage.
Processors in each stage can be identical, uniform, or
unrelated. A job, once its processing is completed on a
machine, is transferred directly to either an available
machine in the next stage or, if any buffer is available,
goes to a buffer ahead of that stage [1]. In some cases, there
is no buffer between stages. When no buffer exists or no
buffer is available, a completed job remains on a machine
and blocks it for other jobs until a downstream machine
becomes available. It is usually assumed that the buffer size
between every two successive stages is infinite. However,

E. Rashidi
Department of Industrial Engineering,
Mazandaran University of Science and Technology,
Babol, Iran

M. Jahandar
Department of Industrial Management, Management Faculty,
University of Tehran,
Tehran, Iran

M. Zandieh (*)
Department of Industrial Management,
Management and Accounting Faculty,
Shahid Beheshti University, G. C,
Tehran, Iran
e-mail: m_zandeih@sbu.ac.ir

Int J Adv Manuf Technol (2010) 49:1129–1139
DOI 10.1007/s00170-009-2475-z

in real engineering practice, such as petrochemical indus-
tries and cell manufacturing, and in modern manufacturing
industries, such as just-in-time production systems or
flexible assembly lines and surface mount technology lines
in the electronics industry for assembling printed circuit
boards, buffer is either non-existent or with limited size [2–
5]. There have been a lot of works on the hybrid or flexible
flow shops. A taxonomy by Quadt and Kuhn [6] for the
flexible flow line problems yields a thorough review in the
case of flexible flow shop problems. In contrast, with lots
of works on flexible and hybrid flow shops, there is not
much work in the case of hybrid or flexible flow shops
considering multi-objective approach. For example, Jung-
wattanakit et al. [7] considered flexible flow shop with
unrelated parallel machines and setup times. Behnamian et
al. [8] presented a multi-phase covering Pareto optimal
front method to multi-objective scheduling in a realistic
hybrid flow shop using a hybrid meta-heuristic. But this is
not true for the case of flow shops. Tavakkoli-Moghaddam
et al. [9] proposed a hybrid multi-objective immune
algorithm for a flow shop scheduling problem with bi-
objectives, weighted mean completion time, and weighted
mean tardiness. Pasupathy et al. [10] developed a multi-
objective genetic algorithm for scheduling in flow shops to
minimize the makespan and total flow time of jobs.
Varadharajan and Rajendran [11] introduced a multi-
objective simulated annealing algorithm for the same
problem. Chang et al. [12] developed a two-phase subpop-
ulation genetic algorithm for parallel machine scheduling
problem. Chang et al. [13] also presented a subpopulation
genetic algorithm with mining gene structures for multi-
objective flow shop scheduling problems. The majority of
research on scheduling problems addresses only a single
criterion, while the majority of real-life problems require
the decision maker to consider more than a single criterion
before arriving at a decision. The research on multiple
criteria is mainly focused on the single machine scheduling
problem; see [14]. The reason for this is that the scheduling
problem with multiple machines is difficult even with a
single criterion. Therefore, considering more than a single
criterion makes the multiple-machine problem even more
difficult to solve [15]. Although the flexible flow shop
problem has been widely studied in the literature, most of
the studies related to flexible flow shop problems are
concentrated on problems with identical processors; see, for
instance, Gupta et al. [16], Alisantoso et al. [17], Lin and
Liao [18], and Wang and Hunsucker [19]. In a real-world
situation, it is common to find newer or more modern
machines running side by side with older and less efficient
machines. Even though the older machines are less
efficient, they may be kept in the production lines because
of their high replacement costs. The older machines may
perform the same operations as the newer ones, but they

would generally require a longer operating time for the
same operation. In this paper, the hybrid flow shop problem
with unrelated parallel machines is considered; that is, there
are different parallel machines at every stage, and the
speeds of the machines are dependent on the jobs.
Moreover, several industries encounter setup times which
result in even more difficult scheduling problems. In this
paper, sequence-dependent setup time restrictions are taken
into account as well. We also assume that there is no buffer
between stages and machines are blocked when the
completed jobs cannot release themselves because of
unavailability of machines in the next stage. As we said
earlier in the case of hybrid or flexible flow shop, we found
scarce work with multi-objective approach. To the best of
our knowledge, this is the first work which approaches the
HFS with unrelated parallel machines and sequence-
dependent setup times and processor blocking to minimize
makespan and maximum tardiness simultaneously. Make-
span and maximum tardiness are two commonly used
performance measures in the scheduling literature. Make-
span is a measure of system utilization, while maximum
tardiness is a measure of performance in meeting customer
due dates.

The multi-criteria scheduling problem is one of the main
research subjects in the field of multiple-objective program-
ming. Several procedures have been developed to deal with
this type of problems where some conflicting criteria have
to be optimized simultaneously. Using constant weights is
the most commonly used approach in the literature. In this
way, a multi-objective problem is transformed into a single-
objective problem through a linear combination of objectives
and weights. The major imperfection of the transformation
is that the weight of each objective must be given
subjectively in advance. If the decision maker is not
experienced enough, it leads to great gaps between the
actual and expected solutions. An alternative idea used to
solve the multi-objective problem does not specify the
weights in advance. It offers various solutions to the
decision makers to choose from. The solutions searched
are called Pareto optimal solutions. The number of Pareto
optimal solutions is often not unique, and decision makers
can select one of the Pareto optimal solutions to meet their
desire. It is a more flexible way than the constant weight
weighting method. In this paper, we want to develop an
effective algorithm to yield a set of good non-dominated
solutions (in absence of known Pareto optimal solutions)
for these complex problems.

The rest of the paper is organized as follows: Problem
description and methodology will be described in
Section 2. The proposed genetic algorithm will be
discussed in Section 3. Computational evaluation will be
examined in Section 4, and Section 5 will finally conclude
the paper.

1130 Int J Adv Manuf Technol (2010) 49:1129–1139

2 Problem description and methodologies

Hybrid flow shop is a flow line with several parallel
machines on some or all production stages. All products
follow the same linear path through the processing route
starting at first stage and release in the last stage. Processors
in each stage are unrelated, which means they are different
in processing time but similar in operation. In this system, a
set of n independent jobs, j∈{1, 2,…, n}, with due dates,
d1,…, dn, has to be processed. Each job j has its fixed
standard processing time pstj for every stage t, t∈{1, 2,…,
g}. Moreover, at each stage t, there is a set of mt unrelated
parallel machines. Hence, machine i at stage t can process
job j at the relative speed vti,j. The processing time pti,j of
job j on machine i at stage t is equal to pstj/v

t
i,j. After

releasing of job j and before beginning processing of the
next job, job k, on machine i, some sort of setup must be
performed; we assume this setup time equals to st,ijk. In this
research, setup times depend on sequencing of jobs, which
means the setup times are sequence-dependent. We assume
that all the setup times are known and constant. Also, we
assume that there is no buffer between stages, so a
completed job must remain on the machine and block it
for other jobs until a downstream machine becomes
available. The following two restrictions should also be
fulfilled: (1) No machine can process more than one job at
the same time and (2) no job can be processed by more than
one machine at the same time. The objective is to
simultaneously minimize the makespan (Cmax) and the
maximum tardiness (Tmax).

The hybrid flow shop scheduling problem is a strongly
NP-hard problem. As the size of problem becomes larger, it
is time-consuming to solve it by exact algorithms, such as
branch-and-bound algorithm and dynamic programming. It
is even worse when we face multiple objectives. Therefore,
recent development in evolutionary multi-objective optimi-
zation provides interesting results as discussed by Deb et al.
[20], Zitzler et al. [21], and Chang et al. [12]. In addition,
some multi-population-like approaches such as segregative
genetic algorithms by Affenzeller [22], multi-sexual genetic
algorithm by Lis and Eiben [23], multi-population genetic
algorithm by Cochran et al. [24], hierarchical fair compe-
tition model by Hu et al. [25], and multi-objective particle
swam optimization [26, 27] were proposed. Also, Chang
et al. [13] proposed a subpopulation genetic algorithm
with mining gene structures for multi-objective flow shop
scheduling problems. They compared their proposed
algorithm against the well-known NSGA II [20] and
SPEA II [28]. Their computational experiments reveal
that their proposed algorithm clearly supersedes these
well-known algorithms. The prosperity of using the multi-
population (also subpopulation) approach inspired us to
use a similar approach. As we use different representations

from what Chang et al. [13] used, we cannot adopt their
algorithm for our considered problem. Instead, we propose
a novel and effective procedure, called Redirect. In the
following section, we describe our proposed algorithm in
details.

3 Proposed methodology and algorithm

3.1 Methodology

There are a lot of studies in the literature which use
genetic algorithm (GA) for the multi-objective problems.
The primary reason for this is the empowering feature of
GAs— population approach—that is highly suitable for
use in multi-objective optimization. Since GAs work with
a population of solutions, multiple Pareto optimal so-
lutions can be found in a GA population [5]. Here, we
want to simply describe how we want to handle the
problem. Let w1 and w2 be the weights of Cmax and Tmax,
respectively, so the objective function can be calculated
with the equation below:

Min y ¼ w1Cmax þ w2Tmax: ð1Þ
In this way, our bi-criteria problem is transformed into

an ordinary single-objective problem, but as we mentioned
before, determining the weights in advance is a delicate
work. Instead, we can divide the population into some
groups which all the individuals in each group seek for their
own single-objective function, and all the groups work in
parallel to seek for Pareto optimal solutions. By this way,
we can transform the multi-objective problem to a single
one with various weights. Here, we will consider a set of z
different weights with a small deviation between each
successive pairs of weights to transform our multi-objective
problem to a single one.

W ¼ w1
1;w

1
2

� �
; w2

1;w
2
2

� �
; . . . ; wz

1;w
z
2ð Þ� �

: ð2Þ
In the same way, we can divide the population into z

subpopulations which will be assigned with the above set of
z different weights to search for optimal solutions in
different directions. Each subpopulation, which is indepen-
dent and unrelated to each other, works as parallel GAs
with the same operators (elitism, crossover, and mutation)
but with their own criterion (see Fig. 1). This way can help
strengthen the solution diffusivity effectively. In this work,
like many other investigations, a Pareto archive set is
provided to explicitly maintain the set of non-dominated
solutions. This approach is incorporated to prevent losing
the set of non-dominated solutions during the optimization
process. This archive is iteratively updated to get closer to
the correct Pareto optimal front. When a new solution

Int J Adv Manuf Technol (2010) 49:1129–1139 1131

enters the archive set, any solution in the archive dominated
by this solution is removed from the set [16]. In the
following subsection, we describe the procedures of the
proposed algorithm.

3.2 Representation, operators, and other procedures

We use the random keys representation for our algorithm.
This representation is widely used in the literature, e.g.,
[29–32]. In this representation, an individual that represents
a solution is made of an array comprising n cells in series.
Each cell indicates a job. Each job is assigned a real
number whose integer part is the machine number to which
the job is assigned and whose fractional part is used to sort
the jobs assigned to each machine. Then, for each solution,
we need n real numbers. Once the job assignments and
order on each machine are found through the decoding, a
schedule can be built incorporating additional factors such
as blocking processor and sequence-dependent setup times.
This representation is used for jobs in the first stage. In this
strategy, the genetic operators and procedures only affect
the assignments and sequences of jobs at the first stage. In
other stages, jobs are supposed to transfer into the machines
that allow them to complete at the earliest time (regarding
the speed of the available machines and also the setup
times). This greedy fashion strategy can be described in the
following steps:

& Calculate the completion time of jobs in the first stage.
& Create a list by arranging jobs in the ascending order of

their completion times.
& For the job that is earliest to complete in the list,

calculate its completion times on each available
machine in the next stage. This job should be assigned
to the machine that completes it in the earliest time.

& If there were more than one job completed at the same
time, for each job, calculate its completion time on each
available machine in the next stage and assign each job
to the machine that completes it in the earliest time. If
there were more than one job that should be assigned to
the same machine with this rule, choose the job that
completes earlier.

& Continue with the next job on the list.

Job assignment and scheduling for the next stages is like
above; it depends on the availability of machines, the
arrival time of jobs, and the sum of their processing times
and setup times (completion times) on the machines. In this
process, we consider the fact that there is no buffer between
successive stages, and a completed job may have to remain
on a machine and block it for other jobs until a downstream
machine becomes available.

Now we want to describe how our proposed GAs work.
The algorithm begins with a random initial population. The
random selection is used to select individuals to be parents.
New population is made of children produced by the one
point order crossover (OPX) and those chromosomes that
reproduced and directly copied into the new population since
elitism strategy is applied. To avoid premature convergence,
a new individual will only replace its predecessor if its
objective value is better and if its sequence is not already in
the population. Also, some individuals are produced by
implementing the swap mutation operator. After primary
experiments, we set the following parameters: The popula-
tion size is set to 1,050, and the number of different weights
(also the number of subpopulation) is set to 21 (in Eq. 2, set
z = 21), so W ¼ 0:0; 1:0ð Þ; 0:05; 0:95ð Þ; . . . ; 1:0; 0:0ð Þf g
W ¼ i � s; 1:0� i � sð Þ : i ¼ 0; 1; . . . ; 20; s ¼ 0:05Þf gð Þ
and the population size of each subpopulation will be 50.
Also, the rate of crossover, mutation, and elitism are,
respectively, set to 70%, 10%, and 20%. Now, our algorithm,
multi-objective parallel genetic algorithm (we call it
MOPGA), is ready to challenge problems. But primary
experiments show that the algorithm still needs to be
improved. By tracking the results of the algorithm, we
observed that some subpopulations could not yield better
solutions over time, and some sub-GAs have failed to
properly search the solution space. It means that they have
stalled over a local optimum. We suggest adding an
improvement phase by applying a local search step to our
proposed algorithm. The drawback of this approach is that
applying local search to all individuals in every generation
results in a very slow algorithm. Our proposal is to apply a
local search to a limited number of individuals and not to
each generation. As we work with independent and
discriminate parallel sub-GAs, we suggest adding an
independent and separate local search step for each sub-
GA. For each subpopulation, we focus only on a leading

Fig. 1 The whole population is divided into several subpopulations [13]

1132 Int J Adv Manuf Technol (2010) 49:1129–1139

group of chromosomes called elite chromosomes. For the
case of trapping in local optimums if we can succeed to
improve these leading individuals, then we have succeeded
to pull out from these traps. The proposed local search works
as follows:

& Local search step

About 10% of the best individuals in each subpopulation
are considered for local search step. We randomly pick two
chromosomes from these elite chromosomes. Then, a
procedure decodes these chromosomes to identify the
schedules they represent. By identifying the similar
schedules between these two chromosomes and copying
and coding these similarities to a new chromosome, we
make a crude and incomplete solution (Fig. 2). Then, we
investigate the ways we can complete this solution; each
way is considered as an option. As there may exist a lot of
options, it is extremely time-consuming to investigate all
the options. Therefore, we define a counter (counterOption)
to count every option we exam. We consider an upper
bound called Optionmax for this step. To let the algorithm
examine more options as the number of jobs increases, we
set Optionmax to 2×n. We can continue this investigation
with new chromosomes if the total number of options we
have examined was less than the upper bound. The local
search step stops when it achieves a better solution or
reaches the upper bound. If there was no similarity
between the two selected chromosomes, then the algo-
rithm takes another two elite chromosomes. If the
algorithm could not find any chromosomes with similar
schedules, then the local search step would not be
continued.

To further help the algorithm overcome local optimums
and save diversification, we embed the local search step

Fig. 2 Working procedure of identifying similar schedules to start local search step

Fig. 3 Flowchart of IHMOPGA

Int J Adv Manuf Technol (2010) 49:1129–1139 1133

into a new proposed method called Redirect. This method
works as follows:

1. For subpopulation j, at each generation i, store the
related minimum value of objective function, funcj,i.

2. If funcj;i ¼ funcj;i�1, then make countj ¼ countj þ 1.
Otherwise, make countj=0.

3. If countj > Cm, then apply the local search step (we
consider Cm=10).

4. If the local search step could improve the solution,
then make countj=0. Otherwise, apply the following
procedures:

& It seems that we have failed to find a better solution
according to the objective function we have used;

we suggest changing the objective function by
changing the weights and then evaluating the
individuals according to this new objective func-
tion. Let (w j

1, w
j
2) be the weights we have used for

subpopulation j 1 < j < 21ð Þ. We change these
weights as follows: We generate a randomly chosen
number called Rand between (w j

1−0.025, w j
1+

0.025). The new weights are (w j
1, w

j
2) = (Rand, 1 −

Rand). For j=1 and j=21, we generate Rand in (0,
0.025) and (0.975, 1), respectively.

& Sort the subpopulation in ascending order of its
new objective function.

& Skip the first 20% individuals from the sorted list
(the best individuals).

Fig. 4 Pseudo-code of
IHMOPGA

1134 Int J Adv Manuf Technol (2010) 49:1129–1139

& From the remaining 80% individuals, 50% of them
are replaced by simple swap mutations of the first
20% best individuals. The remaining 50% are
replaced by newly randomly generated schedules.

& Make countj=0.

We name this new algorithm improved hybrid multi-
objective parallel genetic algorithm (IHMOPGA).The out-
line of OHMPOGA is summarized in Figs. 3 and 4. Table 1
illustrates all the parameters and their values used for our
algorithms in this paper. The parameters that relate to local
search and Redirect procedures are only for IHMOPGA.
The selected crossover type was chosen from three types
of crossovers: OPX (one-point order crossover), TPX
(two-point order crossover), and PUX (parameterized
uniform crossover). The mutation type was selected from
two types: swap mutation and SHIFT mutation. We
examined all these types and finally chose the best types
with the best values that fit them; we summarized the
results in Table 1.

To primarily test the performance of this new algo-
rithm, we let it solve the same sample problems that the
first algorithm (MOPGA) had solved. This primary test
shows that our new proposed algorithm has performed
better than its predecessor. As illustrated in Fig. 5 as a
sample result of this test, our proposed IHMOPGA has
reached a better and richer set of non-dominated solutions.
To evaluate more the performance of our proposed
algorithms, in the next section, we will carry out extensive
experiments.

4 Computational evaluation

4.1 Generation of test data

Data required for a problem consist of the number of jobs
(n), the range of setup and processing times, due dates, and
the number of stages (g). We used problems with n={6, 30,
100} and g={2, 4, 8}. The number of machines (m) in each

stage is distributed uniformly between interval (1, 4).
Similar to [7], the standard processing times are generated
uniformly from the interval [10, 100], and the relative
speeds are distributed uniformly in the interval [0.7, 1.3].
The duration of sequence-dependent setup times generated
uniformly from the intervals [1, 50], [1, 100], and [1, 125].
The due date of a job is set in a way that is similar to the
approach used by Jungwattanakit et al. [7].

4.2 Comparison metrics

It is impossible to find the Pareto optimal solutions using
the naive enumeration algorithm because of extreme
complexity of the problems. In this regard, we use the
following comparison metrics: (1) the number of non-
dominated solutions that each algorithm can find and (2)
the percent of non-dominated solutions obtained from
each algorithm in the net non-dominated solutions (a set of
non-dominated solutions (NDS) obtained after putting
together the non-dominated solutions found by each
algorithm) [10].

4.3 Experimental results

A set of 27 instances was generated as such: The set of
instances comprises nine combinations of n and g, being
n={6, 30, 100} and g={2, 4, 8}. Three combinations for
setup times are as previously defined. For each instance, we
have generated five different problems. We set the stopping
criterion to CPU time limit fixed to n2 � m� g � 25. This
stopping criterion not only permits for more time as the
number of jobs or machines increases, but also it is more
sensitive toward rise in the number of jobs than the number
of stages. We let both algorithms solve the generated
instances. The algorithms are stochastic in nature; then to

Fig. 5 Plot of obtained Pareto frontiers for IHMOPGA andMOPGA for
a sample instance (the maximum number of generations is set to 300)

Table 1 Parameters and their values

Where used Parameter Value

Main algorithm Crossover rate 70%

Mutation rate 10%

Elitism rate 20%

Population size 1050

No. of subpopulations 21

Local search Cm 10

Redirect procedure Optionmax 2 × n

Int J Adv Manuf Technol (2010) 49:1129–1139 1135

have more reliable results, we have conducted five different
replicates of each experiment to finally average the results.
These results are summarized in Tables 2, 3, and 4.
According to these tables, it is easy to verify the better
performance of IHMOPGA against our other algorithm,
MOPGA, in both two metrics especially in large
instances. Although the number of non-dominated sol-
utions for both algorithms increases, as the number of
stages increases, on the other hand, the other criterion
(percent in the net) decreases for MOPGA. This shows
that as the number of stages increases, the superiority of
IHMOPGA becomes more evident. As we can see, the
more difficult instances are the better performance our
IHMOPGA has against the MOPGA. This superiority
indicates the effectiveness of our proposed Redirect
procedure and also shows that the local search steps we
have proposed are able to further search the solution
space and find more non-dominated solutions.

We found that both algorithms, the MOPGA and the
IHMOPGA, have nearly the same performance in the
beginning of the computations, and it seems rational
because both algorithms are the same when it is easy to
find better solutions, and there is no challenging problem
such as stalling over a local optimum for which the local
search step and the Redirect procedure come into action for
the IHMOPGA. As the number of generation increases, it is
getting harder to find better solutions, and then it is more
probable that the algorithms stall over local optimums.
Then, it is time for the IHMOPGA to call its improvement
phase to come into action. At first, a procedure tries to
identify what is similar between the two randomly chosen
elite chromosomes. The identified similar schedules are
copied to a new chromosome to make a crude solution.
Then, the local search step tries to search for a better
solution by completing remaining schedules in the crude
solution. If the local search step failed to improve the

Table 3 Comparison results for g=4

Job Setup time No. net-NDS IHMOPGA MOPGA

No. NDS Percent in the NET No. NDS Percent in the NET

N=6 ST [1, 50] 2.43 2.43 1 2.43 1

ST [1, 100] 3.14 3.14 1 2.34 0.31

ST [1, 125] 4.53 4.53 1 3.15 0.75

N=30 ST [1, 50] 6.73 6.57 0.56 6.73 0.47

ST [1, 100] 7.16 8.33 0.57 6.58 0.51

ST [1, 125] 4.48 4.11 0.62 2.36 0.49

N=100 ST [1, 50] 6.24 7.34 0.65 6.08 0.35

ST [1, 100] 11.35 9.26 0.74 8.13 0.46

ST [1, 125] 4.13 4.01 0.75 3.47 0.25

Average 5.58 5.52 0.76 4.58 0.51

Table 2 Comparison results for g=2

Job Setup time No. net-NDS IHMOPGA MOPGA

No. NDS Percent in the NET No. NDS Percent in the NET

N=6 ST [1, 50] 1 1 1 1 1

ST [1, 100] 1.61 1.61 1 1.52 0.76

ST [1, 125] 1 1 1 1 1

N=30 ST [1, 50] 5.23 5.13 0.42 3.54 0.58

ST [1, 100] 3.43 3.19 0.56 2.98 0.65

ST [1, 125] 6.74 6.05 0.54 5.37 0.46

N=100 ST [1, 50] 12.35 13.45 0.64 9.63 0.36

ST [1, 100] 4.78 5.11 0.61 3.46 0.39

ST [1, 125] 8.13 7.18 0.77 6.87 0.42

Average 4.92 4.86 0.73 3.93 0.62

1136 Int J Adv Manuf Technol (2010) 49:1129–1139

solution in its determined iteration, then the IHMOPGA
calls the Redirect procedure. This procedure changes the
direction search, keeps elite individuals, and finally
refreshes the population. These all help IHMOPGA to
outperform MOPGA in larger number of generation.

As we said before, a common approach in solving multi-
objective problems is transferring them into single-
objective problems using constant weights. To compare
our proposed algorithms against this approach (called
weighted genetic algorithm, WGA), we implemented this
approach too. For a fair comparison, we set the population
size of this algorithm to 50 (equal to the population size of
each sub-genetic algorithm in MOPGA and IHMOPGA),
and we set the same parameters for WGA as the other
two algorithms used. We considered the same set of
weights for WGA as we used for other algorithms.
Therefore, for each problem, we run 21 (equal to the
number of weights) times WGA with these different
weights. Then, we put together all the results and made
the final set of non-dominated solution for WGA. The
results indicate that WGA and MOPGA are equal in
performance. In MOPGA, we indeed implement 21 sub-
GAs with 21 different weights in parallel and run for
just one time. On the other hand, in WGA, we have just
one algorithm that it needs to run 21 times with 21
different weights in series. As illustrated in Fig. 6 as a
sample instance, there is a tough competition between
MOPGA and WGA, though implementing the MOPGA is
very easier than WGA (remember we have to run WGA
21 times for each problem). Also, from this figure, it is
easy to verify the better performance of IHMOPGA
against the two other algorithms. As implementing the
WGA is a tedious work and the performance of it is nearly
equal to MOPGA, then we ignored this algorithm for the
evaluation process.

5 Conclusion and future work

In this paper, we investigate the hybrid flow shop
problems with unrelated parallel machines, sequence-
dependent setup times, and blocking processor with two
criteria: makespan and maximum tardiness. According to
the good performance of genetic algorithms in multi-
objective problems, we choose GA to introduce an
effective algorithm using the population-based principle
of GAs to tackle the complexity of these strongly NP-
hard problems. We divided the whole population of GA
into some groups, assigning each group a given weight
and letting each group seek for its own single criterion,
making MOPGA. To further search for non-dominated
solutions and to overcome local optimums, we add a
procedure called Redirect with an effective local search

Fig. 6 Plot of obtained Pareto frontiers for WGA, MOPGA, and
IHMOPGA for a sample instance (the maximum number of generations
is set to 500)

Table 4 Comparison results for g=8

Job Setup time No. net-NDS IHMOPGA MOPGA

No. NDS Percent in the NET No. NDS Percent in the NET

N=6 ST [1, 50] 4.69 4.69 0.78 3.92 0.51

ST [1, 100] 2.13 2.13 1 2.04 0.38

ST [1, 125] 1 1 1 1 1

N=30 ST [1, 50] 5.74 5.53 0.56 5.17 0.44

ST [1, 100] 4.27 4.67 0.68 3.95 0.32

ST [1, 125] 6.64 6.47 0.83 4.13 0.17

N=100 ST [1, 50] 7.31 7.35 0.74 5.87 0.26

ST [1, 100] 11.78 11.36 0.72 9.41 0.28

ST [1, 125] 7.36 6.84 0.78 5.83 0.31

Average 5.66 5.56 0.79 4.59 0.41

Int J Adv Manuf Technol (2010) 49:1129–1139 1137

step to our proposed algorithm, developing a new
effective algorithm called IHMOPGA. We evaluate the
performance of our proposed algorithms by generating
random data. The computational results show that our
proposed Redirect procedure combined with the local
search step is thriving to extract and achieve better and
more non-dominated solutions. We also compared our
proposed algorithms against the commonly used ap-
proach constant weights method. The results indicate
that our proposed IHMOPGA algorithm is superior to
other WGA and MOPGA, which are nearly equal in
performance. We also find out that the performance of
IHMOPGA in comparison with MOPGA evidently
increases over time.

As a direction for future research, it could be interesting
to develop other meta-heuristic or heuristic algorithms and
compare them with IHMOPGA. It also could be interesting
to examine the performance of our proposed algorithm in
other complex scheduling problems, such as job shop and
open shop problems. Another clue for future research is the
consideration of some other realistic assumptions such as
limited buffers (non-zero), no-waiting environment, pre-
ceding constraints, and lag times. Another opportunity for
research is the consideration of the problem with the other
optimization objectives such as minimization of total
completion time, total tardiness, early and tardy penalties,
job waiting time variance, or even considering more than
two criteria.

References

1. Pinedo M (2001) Scheduling: theory, algorithms, and systems,
2nd edn. Prentice-Hall, Englewood Cliffs

2. Thornton HW, Hunsucker JL (2004) A new heuristic for minimal
makespan in flow shops with multiple processors and no
intermediate storage. Eur J Oper Res 152:96–114

3. Wang L, Liang Z, Da-Zhong Z (2006) An effective hybrid genetic
algorithm for flow shop scheduling with limited buffers. Comput
Oper Res 33:2960–2971

4. Sawik T (2000) Mixed integer programming for scheduling
flexible flow lines with limited intermediate buffers. Math
Comput Model 31(13):39–52

5. Tavakkoli-Moghaddam R, Safaei N, Sasani F (2009) A memetic
algorithm for the flexible flow line scheduling problem with
processor blocking. Comput Oper Res 36(2):402–414

6. Quadt D, Kuhn H (2007) A taxonomy of flexible flow line
scheduling procedures. Eur J Oper Res 178:686–698

7. Jungwattanakit J, Reodecha M, Chaovalitwongse P, Werner F
(2008) Algorithms for flexible flow shop problems with unrelated
parallel machines, setup times, and dual criteria. Int J Adv Manuf
Technol 37:354–370

8. Behnamian J, Fatemi Ghomi SMT, Zandieh M (2009) A multi-
phase covering Pareto-optimal front method to multi-objective
scheduling in a realistic hybrid flowshop using a hybrid metaheur-
istic. Expert Syst Appl 36(8):11057–11069. doi:10.1016/j.
eswa.2009.02.080

9. Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei AH (2007)
A hybrid multi-objective immune algorithm for a flow shop
scheduling problem with bi-objectives: weighted mean comple-
tion time and weighted mean tardiness. Inform Sciences 177
(22):5072–5090

10. Pasupathy T, Rajendran C, Suresh RK (2006) A multi-objective
genetic algorithm for scheduling in flow shops to minimize the
makespan and total flow time of jobs. Int J Adv Manuf Technol
27:804–815. doi:10.1007/s00170-004-2249-6

11. Varadharajan TK, Rajendran C (2005) A multi-objective
simulated-annealing algorithm for scheduling in flowshops to
minimize the makespan and total flowtime of jobs. Eur J Oper
Res 167(3):772–795

12. Chang PC, Chen SH, Lin KL (2005) Two phase subpopulation
genetic algorithm for parallel machine scheduling problem. Expert
Syst Appl 29(3):705–712

13. Chang PC, Chen SH, Liu CH (2007) Sub-population genetic
algorithm with mining gene structures for multiobjective flowshop
scheduling problems. Expert Syst Appl 33(3):762–771

14. Nagar A, Haddock J, Haragu S (1995) Multiple and bi-criteria
scheduling: a literature review. Eur J Oper Res 81(1):88–104

15. Allahverdi A (2004) A new heuristic for m-machine flowshop
scheduling problem with bicriteria of makespan and maximum
tardiness. Comput Oper Res 31(2):157–180

16. Gupta JND, Krüger K, Lauff V, Werner F, Sotskov YN (2002)
Heuristics for hybrid flow shops with controllable processing
times and assignable due dates. Comput Oper Res 29(10):1417–
1439

17. Alisantoso D, Khoo LP, Jiang PY (2003) An immune algorithm
approach to the scheduling of a flexible PCB flow shop. Int J Adv
Manuf Technol 22(11–12):819–827

18. Lin H-T, Liao C-J (2003) A case study in a two-stage hybrid flow
shop with setup time and dedicated machines. Int J Prod Econ 86
(2):133–143

19. Wang W, Hunsucker JL (2003) An evaluation of the CDS
heuristic in flow shops with multiple processors. J Chin Inst Ind
Eng 20(3):295–304

20. Deb K, Amrit P, Sameer A, Meyarivan T (2002) A fast and elitist
multi-objective genetic algorithm: NSGA-II. IEEE T Evolut
Comput 6(2):182–197

21. Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on
evolutionary multiobjective optimization. Proceedings of the
Workshop on Multiple Objective Metaheuristics

22. Affenzeller M (2002) New generic hybrids based upon genetic
algorithms. Lect Notes Comp Sci 2527:329–339

23. Lis J, Eiben AE (1997) A multi-sexual genetic algorithm for
multicriteria optimization. Proceedings of the 4th IEEE Confer-
ence on Evolutionary Computation, pp 59–64

24. Cochran JK, Horng SM, Fowler JW (2003) A multi-population
genetic algorithm to solve multi-objective scheduling problems
for parallel machines. Comput Oper Res 30:1087–1102

25. Hu J, Goodman E, Seo K, Fan Z, Rosenberg R (2005) The
hierarchical fair competition framework for sustainable evolution-
ary algorithms. Evolu Comput 13(2):241–277

26. Coello CA, Pulido GT, Lechuga MS (2004) Handling multiple
objectives with particle swarm optimization. IEEE Trans Evol
Comput 8(3):256–279

27. Mostaghim S, Teich J (2004) Covering Pareto-optimal fronts by
subswarms in multi-objective particle swarm optimization. Evol
Comput 2:1404–1411

28. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the
strength Pareto evolutionary algorithm. Techni Rep Comp Eng
Net Lab (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland

29. Kurz ME, Askin RG (2004) Scheduling flexible flow lines with
sequence-dependent setup times. Eur J Oper Res 159(1):66–82

1138 Int J Adv Manuf Technol (2010) 49:1129–1139

http://dx.doi.org/10.1016/j.eswa.2009.02.080
http://dx.doi.org/10.1016/j.eswa.2009.02.080
http://dx.doi.org/10.1007/s00170-004-2249-6

30. Zandieh M, Fatemi Ghomi SMT, Moattar Husseini SM (2006) An
immune algorithm approach to hybrid flow shops scheduling with
sequence-dependent setup times. Appl Math Comput 180:111–
127

31. Gholami M, Zandieh M, Alem-Tabriz A (2008) Scheduling hybrid
flow shop with sequence-dependent setup times and machines

with random breakdowns. Int JAdv Manu Tech 42(1–2):189–201.
doi:10.1007/s00170-008-1577-3

32. Naderi B, Zandieh M, Roshanaei V (2008) Scheduling hybrid
flowshops with sequence dependent setup times to minimize
makespan and maximum tardiness. Int J Adv Manu Tech 41(11–
12):1186–1198. doi:10.1007/s00170-008-1569-3

Int J Adv Manuf Technol (2010) 49:1129–1139 1139

http://dx.doi.org/10.1007/s00170-008-1577-3
http://dx.doi.org/10.1007/s00170-008-1569-3

	An improved hybrid multi-objective parallel genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines
	Abstract
	Introduction
	Problem description and methodologies
	Proposed methodology and algorithm
	Methodology
	Representation, operators, and other procedures

	Computational evaluation
	Generation of test data
	Comparison metrics
	Experimental results

	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

