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Abstract Precision inspection of freeform parts takes an
important role in manufacturing quality control. The aim of
this inspection is to verify that the geometric dimensions
and produced part tolerances meet quality requirements.
This is achieved by fitting the scanned data to the
computer-aided design (CAD) model. This verification is
complicated since the produced part includes defects and
distortions. Currently, industry uses semimanual verifica-
tion, which is expensive, often inaccurate, and very time-
consuming. This paper describes a new method for
automatic registration and alignment of two 3D freeform
shapes, one from the scanned data and the other from the
CAD model. The method makes no assumptions about their
initial positions. Instead, the proposed algorithm uses a
multiscale shape descriptor to select features on the scanned
data and identify their corresponding features on the CAD
model. The proposed shape descriptor is invariant with
respect to local shapes and is robust to noise. A coarse
alignment is computed by finding and registering the best
matching triplet of features. The iterative closest point
algorithm uses resulting coarse alignment to achieve a
tuned alignment. The proposed method is automatic,
efficient, and straightforward to implement. The algorithm
can also be effective in the case of partial scanned inspected
shapes. The feasibility of the proposed method is demon-
strated on a blade model.
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1 Introduction

Precision inspection of freeform parts takes an important
role in manufacturing quality control. The prevalent idea
is to verify that the geometric dimensions and part
tolerances meet the quality requirements of manufactur-
ing. Currently, carry out this entire process. Manual
inspection is expensive, often inaccurate, and very time-
consuming. Speed, accuracy, and repeatability are the
major challenges to be achieved by a portable and
flexible inspection system. Ideally, such a system would
automatically collect the measurements and make de-
tailed, full-scale comparisons between the measured data
and the original design. With this capability installed on
machine tool and assembly lines, manufacturing pro-
cesses can be monitored and controlled in real time.
This is especially important in the era of globalization,
where a production process may be distributed over
several sites.

A typical inspection process consists of the following
general phases: (1) data acquisition; (2) mesh generation;
(3) registration of the measured data with the designed
model; (4) verification. To achieve automatic and real-time
inspection, one of the most challenging problems is to
develop an efficient method that aligns the measurement
coordinate system and the designed part coordinate system.
Therefore, this work focuses on data alignment for defect
detection (phase c).

1.1 Data acquisition

Data acquisition is applied by using a device capable of
obtaining 3D geometry data from the inspected object.
Common devices are [1]: (1) laser-based scanners; (2)
coordinate-measuring machine (CMM) which is essentially

A. Shmukler :A. Fischer (*)
CAD & LCE Laboratory,
Faculty of Mechanical Engineering Technion,
Haifa 32000, Israel
e-mail: meranath@technion.ac.il

Int J Adv Manuf Technol (2010) 49:1093–1106
DOI 10.1007/s00170-009-2447-3



a Cartesian robot with one tactile probe; (3) stereoscopic
cameras; (4) acoustic devices; and (5) medical-scanning
devices (magnetic resonance imaging, computed tomogra-
phy). As of today, CMMs is the most widely used device
for industrial inspection. While the CMM measures the
parts in high precision, a conventional tactile probe is often
limited in scanning speed and cannot cover features that are
smaller than the stylus diameter. The tactile probe is
especially cumbersome in measuring parts with freeform
surfaces as it is difficult to maintain continuous contact
with the surfaces. In these cases, noncontact scanners such
as laser scanners are commonly used for fast surface
acquisition. Usually, a triangular mesh is reconstructed
from the sampled points.

1.1.1 Discrete curvature of meshes

A large range of problems in 3D computer vision and
computational geometry can be solved by means of surface
curvature properties. Curvature is a differential parameter
that is also used in registration algorithms because it
represents properties that are invariant under Euclidian
transformations, and thus can be used for characterizing a
surface [2, 3]. The most common geometric surface
representation in RE is triangular mesh, constructed from
sampled points. It has C1 zero curvature at faces and C0

continuity at vertices and edges. However, the mesh is
approximation of a real unknown piecewise smooth
surface. Therefore, the surface curvature can be estimated
from the triangular mesh and be represented as discrete
Gaussian curvature K and the absolute discrete mean
curvature |H| [4]. Based on these discrete curvatures,
features can be extracted. Most algorithms calculate the
vertex curvature in the region of one-ring neighbors of a
vertex. These algorithms are very noise sensitive and are
topological dependent [5–7]. These algorithms give good
results for synthetic objects and had problems with noisy
scanned objects. Hamann and Taubin [8, 9] improve the
methods by applying their algorithm on the n-ring
neighborhood.

The Gauss–Bonnet theorem can be applied to triangular
meshes [10], where the local region M can be defined as a
one-ring neighborhood of a given vertex:

Z Z
M
KdA ¼ 2p �

Xnf
j¼1

qj ð1Þ

where θj is the angle of the jth face at the given vertex, and
nf denotes the number of faces around this vertex. The
angular deficit is analog to the curvature, it measures how
curved a vertex is. In order to derive a Gaussian curvature
at a given vertex, it is assumed that the curvature is

uniformly distributed around the vertex, and is normalized
by the area A:

K ¼ 2p �Pnf
j¼1 qj

1
3 A

ð2Þ

where A is the sum of the faces area around the given
vertex.

Mean curvature can also be formulated as a concept of
an angle:

H ¼
1
4

Pne
j¼1 vj � vi

�� ��gj
1
3 A

ð3Þ

where γj is the dihedral angle between two faces of edge (vi,
vj),see Fig. 1.

Meyer et al. [11] suggested a modified formula for mean
curvature based on simplification of the integral of the
Laplace–Beltrami operator:

H ¼ 0:5 � 1

2Avor

X#e
j¼1

cotaj þ cotbj
� �

vj � vi
� ������

����� ð4Þ

where vj is a neighbor of vi, and αj and βj are the two angles
opposite to the edge (vi, vj) of two triangles. Where Avor is
defined as the Voronoi area of vertex vi, when the triangles
are nonobtuse:

Avor ¼ 1

8

Xne
j¼1

cot aj þ cot bj
� �

vj � vi
�� ��2 ð5Þ

In our approach, the discrete curvature estimation is based
on the Gauss–Bonnet scheme. In order to improve the
robustness of the method, we apply it on n-ring neighbor-
hood. The advantage of these techniques is that they are
very fast, since they do not require normal estimation.

1.2 Registration methods

Registration of two objects in arbitrary positions is a
fundamental problem in object acquisition and modeling.
Existing geometric registration methods solve the problem

Fig. 1 A vertex and its one-ring neighbors
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of best shape alignment by matching the correspondence
parameters between two object models. It is divided in two
subproblems: correspondence and alignment. The input sets
are usually the scanned (noisy) model and the computer-
aided design (CAD) model of the object (Fig. 2). The
correspondence parameters can be the object's sampled
points, or can be object's geometric features such as holes,
edges, and corners. For freeform parts that do not have
standard geometric features, the correspondence parame-
ters are more complex. Existing registration methods can
be classified into two categories, global and local
registrations [12]. Global registration methods align the
models, without any prior assumptions about their initial
positions. These algorithms are usually based on a
correspondence search. Local registration algorithms
assume that the relative transformation between the
models is small, and improve the registration locally.
These methods are almost exclusively based on distance
local optimization.

1.2.1 Global registration methods

Global registration algorithms make use of the fact that the
rigid transform is low dimensional, i.e., needs only a small
number of correspondence parameters to define the optimal
transformation. One class of global registration is known as
voting methods [13], quantizes the transformation space
into a 6D matrix, and accumulates votes in each matrix cell.
The entry with the most votes gives the optimal aligning
transform. These methods compute a transformation that
aligns triplet points. Voting methods explore the entire set
of transformations and therefore are likely to find the
optimal alignment. However, these methods have high
computational complexity of at least O(n3), and therefore
are not used commonly for global registration. A second
class of global registration approaches is based on analysis

of the error function of Eq. 14. Since minimization over all
transformations is a nonlinear function, it may contain
several local minima. Therefore, in addition, methods that
eliminate local minima have been applied. However, these
methods are slow and are not always converge. The third
class of approaches is known as correspondence search
methods. Given a set of corresponding point-pairs, a rigid
transform is computed so that the distance between
corresponding points is minimized [14]. Both the voting
schemes and the correspondence search algorithms can be
improved by using geometric descriptors.

1.2.2 Local registration methods

Local registration methods get as input a rough estima-
tion of aligning transformation between the scanned and
the CAD models. The local registration algorithm then
refines this rough alignment. Most local registration
algorithms are variations of the iterative closest point
(ICP) algorithm first introduced by [15]. The ICP
algorithm converges to a local minimum of Eq. 5. It has
been shown both experimentally and theoretically that the
convergence behavior of ICP depend heavily on the choice
of corresponding points and the predefined distance metric.
The main limitation of ICP and its variants is that, it is not
effective when the relative initial position between the input
models is not close. Using geometric descriptors as a
correspondence features can speed up the convergence
significantly.

1.3 Geometric shape descriptors

A competent speedup technique for registration is to find a
set of feature points on the models based on computed
geometric descriptors. A geometric shape descriptor is a
quantity computed for each point of the models, based on
the shape of its local neighborhood. High-dimensional
descriptors provide a detailed description of the shape
around each point. The advantage of using geometric shape
descriptors is that, given a point on the scanned model, it is
likely that only a few points in the CAD model will have a
similar descriptor. Moreover, the point with the best matching
descriptor is likely to be the preferred corresponding point.
Incorrect correspondences are few and can be removed using
outlier detection methods. In global registration, geometric
shape descriptors are often used to solve the correspondence
problem directly. Low-dimensional descriptors are typically
much easier to compute and compare than high-dimensional
descriptors [16]. However, for a given point in the scanned
model, there may be many points in the CAD model with the
same descriptor value. Therefore, low-dimensional descrip-
tors are usually used in conjunction with a voting scheme
[17] to reduce the size of the search space. Most of the low-

Scanned Data CAD Model Registration
(a) (b) (c)

Fig. 2 The registration process. a Scanned data model in local
coordinate system. b CAD model in computer coordinate system. c
The registered scanned and CAD models in global coordinate system
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dimensional shape descriptors are based on differential
quantities of the shape, since they are invariant under rigid
transformations. Their main limitation is that they are
sensitive to noise. As a result, the scanned model should be
presmoothed. An alternative approach is to use local shape
invariants that are based on integration instead of differen-
tiation [18]. Integral descriptors have desirable properties of
differential invariants of locality and invariance under rigid
transformations, and they are more robust to noise.

In this research, a registration method is proposed, based
on feature extraction and correspondence search using 3D
integral geometric descriptors. Furthermore, our method
combines both the global and the local registration for
coarse and fine alignment accordingly.

1.3.1 The verification analysis

Registration is very time-consuming, and any inaccuracy
of this algorithm results in erroneous verification
analysis. Additionally, complicated mechanical parts
can have many curved features, and the position or
orientation of some features can severely deviate from
its original model [19]. In such a case, the whole part fails
the verification. In recent years, several publications on
quality control have been based on invariant surface
properties [20]. All these methods assume that the scanned
object must first be smoothed; this will damage the surface
geometry, and the curvature will be wrongly estimated.
The verification of engineering parts can be improved by
applying shape descriptor analysis between the
corresponding models. The shape descriptor's robustness
to noise enables to achieve accurate verification of noisy
data.

2 The approach

In this paper, a method is described for calculating a rigid
transformation that optimally aligns 3D sampled model
with respect to the CAD model. The inspected scanned
model is represented as a noisy triangular mesh, and the
CAD model is represented as triangular mesh without
noise. The main stages of the algorithm are as follows
(Fig. 3):

1. Estimating the mean curvature of the scanned and CAD
models, using an extended neighborhood method for
mean curvature estimation

2. Computing the geometric shape descriptor of the
scanned and CAD models

3. Matching between the scanned and CAD models
4. Applying registration of the scanned and CAD models

The stages are described in detail in the next sections.

2.1 Discrete mean curvature over one-ring neighborhood

The angle-based method for mean curvature estimation is
fast and straightforward to implement. Furthermore, curva-
ture can be computed for open surfaces. According to [5], it
can be applied for regular meshes, but the algorithm is
inaccurate for highly dense sampled objects. The mean
curvature map of an object is shown in Fig. 4. The red
regions indicate local peaks/pits. The blue regions indicate
saddle shaped. The green regions indicate local flat shapes.
The effect of noise can be eliminated by using the proposed
multiscale shape descriptors.

2.2 Discrete mean curvature over n-ring neighborhood

Most curvature estimation methods relate to the first-ring
neighborhood of the vertices. Our estimation method
calculates the mean curvature over an extended neighbor-
hood around a given vertex (n-ring neighborhood). It relies
on the surface domain D bounded by the integration kernel
with radius r (n-ring). First, the mean curvature is computed
at each vertex, based on the one-ring connectivity, accord-
ing to Eq. 2. Then, the local mean curvature eH is estimated
on the surface domain D by applying the following
weighted equation:

eH við Þ ¼
Xn
j¼1

wij � H vj
� � ð6Þ

where:

& ωij is a weighted factor between the center vertex vi and
neighbor vj.

Fig. 3 The main stages of the algorithm
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& H(vj) is a mean curvature of vj computed according to
Eq. 3

& n is the number of neighbor vertices contained in the
domain D.

The weight factor ωij is depending on the geodesic
distance [21] between vertices vi and vj (see Fig. 11). We
have used the following exponential function which gave
stable results:

wij ¼ e
� gij

gi ;max ð7Þ
where:

& gij is a geodesic distance between vertices vi and vj.
& gi,max is a max geodesic distance from vertex vi to the

other vertices in D.

2.3 Multiscale geometric shape descriptor

As discussed above, the geometric methods for feature
detection commonly used in registration algorithms are
very sensitive to noise. Therefore, we chose a different
approach based on a discrete scale parameter of the local
neighborhood. This parameter is a multiscale geometric
shape descriptor that makes it possible to deal with noisy
data and to obtain invariant measurements on multiple
scales, without any change in the given geometry, such as
those caused by smoothing. A multiscale shape descriptor,
described in Section 1.3, is a vector of scalars assigned to
each point in the model. For robust registration algorithms,
the descriptor should be invariant to rigid transformations,
robust to noise, and based on the local geometry around any
point of the model. These local neighborhoods are typically
defined via balls or spheres, also called kernels, whose
radius defines the working scale. This approach focuses on
low-dimensional descriptors based on integral invariants,
since they are faster to compute than rich descriptors,
invariant under rigid transformations, and robust with

respect to noise. Integral invariants are defined by integrat-
ing spatial functions over moving domains centered at
surface points. Here, we briefly introduce the concept; a
detailed treatment of the theory and computation can be
found in [22].

Let P be the input shape, consisting of N points p1 …pN.
The integral volume descriptor is a 3D integral invariant
that is defined at each vertex p of the input shape as
follows:

VrðpÞ ¼
Z
BrðpÞ\D

dx ¼
Z
BrðpÞ

#DðxÞdx ð8Þ

where:

& Br(p) is the integration kernel that represents a ball of
radius r centered at the p.

& D � R
3 is the boundary of the surface domain

represented by input shape P.
& χD is the characteristic function which is 1 for points of

D and 0 elsewhere.

The quantity Vr(p) is the volume of the intersection of
the ball Br(p) with the interior of the object defined by the
input mesh. Assuming that the intersection of D and Br(p)
is simply connected, the integral volume descriptor is
related to mean curvature at point p as follows:

VrðpÞ ¼ 2p
3
r3 � pHr

4
r4 þ O r5

� � ð9Þ

where:

& Hr is a local mean curvature of a bounded domain D at
a point p.

& r is a radius of a kernel Br(p).

The leading (first) term is the volume of the half-ball of
radius r, and the correction term involves the mean
curvature Hr at the point p. The proof that this descriptor
is robust to noise can be found in [22]. In this work, we use
a modified form of the integral volume descriptor, which
characterizes the ratio between the volume of the intersec-
tion Br(p)∩D and the volume of the entire ball Br(p). In
other words, we normalize the magnitude of the volume
descriptor Vr(p) by the volume of the ball 4p

3 r
3:

VrðpÞ ¼ 1

2
� 3

16
Hr � r þ O r2

� � ð10Þ

Note that in the case of a planar surface, Vr(p)=1/2.
Integral descriptors are particularly suited for multiscale

representation since the scale is controlled by the radius of
the kernel Br(p). As can be seen from Eq. 10, the modified
integral volume descriptor is a linear function of the mean
curvature Hr multiplied by a kernel radius. Therefore, the
volume descriptor can be computed at different scales. This
multiscale descriptor is used in a registration algorithm for

Positive High Curvature
(convex)

(concave)

Flat Surface

Negative High Curvature

Fig. 4 Curvature map
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picking potential feature points on the input surfaces and
identifying corresponding points for those features. A
feature point p can be detectable over a set of consecutive
scales of the descriptor. For a false feature point p, the
descriptor will not match in all scales. The volume
descriptor on a 3D model is illustrated in Fig. 5. The
multiscale descriptors are demonstrated in Figs. 9 and 12
(Section 4).

The integral volume descriptor can be computed using
voxel grid techniques. The drawback of this method is that
the grid distribution is highly dependent on mesh quality.
The other technique is to directly compute the multiscale
integral volume descriptor at each scale by using the
relation of mean curvature Hr. The problem is to estimate
the mean curvature of the bounded surface domain D, when
the surface is represented as a triangular mesh. The
proposed solution to the estimation problem is presented
in the following section.

2.4 Feature selection

In most scanning applications, the input data is too large for
the matching process. Therefore, a subset of points
(features) is extracted from the scanned model, mainly
from salient or unique areas of the scanned model. Then, a
simple and fast registration algorithm can be applied on
those features. In this work, feature selection is based on
analyzing the distribution of geometric shape descriptors.
The features are those vertices whose descriptor values are
not common, over consecutive scales. The result is only a
few corresponding points in the CAD model. It is sufficient,
since a rigid transform can be determined by small number
of points. The performance of the feature extraction method
is depended on the sample density. For a denser sampled
point cloud, the features are extracted more accurately.

Unfortunately, a dense point cloud is often acquired at the
expense of sample performance.

2.5 Correspondence search

Once the feature points are extracted, the discrete matching
process is straightforward. Given a set of features extracted
from the scanned data, a set of best corresponding points
are found on the CAD model. The matching is based on
comparing the volume descriptor values over consecutive
scales of both scanned and CAD models. Then, the optimal
sub set of corresponding points are selected. The verifica-
tion algorithm is based on a distance comparison between
triplets of points from both models.

2.6 Registration

Once the optimal correspondence set is determined, the
models can be aligned. Two types of pairwise registrations
are applied, global and local alignment. Global registration:
Starting from an arbitrary initial position of the scanned and
CAD models, the coarse alignment is defined. The global
registration algorithm is based on finding a transformation
that best aligns two models. The transformation may be
computed based only the best triplet of features selected
from the scanned and CAD models. Local registration:
After the coarse alignment, a small number of iterations of
standard ICP with point-to-point error metric are applied,
thus bringing the models into high accurate alignment. In
addition, to achieve high accuracy and robustness to noise,
the verification may be based on the volume descriptor
analysis. Our algorithm is able to align fully and partially
scanned parts with the CAD model, and is robust with
respect to noisy data. The algorithm works well in the
presence of strong point-like features. The implementation
of the proposed approach is presented in the following
section.

3 The implementation

In industrial applications, real-time data processing plays a
crucial role. Therefore, implementation must be fast and
efficient. This study has been implemented in C++ with the
OpenGL graphic library.

3.1 The data structure

The data structure chosen for this research handles
triangulated meshes. One of the requirements of this data
structure is that it must be fast created, and the curvature
algorithms must have direct access to the mesh vertices and
their neighbors. The data structure that fulfills theseFig. 5 Mapping of an object according to the integral volume descriptor
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requirements is the mesh data structure, composed of
vertices and faces. In the input data, the connectivity
between vertices and faces is not defined explicitly.
Therefore, connectivity is determined. As a result, a one-
ring neighborhood structure is created. This bidirectional
connectivity is crucial to enable fast computation [23]. The
presented data structure includes properties of mean
curvature and multishape descriptor per vertex. However,
this data structure has high space complexity, still can be
handled in PC.

3.2 Mean curvature estimation over an n-ring neighborhood

The dihedral angle is defined as the angle between two
faces that share a common edge. It is used in estimating the
angle-based mean curvature (Section 2.1). The algorithm
calculates the curvature in a one-ring neighborhood. is very
fast; it runs in seconds for thousands of vertices and has
linear time complexity of O(m) per vertex, where m is the
number of neighbors. The n-ring neighborhood per vertex
relies on the surface domain (see Section 2.2). Figure 6
shows the one-ring (green points) neighbors and vertices
from the extended neighborhood (brown points) bounded
by the current integration kernel ball (blue circle) around a
given central vertex (red point). Calculating the mean
curvature over the extended neighborhood consists of two
stages: First, construction of an extended neighborhood
structure is defined. Then, the mean curvature is calculated.

An extended neighborhood structure is a map of vertices
around a given vertex which are located inside a given
sphere with radius (kernel) rk. Since the radius depends on
the current scale of the integral volume descriptor
(Section 2.3), a separate map at each scale k is calculated.
In other words, an extended neighborhood structure is a
multimap with scale k. Each vertex in the map is set with
the exact geodesic distance from the given vertex. The
proposed algorithm for building an extended neighborhood

structure is based on the fast marchingmethod [21] adapted to
our approach. Map is a data structure, implemented through
the balanced tree, where each value is located according to
its particular key. The extended neighborhood structure is
built such that each vertex has a geodesic distance from the
given central vertex at different scales of the integral volume
descriptor. The algorithm is very efficient and has the
complexity of O(logn) for every vertex, where n is the
number of neighbors in the extended neighborhood.

3.3 Integral volume descriptor computation

An integral volume descriptor is a discrete multiscale
parameter-based curvature on local neighborhoods that
makes it possible to deal with noisy data and to obtain
invariants on multiple scales without any change of the
given geometry. The local neighborhoods are defined via
balls or spheres, whose radius defines the scale. A
descriptor is a vector that is assigned to each vertex of
both input models and computed as follows:

1. For a given vertex vi estimate the mean curvatureeHk við Þ over an extended neighborhood at each scale k
according to Section 2.2.

2. Substitute the mean curvature eHk and integration radius
rk with respect to the scale into equation:

Vk við Þ ¼ 1

2
� 3

16
eHk við Þ � rk ð11Þ

Repeat steps 1–2 for each vertex of both input models.
The scale k (k=6 in our implementation) over which the

descriptor is computed, and the maximal radius rmax of the
integration kernel are controlled by the user. The radius is
sampled at discrete intervals by dividing the maximal radius
rmax into k. The maximal radius rmax is usually set to 0.1
Lmax, where Lmax is a maximal diagonal length of the model.

3.4 Feature selection

Feature selection focuses on picking a small set of points on
the scanned data to simplify further identification of
corresponding points on the CAD model. The selection
process is based on analyzing the volume descriptors
computed for each point of the scanned shape. The
descriptor can be of any dimension. We use this multiscale
property for finding and selecting the unique data points
with uncommon descriptor values. A point is selected as a
potential feature if its descriptor value is rare among all
descriptors computed for the data set. The rare values are
defined by the threshold. Most shapes contain these rare
values at different scales, so we do not expect a point to be
a feature over the entire scale space of the descriptor. From

Fig. 6 a Extended neighborhood of vertex vi and schematic geodesic
distance to neighbor vj. b First and extended neighborhoods around
given vertex

Int J Adv Manuf Technol (2010) 49:1093–1106 1099



the set of potential features, we select as a feature a point
whose descriptor value is rare over a set of at least k/3
consecutive kernel radii of the volume descriptor, where k
is a scale of the descriptor. In this case, the outliers may
resemble features for some radii but are not persistent.

Let Vk(pi) be the integral volume descriptor assigned at each
shape point with some value at each scale k. Here, we present
an algorithm based only on one dimension of the descriptor.
Feature selection for any other dimension can be implemented
similarly. The feature selection proceeds as follows:

1. Compute a histogram of descriptor values, f(pi) for all
points in P. The bins width hn in the histogram is
computed using Scott's rule:

hn ¼ 3:49 s n�
1
3 ð12Þ

where σ is the standard deviation of the nth descriptor
values [24].

The σ is calculated by the following formula:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

xi � xð Þ2
vuut ð13Þ

2. To select features, the least populated bins of the
histogram is identified, such that the total number of
points in these bins is smaller than a given maximum
threshold s. In our implementation s=0:0.02n (n is a
number of points in the model).

3. Since nearby points are likely to belong to the same
feature, we want to prevent the algorithm from picking
points that are too close to each other. Enforcing the
minimal separation distance between the feature points
also results in more stable configurations in the
correspondence search stage of the algorithm.

Threshold s controls the number of selected features
and ensures their sufficiency. A relatively small number of
selected features enable fast and efficient matching.
Figure 6 illustrates the feature points picked on the
blade model by using the proposed feature selection
algorithm.

3.5 Correspondence search

After features were selected, we search for optimal
correspondence to the points in the CAD model. The
search process includes two main steps: (1) identifica-
tion of a potential corresponding set and (2) verification
for an optimal corresponding set. The identification of
corresponding points is based on matching the descrip-
tors values over all consecutive scales between both
input shapes. As a result, for each feature point of the
scanned data, we obtain a set of potential corresponding
points on the CAD model. Given is a set of n feature
points picked on the scanned inspected model. Figure 7
illustrates the selected feature on the scanned inspected
model and its potential corresponding set on the CAD
model.

Since the number of the resulting potential corresponding
points is still too large and not all of them are correct, we
apply a verification algorithm to obtain the optimal corre-
spondence set. The main idea of the algorithm is to identify
equal triangles formed by triplets of points from each data
set. As a result, the number of corresponding points at each
feature point is significantly reduced. However, this set is not
final and will still include incompatible corresponding points
caused by symmetric identical shapes. The final verification
of the corresponding sets is accomplished in the global
registration stage. The overall identification time is depen-
dent on the number of feature and their corresponding points
in the data sets.

Fig. 7 a Selected feature points.
b Potential corresponding
features
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3.6 Registration

Once the optimal correspondence set has been built, the
arbitrary positioned input shapes can be aligned globally
and locally.

3.6.1 Global registration

Starting from arbitrary initial positions of the inspected
shape, we first look for a possible coarse alignment. Two
3D shapes can be aligned by mapping three noncollinear
features of the inspected shape on their corresponding
points from the CAD model. However, different triplets of
features may yield various transformations. Therefore,
incompatible corresponding points should be detected. For
each triplet of features of the scanned model, the following
algorithm is applied:

1. Calculate a transformation that maps a given triplet of
features onto each triplet of their corresponding points
from the CAD model.

2. For each calculated transformation, find the alignment
error according to the following equation:

e ¼ 1

nk

Xn
i¼1

Xk
j¼1

d2 Rpi þ t; qsij

� �
ð14Þ

where:

& n is the total number of selected features
& pi is the current selected feature
& k is the total number of corresponding points to a

given feature in the corresponding set
& qsij is the current point from the corresponding set

3. Select the transformation that has minimal alignment
error and keep its corresponding point triplet. Remove
the other corresponding points from the set.

4. Repeat steps 1–3 for all other triplets of features.
5. Select the best transformation over all triplets of

features that bring two shapes close and have minimal
alignment error.

(a) 
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Fig. 8 Mean curvature map on
a synthetic mechanical part
using angle-based method with
mean curvature histogram. a
The CAD model. b Scanned
noisy part
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As a result of this stage, we obtain optimal transformation
parameters and the final corresponding set on the CADmodel.

3.6.2 Local registration

After the coarse alignment, a small number of iterations of
standard ICP with point-to-point error metric are applied,
bringing the shapes into exact alignment. ICP transforma-

tion T=(R,t) is initialized relative to the result of the global
registration stage and using the final correspondence data
sets. The following steps are iterated until the change in
pose becomes very small:

1. Using the correspondence data, compute the transfor-
mation T that minimizes the mean square error of Eq. 5.

2. Apply this transformation on the inspected shape.
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Fig. 9 The integral volume descriptor map and the histogram of the (a) designed part and (b) scanned data
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3. Repeat steps 1–2 until the change in mean square error
falls below the desired registration precision:

eh þ ehþ1 < " ð15Þ
where ε is the threshold, and h is the number of the current
iteration.

In the verification process, volume descriptors of
corresponding shapes are verified. As a result, the noncon-
gruent regions between the two parts are emphasized, and
the defects can be detected visually.

4 Examples and performance analysis

This chapter discusses the results and performance of
several examples at several stages of the algorithm. Our
algorithm has been tested on noisy synthetic models. The
assumption underlying this work is that scanning noise can
be represented by a Gaussian noise with a deviation of a

scanned surface point along the normal direction. The
original synthetic models were corrupted with additive
Gaussian noise with zero mean: f � N 0; s2ð Þ, where σ2 is
the variance. All tests were performed on a PC Pentium 4,
with 2.8 GHz and 512 MB of memory. The following
scheme illustrates the model processing at each stage of the
proposed algorithm.

4.1 Applying angle-based method

In this section, the results of the angle-based method are
provided for mean curvature estimation. One model
represents a CAD model (Fig. 8a), and the other model
represents the scanned detail with Gaussian noise of ±2%
added along the normal direction (Fig. 8b). As seen in the
above figure, noise significantly affects the value of the
mean curvature. The mean curvature of the original part is
uniformly distributed, as indicated by the homogeneous
colors and the narrow histogram. On the other hand, for the
scanned part the mean curvature is nonuniformly distribut-
ed, as shown in the nonhomogeneous colors and the wide
histogram. The main conclusion from this section is that
registration cannot be based on mean curvature alone.

4.2 Applying feature mapping

In this stage, the integral volume descriptor is computed for
each vertex at six different scales (k=1:6). The resulting
descriptor map is presented in Fig. 9, where the unique
shapes are colored according to frequency of their descrip-
tor values at each scale. The red/blue regions represent the
most unique shapes of the model. The common shapes,
whose vertices belong to the bins of the histogram with a
number of points ranging from 0.02n to 0.04n, are colored
in yellow/pale blue according to the sign of the descriptor.

Fig. 10 Similarity of several unique regions between the CAD model
(left) and the scanned data (right) at scale k=1

Fig. 11 Features selected on the
scanned data with (a) Rs=0 and
(b) Rs=0.03rmax. c The
corresponding points on the
CAD model
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The scales in Fig. 9 increase from left to right, i.e., the map
in the left column presents the smallest descriptor scale, and
the map in the right column presents the biggest descriptor
scale.

As seen from the above figure, the advantage of the
integral volume descriptor is its robustness to noise.
Persistent unique regions appear over different scales of
each model. Based on these persistent unique regions, we
can select features. Furthermore, we can easily identify the
similarity in the detected unique regions of the input models
at the same scale, despite the presence of noise. Figure 10
illustrates the similarity between several unique regions in
the input models at scale k=1.

4.3 Applying matching

The matching stage includes three main steps: feature
selection on the scanned data; finding potential
corresponding points on the CAD model; finding optimal
corresponding points on the CAD model. All vertices that

have unique descriptor values over at least five scales are
selected (see Fig. 11a). For each feature, one representative
point is selected. For a given vertex, all neighbors that fall
into a circle of radius Rs around the given vertex are marked
and cannot be selected (see Fig. 11b). This leads to more
stable results in the correspondence search stage.

After selecting features on the scanned data, we identify
their corresponding points on the CAD model. Matching is
based on comparing integral volume descriptor values over
a set of at least five scales (Fig. 12). The matching data
between separated pairs of some correspondences are
presented in Fig. 13. As seen in the figure, there is
significant error in the mean curvature between the
correspondences (marked near the selected vertex). Such
error in mean curvature results from the presence of
significant noise. However, the error in the integral volume
descriptor (see the graph) between the input shapes is not
more than 2% except in rare instances, despite the noise.
Since we want to ensure that true correspondences are
found, a comparison threshold is determined (s=2%). As a

(a) 

(b) 

(c) 

Fig. 12 Matching data between
free correspondences
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result, for each feature on the scanned data a set of potential
corresponding points is obtained on the CAD model. Then,
the set of optimal corresponding points are detected, and
false feature points are eliminated (Fig. 13b).

4.4 Applying registration and alignment

First, we apply global registration by finding the best
transformation between triplets of correspondences. The
global registration brings two input models into coarse
alignment (Fig. 13c). After the coarse alignment, the
standard ICP with point-to-point error metric is applied
iteratively, bringing the models into fine alignment
(Fig. 13d). ICP is initialized relative to the global
registration.

4.5 Performance analysis

We have applied our algorithm pipeline to a CAD model of a
blade. We align the model to a copy of itself which has been
corrupted by zero mean Gaussian noise. The input models
were initialized at an arbitrary orientation and position. The
input models size—7,241 vertices, the running time—24.1 s,
the number of features selected on scanned data—18, the
number of potential corresponding points detected on the
scanned model—214, the number of optimal corresponding
points detected on the CAD model—18, the global registra-
tion error—1.3 (distance2), and local registration error—
0.019 distance2. Table 1 summarizes the time complexity
for phases of the presented algorithm. The size parameters
are: n—model size (number of vertices); e—maximal
number of vertices in an extended neighborhood; f—
number of features selected on the scanned data; cp—size
of the potential feature corresponding set; i—number of
iterations to achieve desired convergence. Summing it all

up, we conclude that the time complexity of the overall
algorithm is bounded from above by O n � e � log eð Þ.

5 Conclusions

This work has proposed a method for automatic feature-
based registration and alignment of two 3D freeform
shapes, one from the scanned data and the other from the
CAD model. The scanned manufactured part usually
includes defects and distortions. The method makes no
assumptions about their initial positions. The proposed
algorithm uses a multiscale shape descriptor to select
features on the scanned data and identify their
corresponding features on the CAD model. The proposed
shape descriptor depends on the mean curvature, is
invariant with respect to local shapes, and is robust to
noise. A coarse alignment is computed by finding and
registering the best matching triplet of features. This
resulting coarse alignment is used by the ICP algorithm to
achieve a tuned alignment. The proposed method is

Table 1 The time complexity of the proposed algorithm

Phase Time

Angle-based method O(n)

Integral volume descriptor computation O n � e � log eð Þ
Feature selection O(n)

Potential corresponding set identification O n � fð Þ
Optimal corresponding set identification O f 3 � cp

� �
Global registration O(f 4)

Local registration O f � ið Þ
Total O n � e � log eð Þ

Fig. 13 a Features selected on the scanned data. b Potential corresponding features on the CAD model. c The global registration. d The local
alignment
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automatic, efficient, and straightforward to implement. The
algorithm can also be effective in the case of partial scanned
inspected shapes. The feasibility of the proposed method is
demonstrated on a number of freeform engineering and
medical models. The proposed method has the following
limitations: An important factor affecting the performance of
our selection method is the density of the sample. For denser
scanning, the features are extracted more accurately. The
algorithm works partially on weak point-like features of the
scanned model.
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