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Abstract This paper addresses a new mathematical model
for cellular manufacturing problem integrated with group
scheduling in an uncertain space. This model optimizes cell
formation and scheduling decisions, concurrently. It is
assumed that processing time of parts on machines is
stochastic and described by discrete scenarios enhances
application of real assumptions in analytical process. This
model aims to minimize total expected cost consisting
maximum tardiness cost among all parts, cost of subcon-
tracting for exceptional elements and the cost of resource
underutilization. Scheduling problem in a cellular manu-
facturing environment is treated as group scheduling
problem, which assumes that all parts in a part family are
processed in the same cell and no inter-cellular transfer is
needed. Finally, the nonlinear model will be transformed to
a linear form in order to solve it for optimality. To solve
such a stochastic model, an efficient hybrid method based
on new combination of genetic algorithm (GA), simulated
annealing (SA) algorithm, and an optimization rule will be
proposed where SA and optimization rule are subordinate
parts of GA under a self-learning rule criterion. Also,
performance and robustness of the algorithm will be
verified through some test problems against branch and
bound and a heuristic procedure.

Keywords Cellular manufacturing . Uncertainty modeling .

Stochastic processing time . Hybrid genetic algorithm .
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1 Introduction

Group technology (GT) is a management theory that aims
to group products with similar process or manufacturing
characteristics, or both. Cellular manufacturing (CM) can
be proposed as a practical application of GT that determines
groups of machines based on similarity of the parts
processed by them. The basic purpose of CM is to identify
machine cells and part families concurrently and to assign
part families to machine cells in order to minimize the
intercellular and intracellular costs of parts [1]. Scheduling
jobs in individual cells is an operational feature that should
be determined at the design stage. Because design stages
are so difficult, however, integrating scheduling decisions
with CF decision is often seen as just a more complication.

This review focuses on the uncertain studies that are
relevant to the uncertainty planning of cellular manufactur-
ing system (CMS) problems; however, a survey of certain
conditions will be presented.

The literature on the design of cellular manufacturing
system is quite extensive in certain and determined
situations. Past researches in studying CMSs design and
implementation have been predominantly focused on
the CF decision in certain conditions. In the context of the
research reported here, research work dealing with the
uncertainty aspects of CMS design is presented.

A majority of cases studied CMS problem in uncertain
situations can be classified into three branches: (1) fuzzy
approach, (2) stochastic optimization, and (3) heuristic
procedures. The most common planning approach devel-
oped to resolve uncertainty in CMS problems can be
introduced as fuzzy approach with many researches
proposed previously. Papaioannou and Wilson [2] proposed
CMS problems analysis where coefficients in objective
function and constraints are considered as fuzzy coeffi-
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cients. Also, in an interesting research, Hentschel et al. [3]
introduced a cellular recycling system in which processing
time for parts due to fluctuation of products usage are
uncertain and described by fuzzy parameters. Shanker and
Vrat [4] in order to forecast future variations applied fuzzy
approach in formulation process. Szwarc et al. [5] considered
uncertainty in machines’ capacity located in cells. In this
way, in CMS problem, capacity of machines is uncertain and
is resolved by fuzzy approach. Ravichandran and Chandra
Sekhara Rao [6] regarded as fuzzy uncertainty in part-
machine matrix. Based on this research, a new similarity
coefficient matrix is defined with 0 to one elements.

Although stochastic programming (SP) is applicable in
many areas in production planning, but in CMS problem,
this approach is usually applied just for handling changes in
demand while many other factors can be stochastic. Some
researches deal with aggregated CMS problem with tactical
decisions such as production planning where demand of
products is stochastic are handled [7, 8]. Also, some studies
such as [9] made layout decisions concurrently with CMS
where demand was stochastic. Many contents are also
focused on CMS problem in dynamic situations and
stochastic demand in which demand is changed from a
period to another period [10, 11]. Yang and Deane [12]
presented a formulation in which set-up time was considered
as a part of processing time. The aim of this problem was to
decrease set-up time. In this study, since amount of set-up
time decreased was uncertain, and then total processing time
was uncertain, too. In order to analysis this problem they
proposed a M/G/1 queuing model for the manufacturing
framework. Another aspect which is considered stochastic in
the literature is machines’ availability during production
plan. Some researchers considered CMS problem as a
probabilistic programming in which the time between two
sequence failures follows exponential distribution [13, 14].
Finally, Markov chain and queuing theory were applied to
handle uncertainty in machines’ availability [15, 16].

In the last branch, some studies have been developed to
define heuristic methods of solving aggregated CMS
problem in uncertain situations such as [10, 17]. In some
cases, heuristic algorithms considering uncertainty in
processing time are proposed by Asgharpour and Javadian
[18] and Andres et al. [19].

Literature survey in certain conditions can be described as
follows. There exist many researches in certain situations for
designing CMS in different areas such as cell formation
integrated with scheduling (Taylor and Ham [20], Logendran
and Nudtasomboon [21], Solimanpur et al. [22], Aneja and
Kamoun [23], Lockwood et al. [24]), considering exceptional
elements in CF (Tsai et al. [25], Vakharia and Kaku [26],
Mahdavi et al. [27]), some works apply meta-heuristics and
heuristics to solve large scale problems are more practical
and appealing real-case problems (Xiaodan Wu et al. [28],

Venkataramanaiah [29], Sridhar and Rajendran, [30], Mah-
moodi and Martin [31]).

Saad [32] proposed an integrated approach to redesign
CM system considering emphasis on redesign aspects. His
approach used simulation based on scheduling module.

Panchalavarapu and Chankong [33] formulated a version
of CMS problem as a nonlinear programming incorporating
with assembly considerations. The goal of their model was
to determine assignment of parts, machines and in addition,
subassemblies to manufacturing cells.

Table 1 points up summery of the literature reports.
In practice, costs, demands, processing times [3, 14, 34],

set-up times, and the other inputs to classical CMS
problems may be highly uncertain so that it can have
impact on results sensitively. So, development models for
cellular manufacturing problem under uncertainty can be
novel area for researchers and belongs to a relatively new
class of CMS and scheduling problems that were not
researched well in the literature. In this way, random
parameters can be either continues or described by discrete
scenarios. If probability information is known, uncertainty
is described using a (discrete or continuous) probability
distribution on the parameters, otherwise, continuous
parameters are normally limited to lie in some predeter-
mined intervals. Scenario-based planning is an approach in
which uncertainty is captured by determining a number of
possible future states by decision makers. The goal is to
find solutions which perform well under all scenarios [35].

Uncertainty in processing time can be applied for many real
applications in advanced manufacturing systems and also
described discrete or continues form based on the properties of
the application and case study. For example, it may be
possible that design of parts is changed during production
process (postdesign definition [36]). So, these changes can
vary design aspects and finally can fluctuate processing time
in production plan. The main point is that these changes in
design of parts are not certain events in the future. So, in
order to design cellular manufacturing effectively changes
must be predicted as some discrete scenarios at the beginning
of the planning phase. Hence, in industries such as
automobile manufacturing, this formulation can be applied.
On the other hand, in some cases such as condition-based
maintenance for a system where after each inspection based
on the degree of deterioration maintenance is performed, the
time needed for maintenance is uncertain [14]. Also, in an
interesting research, Hentschel et al. [3] introduced a cellular
recycling system in which processing time for parts due to
fluctuation of products usage are uncertain and described by
fuzzy parameters. Three last cases illustrate situations in
which processing time is uncertain, and therefore, our
decision process can be applied in real-world conditions.

In any SP problem using uncertain parameters, one must
decide which decision variables are first stage and which
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are second stage; that is, which variables must be set now
and which may be set after the uncertainty has been
resolved [34, 37]. In other words, which variables should
be set at the beginning of the planning period and which of
them must be set after uncertainty is realized. In stochastic
CMS problem which we are interested, CF decisions must
be made now (design variable), before it is known which
scenario will come to pass due to its strategic impact, while
scheduling decisions are determined in future after uncer-
tainty has been realized (control variable).

This paper introduces a new mathematical model to
design cellular manufacturing systems under uncertainty
which is described by discrete scenarios, each with a
specified probability of occurrence. In this model, total cost
consists of expected maximum tardiness cost among parts,
subcontracting and outsourcing costs for exceptional ele-
ments and underutilization costs. This model can trade off
between subcontracting costs and scheduling costs for each
operation of parts in order to determine cells of machines and

part families. In other words, each operation for a part can be
considered either to be outsourced, therefore, we pay
subcontracting cost for it and so, it needn’t to be reconsidered
in group scheduling or it can be processed in cells and we
should pay scheduling costs. We call this model as the
stochastic cell formation problem (SCFP).

2 Model formulation

In this section, we describe a new mathematical model for
SCFP which we are interested. It is assumed that processing
time of parts on machines is uncertain and is described by
discrete scenarios. We have a set of scenarios; each of them
occurred with probability ps. Due to having multiscenarios
in the problem, we must have group scheduling for cells in
each scenario which is based on processing time of the
parts. In this formulation, we minimize total expected cost,
included expected maximum tardiness costs among parts,

Table 1 Summery of the literature survey results

Reference Year Condition Decision

Papaioannoua and Wilson [2] 2008 Fuzzy Uncertainty in coefficients

Hentschel et al. [3] 1995 Fuzzy Uncertainty in processing time

Shanker and Vrat [4] 1999 Fuzzy Uncertainty in forecasting future variations

Szwarc et al. [5] 1997 Fuzzy Uncertainty in machines’ capacity

Ravichandran and Chandra Sekhara Rao [6] 2001 Fuzzy Uncertainty in part-machine matrix

Song et al. [7] 1991 Stochastic Uncertainty in demand of products

Hurley and Clay Whybark [8] 1999 Stochastic Uncertainty in demand of products

Balakrishnan and Cheng [10] 2005 Stochastic Uncertainty in dynamic demands

Balakrishnan and Cheng [11] 2007 Stochastic Uncertainty in dynamic demands

Yang and Deane [12] 1993 Stochastic Uncertainty in processing time

Kuroda and Tomita [13] 2005 Stochastic Uncertainty in machines’ availability

Hosseini [14] 2000 Stochastic Uncertainty in machines’ availability

Balakrishnan and Cheng [10] 2005 Uncertain Heuristic approaches

Asgharpour and Javadian [17] 2004 Uncertain Heuristic approaches

Sun and Yih [18] 1996 Uncertain Heuristic approaches

Andres et al. [19] 2007 Uncertain Heuristic approaches

Taylor and Ham [20] 1981 Uncertain CF + GS

Logendram and Nudtasomboon [21] 1991 Certain CF + GS

Solimanpur et al. [22] 2004 Certain CF + GS

Lockwood et al. [24] 2000 Certain CF + scheduling

Aneja and Kamoun [23] 1999 Certain CF + GS

Tsai et al. [25] 1997 Certain CF + EE

Vakharai and Kaku [26] 1993 Certain CF + EE

Mahdavi et al. [27] 2008 Certain CF + EE

Xiaodan Wu et al. [28] 2006 Certain Meta-heuristics

Venkataramanaiah [29] 2007 Certain Heuristic approaches

Sridhar, J. and Rajendran [30] 1993 Certain Heuristic Approaches

Mahmoodi and Martin [31] 1997 Certain Heuristic approaches
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total cost of subcontracting costs for outsourcing excep-
tional elements, and the cost of resource underutilization
that occurred when the parts, which have no need to be
operated on a machine, were placed together in a same cell.

We consider the following assumptions in scheduling a
problem:

1. All parts are available to process at the beginning of the
planning period.

2. Due date of each part is determined and certain events.
3. While an operation starts on a machine, it cannot be

interrupted before completion of the process.
4. Set-up time for parts is sequence independent and is

considered as a portion of the processing time.
5. Machines are available during the planning period and

they are not failing.

We consider the following assumptions in a cell
formation phase:

1. Processing time for each part on each machine is
stochastic and described by set of discrete scenarios
where probability of occurring each scenarios is ps.

2. Each part has a number of operations which is
determined by machine-part matrix.

3. Cost of subcontracting and underutilization is known
and deterministic.

4. Under utilization, cost will occur if machines will have
low similarity located in a same cell.

2.1 Notation

Indexes

i Part index
j Machine index
k Cell index
s Scenario index

Parameters

aij ¼ 1 If part i require to be processed on machine j:
0 Otherwise:

�

ci Penalty cost of subcontracting for part i.
uij Cost part i not utilizing machine j.
Mmax Maximum number of machines permitted in a cell.
Cu Maximum number of cells permitted.
ps Probability of scenario s occurs.
tijs Processing time for part i on machine j in scenario s.
DDi Due Date of part i.
pc Penalty cost for unit time delayed.

Decision variables

xik ¼ 1 If part i processed in cell k:
0 Otherwise:

:

�

yjk ¼ 1 If machine j assigned to cell k:
0 Otherwise:

:

�

Zis[r] ¼ 1 If part i assigned to sequence r½ � in scenario s:
0 Otherwise:

:

�

F[r]ks The time in which process of part with sequence
[r] ends in cell k and scenario s.

FD[r]ks Due date of part with sequence [r] in cell k in
scenario s.

L[r]ks Tardiness of part with sequence [r] in cell k in
scenario s.

MLs Maximum tardiness occurred in scenario s.
Diks Total processing times of part i needs to be

processed in cell k and scenario s.
T[r]ks Total processing times of a part with sequence [r]

assigned to cell k in scenario s.

CF decisions are scenario independent—they must be
made before occurring scenarios and, they are made based
on similarity in processing parts and are independent to
quantity of processing time. Scheduling decisions are
scenario dependent, thus Z, D, T, FD, L, ML, and F
variables are indexed by scenario since they should be
made after we realized scenario and which processing time
is occurred.

2.2 Model description

Minimize Z ¼P
s
pc� ps �MLsþ

P
k

P
j

P
i
ciaijxik 1� yjk

� �

þP
k

P
j

P
i
uij 1� aij
� �

xikyjk
ð1Þ

Subject to:X
k

xik ¼ 1 8i ð2Þ

X
k

yjk ¼ 1 8j ð3Þ

X
r

Zis r½ � ¼ 1 8i; s ð4Þ

X
i

xikZis; rþ1½ � �
X
i

XikZis r½ � 8k; s; r ð5Þ

Diks ¼
X
j

aijtijsxikyjk 8i; k; s ð6Þ
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X
i

xikZis r½ � � 1 8r; s; k ð7Þ

T r½ �ks ¼
X
i

Zis r½ �Diks 8k; s; r ð8Þ

F r½ �ks ¼
X
r¼1

Xr

a¼1

Taks 8k; s; r ð9Þ

FD r½ �ks ¼
X
i

xik � Zis r½ � � DDi 8k; s; r ð10Þ

L r½ �ks ¼ max 0;F r½ �ks � FD r½ �ks
� � 8k; s; r ð11Þ

MLs ¼ max L r½ �ks : k ¼ 1; . . . ;C and r½ � ¼ 1; . . . ;P
� � 8s

ð12Þ

X
j

yjk � Mmax 8k ð13Þ

xik ; yjk ; Zisr � 0:1ð Þ ð14Þ

Diks; Trks; Frks; FDrks � 0 ð15Þ

The objective function (1) minimizes total cost made of
expected tardiness cost of parts in all scansions, subcon-
tracting cost as well as the cost of resource underutilization.
Set constraint (2) says that each part must be assigned to a
single cell. Set constraint (3) states that each machine can
be assigned only to one cell. Set constraint (4) ensures that
each part in each scenario must be assigned to a unique
sequence. Set constraint (5) indicates that in each cell and
each scenario parts must be ordered sequential (for example,
if part ‘a’ is assigned to sequence 1, next part must be
assigned to sequence 2). Set constraint (6) computes total
processing time of part i in cell k in scenario s. Diks variable
gets non-zero value when part i needs to be processed on
machine j and both of them assigned to same cell. (Note
that, this variable will be zero for the other cells which part
is not assigned to them). Set constraint (7) guarantees that
in each cell at most one part can be assigned to each
sequence. Set constraint (8) computes total processing time
of a part with sequence [r] assigned to cell k in scenario s.
Set constraint (9) computes total flow time (or the time in
which all process are completed) of a part assigned to
sequence [r] in cell k in scenario s. Since in group

scheduling definition processing time of all operations for
each part are summed to make a single process (in other
words, for each part all operations are assumed to be grouped
into a single operation), so process of a part with sequence [r]
cannot be started unless grouped operation (or all operations)
of a part with sequence [r-1] is finished. Thus, a part with
sequence [r] has to wait in a cell (flow time) until all
operations of parts with sequence [1] to [r] are completed.
Set constraint (10) computes due date of a part assigned to
sequence [r] in cell k in scenario s. set constraint (11)
computes tardiness of parts in cells. Set constraint (12)
specifies maximum tardiness per each scenario among all
cells and parts. Set constraint (13) specifies maximum
number of machines allowed in any cell. Set constraints
(14) and (15) determine type of variables.

2.3 Linearization of the proposed model

Unfortunately, the proposed model is nonlinear, and
nonlinear models are usually much harder to solve for
optimality than linear models. We reformulate the model as
a mixed-integer linear programming model by introducing
new sets of variables. In this way, different types of
nonlinear terms are appeared in formulation. In some terms
such as objective function, set constraints (5), (6), (7), and
(10), and (10) there are two binary variables which are
multiplied (this problem is defined by quadratic 0–1
problem). In other cases such as set constraint (8), a
continuous variable is multiplied to a binary variable (this
problem in defined in the literature as mixed 0 to one
quadratic problem). Also, set constraints (11) and (12) are
nonlinear too. In each case, different approach will be
applied to linearization.

2.3.1 Linearization quadratic 0-1 problem

Given a quadratic 0-1 term z ¼ x1 � x2 where x1, x2 are
binary variables. This term forces that z must be 0 if and
only if at least one x gets 0. On the other hand, z must be 1
if and only if both variables get 1. This term can be
transformed to a set of linear auxiliary constraints. Based on
this transformation, the original 0 to one quadratic program
can then be solved directly by the branch-and-bound
method. This nonlinearity is appeared in set constraints
(5), (6), (7), and (10). To linearize this term applied
auxiliary constraints are as follows:

z ¼ x1 � x2 ,
z � x1
z � x2
z � x1 þ x2 � 1

:

8<
:

Proof) Glover [38].
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2.3.2 Linearization quadratic mixed 0 to one problem

Given a quadratic mixed 0 to one term z ¼ x� y where x is
a binary variable and y is a continuous variable with upper
bound units. This term can be transformed to a set of linear
auxiliary constraints. Based on this transformation, the
original mixed 0 to one quadratic program can then be
solved directly by the branch-and-bound method. This
nonlinear term is appeared in set constraint (8). To linearize
this term applied auxiliary constraints are as follows:

z ¼ x� y ,
z � y
z � U � x
z � y� U 1� xð Þ

:

8<
:

The proof is proposed by [39].

2.3.3 Linearization Max {0, x}

In order to linearize such term as Max {0, x}, an additional
variable and two auxiliary constraints must be used to
replace with this term. Such nonlinear term is appeared in
set constraints (11) and (12). Linearization procedure is
performed as follows:

Minimize Z Minimize Z
ST : ) ST :
Z ¼ Max 0; xf g Z � 0

Z � x

2.3.4 Linear model

To linearize the proposed model, above techniques are
applied as follows:

& XKijk added to replace the xik and yjk (quadratic pure 0 to
one, technique 2.3.1 applied).

& XZiksr added instead of xik and Zisr (quadratic pure 0 to
one, technique 2.3.1 applied).

& ZDiksr added to replace with Zisr and Diks (quadratic
mixed 0 to one, technique 2.3.2 applied)

& Set constraints (11) and (12) will be linear employing
technique proposed in 2.3.3

Thus, final version of the linear model presents as follows:

Minimize Z ¼ P
s
pc� ps �MLs þ

P
k

P
j

P
i
ciaij xik � XYijk

� �

þP
k

P
j

P
i
uij 1� aij
� �

XYijk

ð14Þ

Subject to: unaltered set constraints (2)–(3)–(4)–(9)–
(11)–(12)–(13)

Set constraint (5) changes as:

XZiks; rþ1½ � � XZiks r½ � 8i; k; s; r ð15Þ

XZiks r½ � � xik 8i; k; s; r ð16Þ

XZiks r½ � � Zis r½ � 8i; k; s; r ð17Þ

xik þ Zis r½ � � XZiks r½ � � 1 8i; k; s; r ð18Þ

Set constraint (6) changes as:

Diks ¼
X
j

aijtijsXYijk 8i; k; s ð20Þ

XYijk � xik 8i; k; j ð21Þ

XYijk � yjk 8i; k; j ð22Þ

xik þ yjk � XYijk � 1 8i; k; j ð23Þ

Set constraint (7) changes as:X
i

XZiks r½ � � 1 8r; s; k ð24Þ

Set constraint (8) changes as:

T r½ �ks ¼
X
i

ZDiks r½ � 8k; s; r ð25Þ

ZDiks r½ � � Diks 8i; k; s; r ð26Þ

ZDiks r½ � � M � Zis r½ � 8i; k; s; r ð27Þ

ZDiks r½ � � Diks �M 1� Zis r½ �
� � 8i; k; s; r ð28Þ

Set constraint (10) changes as:

FD r½ �ks ¼
X
i

XZiks r½ � � DDi 8k; s; r ð29Þ

706 Int J Adv Manuf Technol (2010) 48:701–717



Set constraint (11) changes as:

L r½ �ks � F r½ �ks � FD r½ �ks 8r; k; s ð30Þ

Set constraint (12) changes as:

MLs � L r½ �ks 8r; k; s ð31Þ

L r½ �ks � 0 MLs � 0 ð32Þ

In the above linear model, new set constraints (21), (22),
and (23) guarantee linearization of xik × yjk, new set constraints
(16), (17), and (18) guarantee linearization of xik × Zisr. Also,
new set constraints (26), (27), and (28) guarantee lineariza-
tion of Zisr×Diks. Finally, new set constraints (30), (31), and
(32) guarantee linearization of constraints (11) and (12). The
other altered and no altered constraints are provided as
mentioned. Also, M is a positive large number.

3 Solution approach

It is known that cellular manufacturing problems are
nondeterministic polynomial-time (NP)-hard that cannot be
solved in reasonable computational time. In this paper, we
proposed a nonlinear and stochastic model for the cellular
manufacturing design integrated with scheduling. By know-
ing that, scheduling problem is extremely hard to optimally
solve in large sizes. Thus, we apply aggregation of genetic
algorithm and simulated annealing methods under an
optimization rule (earliest due date) and also a novel self-
learning rule (SLR) to achieve the best solutions for such
complicated model. In this way, employment of earliest due
date (EDD) rule, an optimization technique in scheduling
theory as a subordinate part of hybrid genetic algorithm
simplify decision making in scheduling phase. Also, em-
ployment of a novel self-learning rule intensifies efficiency
of the aggregation between genetic algorithm (GA) and
simulated annealing (SA). Generally, genetic algorithm
defines the main framework for this algorithm. Also, both
simulated annealing and EDD rule work as subordinate parts
of the genetic algorithm in order to improve performance of
the approach under a novel self-learning rule.

3.1 Optimization rule: earliest due date

Since scheduling our objective is to compute maximum
tardiness of parts in all cells and scenarios and try to
minimize it, an optimization method for scheduling is
considered as a subordinate part of hybrid method. This
rule is based on earliest due date technique approved by

theory of neighbor pairs and minimizes maximum tardiness
among all parts. This rule is applied as: in order to
minimize maximum tardiness among parts, sequence of
parts in each cell must be planned so that the part with the
earliest due date will be processed earlier.

Suppose that in a given solution, if n parts are assigned to
the same cell, a total situation for scheduling decisions is n!
where from this quantity only one of them is optimal for that
given assignment. Therefore, if scheduling is determined
randomly complete, the best solution in scheduling will be
found with probability of one/n!. So, if we apply EDD rule
to make decisions in scheduling phase, probability of
achieving the best solution in scheduling will increase from
one/n! to one. Consequently, having an effective algorithm to
solve combinational problem made, we employ EDD
method as a subprocedure of hybrid genetic algorithm.

3.2 A novel self-learning rule

In order to the better aggregation of GA and SA process and
improve quality of solutions, an SLR which is updated after
each generation is performed. In this criterion, a matrix is
defined as denoting the best elements in the best solutions
obtained so far. In other words, this criterion always remains
the best information about suboptimal solutions and then
notifies decision maker about solution space characteristics.
The introduced matrix should be updated when a new
population is completed. Thus, a parent is selected for further
process if only it has a high similarity with the defined matrix
among all parents. By this way, suitable elements in the best
solutions found up to now are identified and continued in the
next generation. The specific structure will be discussed in the
rest of the content.

3.3 Hybrid method

In this section, we describe an efficient hybrid method
based on genetic algorithm, simulated annealing, and EDD
rule under an SLR criterion. Applying metaheuristics
methods is one of the most common approaches which
can enables researchers to solve NP-hard problems in large-
sized cases and achieve suboptimal solutions. In this way,
genetic algorithm and simulated annealing are the most
popular approaches which have attracted researchers more
than the others. Thus, if GA and SA are combined in a
unique algorithm, a hybrid method with special advantages
which none of the previous algorithms does not have in all
of them will be simultaneously made. In order to combine
them, we employ SA as a subordinate part of GA instead of
mutation process. Thus, in GA process, to find the best
neighborhood solutions for each selected parent, SA
algorithm will produce a new child in population. Also, a
novel SLR mentioned earlier will be applied to increase
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efficiency of the aggregated method. Using such aggrega-
tion and utilizing rule, quality of solutions will be improved
significantly and the entire feasible solution will be
checked. Schema of this process is illustrated in Fig. 1,
which will then be describe in detail in the rest of the paper.

3.3.1 Chromosome structure

Each solution represents a feasible solution which consists of
a matrix divided in two parts. The first part of the matrix
consists of assignment arrays. The length of this array is equal
to: summation of the number of parts by the number of
machines. The assign array represents the assignments of the
parts and machines to cells. If part i is assigned to cell k, its
entry in the assign array has value k in node i. In addition, if
machine j is assigned to cell k, node (j + no. of parts) will get
one. The second part located below the first part consists of
integer elements. They represent the sequencing of each part
in each scenario in cells where the part was assigned.
Figure 2 illustrates a sample of the solution scheme.

3.3.2 Initial population

The first generation is created by initializing the population
of chromosomes, X k ¼ xki

� �
, k=1, 2, . . ., pop_size from the

feasible region ðX Þjgi xið Þ � 0; xi ¼ 1; 2; . . . ; nf g, random-
ly. Five steps will be performed to achieve each chromo-
some in initial population:

Step I: Assignment of machines

In this step, we assign machines to cells according to
capacity of cells. To do this procedure, for each machine, a
random number from one to number of cells is generated,
and a cell will be selected by chance. If the selected cell has
free capacity, then we assign the machine to it. Otherwise,
this step is repeated until a feasible solution is found.

Step II: Assignment of parts

In this step, we assign parts to cells, randomly. To perform
this, for each part, a random number from one to number of
cells is generated, and a part is assigned to the selected cell.

Step III: Based on mentioned EDD rule, scheduling
decisions will be determined. Thus, in each cell
a part which has an earliest due date has priority
and is processed earlier that leads to minimiza-
tion maximum tardiness for parts in all cells.

Step IV: Total processing time for each part in each
scenario in a cell assigned to it in previous step
is computed.

Initial Population

Run EDD Rule for all Initial Solutions

Parent Selection for Crossover operation

"A Novel Approach"

Employing EDD rule for New Childs

Updating Self-Learning Rule

Parent Selection for SA process

Based on High Self-Learning Index

Updating SLR

Selection for the next generation

Finding the best neighborhood solution

by performing SA process introducing in the follow

chart

Pool made of parents and new children

select a component

randomly

from system

if this is part?

change cell 

assignment

of the part
select randomly

a new cell for 

machine

if this cell

has free 

capacity?

change cell 

assignment

of the machine

Yes
No

Yes

No
Update scheduling

by EDD rule

Fig. 1 Structure of hybrid solution procedure
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Step V: Based on the previous step, total processing time
of a part with sequence [r] assigned to cell k in
scenario s is determined. These details are the
main variables and applied for computation the
other variables based on the equations in model
formulation. Details of steps IV and V are
illustrated in Fig. 3.

3.3.3 Fitness function

The rank-based evaluation function is defined as the
objective function for chromosome k=1,2,..., pop_size

3.3.4 Crossover operator

We combine the chromosomes Vk, k=1,2,..., pop_size by
crossover operation. In order to determine the parents for
crossover operation, the following process is repeated for k=

1 to pop_size: generating a random real number r from the
interval (0, 1), the chromosome Vk will be selected as a
parent provided that r<Pc; where the parameter Pc is the
probability of crossover. Then selected parents V

0
1;V

0
2;V

0
3; . . .

are grouped to the pairs V
0
1;V

0
2

� �
; V

0
3;V

0
4

� �
; . . . : without loss

of generality. For all parts and machines a random real
number λ from the open interval (0, 1) is generated. Since
each item may be assigned to different cells in each parent,
thus in an offspring, each part or machine must be assigned
to one of the cells assigned previously in its parent, randomly
with a probability of 0.5 based on the value of λ. The
crossover operator on V

0
2 and V

0
1 producing one child X is

illustrated in Fig. 4:

3.3.5 Defining self-learning rule

In order to better select parents for SA process, working
instead of mutation operator and improving quality of
offsprings, an SLR is employed. As it is described earlier, a
matrix is defined denoting the number of times in which each
part or machine is assigned to each cell in the best solutions
up to now. In other words, after, the best solution is selected
in each generation. In this solution, if part i is assigned to
cell k, then in defined matrix array i; k½ � ¼ i; k½ � þ 1. Also, if
machine j is assigned to cell k, then in defined matrix array
no: of partsþ j; k½ � ¼ no: of partsþ j; k½ � þ 1. The defined
matrix should be updated when a new population is
completed. Thus, a parent is selected for SA process if
only it has a high similarity with the defined matrix in
assignment (or with high score) among all parents. In
Fig. 5, sample of this matrix considering five parts, three
machines, and three cells is illustrated. For example, array
[2, 3] which is equal to four denotes that part three is

Part 1 Part 2 ……. Part m Machine 1 Machine 2 …….. Machine n

1 2 ……. 2 - - - -
2 1 ……. 3 - -

-

- -

- - -

1 2 ……. 3 - - - -

3

The Second Part
Sequencing in Scenario 1

……. 2 1 2
The First Part

(Assignment of Elements)
3

Sequencing in Scenario 2

Sequencing in Scenario s

…….2

Fig. 2 Sample of solution
scheme

Fig. 3 Pseudocode of computing scheduling variables

P1 P2 P3 P4 M1 M2 M3 M4

Parent      

Parent 

 1 2 2 3 2 2 3 1

 3 3 2 2 1 2 1 2

1 3 2 2 2 2 1 1Offspring

1

2

Fig. 4 Sample of crossover operator with four parts, four machines,
and three cells
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assigned to cell two in the best solutions for four times so
far. For this purpose, similarity and score for each solution
is measured as the procedure defined in Fig. 6.

3.3.6 Simulated annealing instead of mutation operator

In this section, simulated annealing process will be
performed to achieve the best neighborhood solution for
each selected parent based on the self-learning index.

– Initialization of SA parameters

In this step, we describe procedure of setting the initial
parameters of SA. Initial and final values for the control
parameter temperature, named as Ti and Tf, respectively, are
determined as follows.

& Initial temperature: due to significant influence of the
objective function on the initial temperature, some
illustrative examples are given. Also, its value should
be large enough so that probability of acceptance of
new solutions at the initial temperature T0 reaches at
least 80%. In this way, we generate 100 solutions
randomly and compute their objective functions defined
as gi. We compute the difference between two sequen-

tial solutions as Δfi. Therefore, we compute an initial
temperature as that of Safaei et al. [40]:

Δ ¼ Δfmax ! T0 ¼ Δ
�Ln 0:8ð Þ

Pseudocode of initial temperature is shown in Fig. 7.

& Final temperature: this temperature is set to be:

Tf ¼ 0:08� T0

Also, the cooling rate (a) is considered to be a constant.

& Mechanism of generating feasible neighborhood
solution:

To generate neighborhood solution for each selected
parent, we modify current solution by one of the two
following moves, randomly:

Move type 1: select a part randomly and change cell
assignment of the selected part.

Move type 2: select a machine randomly and then find the
number of the other cells having free

cell 1
part 1
part 2
part 3
part 4
part 5

machine 1
machine 2
machine 3

cell 2 cell 3
2 0 2
1 1 2
0 4 0
3 1 0
1 0 3
2 0 2
0 3 1
1 2 1

Fig. 5 Sample of defined matrix performance in self-learning rule

Fig. 6 Pseudocode of procedure computing score for each solution in
self-learning rule

Fig. 7 Pseudocode of the initial temperature
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capacity so that the selected machine can be
assigned to one of them. Finally, a cell from
the candidate cells is found by chance and
the machine is assigned to it.

& After performing move procedure, we update schedul-
ing for new neighborhood solution by EDD rule.

Since the other parts of SA algorithm are described for
many times in the literature, so to summarize this part of
HGA, it is sufficient to present only the title of the other
aspects of the proposed SA are similar to the classical in the
literature [41]. So, we only list them as follows where they
are applied in coding the algorithm:

– Evaluation of current solution and neighborhood solution
– Examination of acceptance condition
– Update counters
– Adjusting temperature Tiþ1 ¼ Ti � að Þ
– Stopping criteria

3.3.7 Selection process for the next generation in HGA

The selection process is based on selecting 50% from the
best chromosomes and other 50% randomly. Thus we
obtain pop_size copies of chromosomes, denoted by Vk.

3.4 Benchmark heuristic procedure

To measure efficiency of the proposed HGA, we
compare HGA solutions with branch and bound solutions
which obtained by Lingo 8 solver and also with a
benchmark heuristic procedure that has introduced in the
literature by [42]. This algorithm has two phases where in
phase I part families based on maximization of similarity
coefficients are determined and in phase II scheduling and
the other tactical decisions based on previous phase are
presented. For the proposed model, we apply this heuristic
procedure using same structure and solve the model in two
steps. In the first step, assignment of machines to cells and
part families are determined. In this way, we use a
similarity coefficient (Sj,l) based on part-machine matrix
presented in the literature by Jaccard [43] for any pair of
machines. Therefore, according to the maximizing of
similarity of machines assigned to the same cell, we
determine cells of machines. For the pair of machines,
similarity is defined as the number of parts that operated
by both machines divided by number of parts that
operated by at least one of them:

Sj;l ¼
P
i
aijailP

i
aij þ ail � aijail
� � ð25Þ

aij ¼ 1 If part i require to be processed on machine j:
0 Otherwise:

:

�

ð26Þ
Using the preceding definition, the model which deter-

mined the cell of machines is as:

Max w ¼
X
k

X
j

X
l ;l 6¼j

Sjlyjkylk ð27Þ

S.t:X
k

yjk ¼ 1 8j ð29Þ

X
i

yjk � Mmax 8j ð30Þ

yjk � 0; 1ð Þ 8j; k ð31Þ

The objective function maximizes summation of simi-
larities in cells. In this way, similarity between machines i
and j is computed when both machines assigned are to the
same cell and will be 0 otherwise. Using defined objective,
cells of machines will be determined with maximum
similarity. The first constraint ensures that each machine
is assigned to one cell and the second constraint guarantees
the number of machines assigned to the same cell will not
exceed the determined upper bound.

By solving this model, machine cells are determined and
it enables us to find assignment of parts to the part families.
For this purpose, number of operations for each part in each
cell is computed and part is assigned to a cell which has
maximum number of operations. To do this, we define an
equation which computes the mentioned criteria.

NOi;k ¼
X
j

aijyjk ð32Þ

NOi,k Number of operation of part i in cell k.
yjk A 0 to one variable that gives a value of one if

machine j assigned to cell k and 0 otherwise. (This
variable is computed in the previous section).

After this, we set part assignment variables as shown in
Fig. 8:

In the second step of the algorithm, we make group
scheduling decisions for each cell like [42]. This procedure
performs a similar manner like EDD procedure executed in
initialization phase and steps III to IV in section 3.3.2
which used to determine GS decisions.
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4 Numerical experiments

In order to verify the performance of the HGA approach,
we have solved 21 random instances. We have considered a
time criterion to determine the number of solved instances.
For medium-sized problems, we have started from a small-
sized problem and increased gently the size of problem by a
specific rule until the exact approach could not reach the
optimum solution within a predetermined run time. In a
similar fashion, for large-sized problems, we have started
from the largest medium-sized problem and increased the
size of the problem by a specific rule until the branch and
bound algorithm could not reach the feasible solution
within a run time. These problems are generated randomly
based on consideration of similar data in the literature. All
algorithms considered in this paper are coded in Visual
Basic 6 and run on a Pentium IV PC with 3 GHz CPU and
512 MB RAM. The associated results are compared with
global solutions obtained by the Lingo 8 software which
uses branch and bound algorithm to solve such problem.

For HGA parameter settings, some scenarios are applied
as follow:

& Pc: four scenarios: 0.75, 0.80, 0.85, and 0.95.
& Pm is based on the self-learning rule index.
& Population size: two scenarios: 20 and 30.
& No. of generation: two scenarios: 250 and 300.

Also, the SA parameter setting is shown in Table 2.
Parameter K is number of iteration in each temperature to
achieve equilibrium. Also, parameter N is maximum
number of consecutive temperature trails when it reaches
to the predetermined value the algorithm is stopped.
Parameter K is set to 150 empirically.

In the first section of computational examples, we
generate small-sized problems and solve them with three
methods: branch and bound algorithm to obtain global
solutions, proposed HGA and benchmark heuristic proce-

dure, and then compare HGA solutions with the other
methods. In the second part, we present some medium-
sized problems and since optimal solver cannot achieve
optimal solutions in a reasonable run time, to measure
efficiency of the proposed HGA for medium-sized prob-
lems, we set time constraint for Lingo solver and compare
HGA solutions with the best solutions found by Lingo in a
limited time. In this way, each example is allowed to be
solved within 5,400 s (1.5 h). However, because of the
time-consuming computation, the introduced model cannot
be optimally solved within this time. Thus, to solve the
medium-sized problems, we consider a possible interval for
optimum value of objective function (F*) that constructed
by the Fbound and FBest values that are proposed by Lingo
software where Fbound≤F* ≤FBest. Based on the Lingo
software’s documents, the FBest determines the best feasible
solution found so far. Also, Fbound determines the bound on
the objective function. This bound is a limit on how far the
solver will be able to improve the objective. At some point,
these two values may become very close. Given that the
best objective value can never exceed the bound, the fact
that these two values are close determines that Lingo’s
current best solution is either the optimal solution, or very
close to it. At such a point, the user can interrupt the solver
and accept with the current best solution in order to save
additional computation time. As we said before, we
interrupt the solver within 5,400 s (this procedure is like
that of Ching-Ter and Chi-Chiao [40]).

In the third part, we generate some large-sized problems,
and due to the inability of Lingo software to find a feasible
solution within 5,400 s, we just use the proposed
benchmark heuristic procedure to obtain the best solutions
and thus efficiency of the proposed HGA in large-sized
problems can be measured by comparing HGA solutions
with benchmark heuristic solutions in the literature.

Above discussions are summarized as follows:

& A problem which can be solved optimality by B&B
within 5,400 s is small.

& A problem which can be only feasible by B&B within
5,400 s is medium.

& A problem which cannot be feasible by B&B within
5,400 s is large.

& In small-sized problems, HGA is compared against
Global solutions and heuristic solutions.

& In medium problems, HGA is compared against the best
solutions by B&B algorithm and heuristic solutions.

& In large problems, HGA is compared against only
heuristic solution.

We start to solve small-sized problems and increase size
of problems based on specific rule until we reach medium-
sized problems. As mentioned earlier, in medium-sized
problems, Lingo software cannot achieve global solutions

Fig. 8 Pseudocode of assignment process

Table 2 Information for SA parameter setting

K α T0 Tf

150 0.9 T0 ¼ max Δfif g
�Ln 0:8ð Þ 0.08×T0
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in a predetermined run time. Finally, for large-sized
problems in which Lingo cannot find feasible solution in
a predetermined time, validation of HGA algorithm is based
on only benchmark algorithm. These problems are generated
randomly based on consideration of similar data in literature.
In each class, processing times in scenario 1 have been
randomly generated using a uniform distribution in the rage of
U (2, 10). Also, processing time in scenario 2 are generated
randomly distributed in the range of {processing time in
scenario 1þ �2ð Þ þ U 0; 4½ �}. Number of scenarios for
describing uncertainty is considered two. The number of
operation for each part is random integer in the range of U
(2, 6). Due date for parts are also generated from interval U
(50, 75), randomly. According to the mentioned intervals,
average of total processing time for each part determined as:
average operation time × average number of operation.
Thus, for each part, average processing time will be
equal to 6� 4 ¼ 24. Consequently, a due date of
distribution of U (50, 75) implies that the ratio of mean
due date to mean job processing time is approximately 3:1
(62.5:24); and therefore average number of parts with no
tardiness will be three.

4.1 Effectiveness of HGA in the small-sized problems

In this section, we present seven numerical examples with
small size to compare the proposed HGA with global
solutions and benchmark heuristic solutions. Moreover,
each numerical example is solved using a branch and bound
algorithm with the Lingo 8.0 software. Table 3 illustrates
the characteristics of numerical examples and summarizes
the results of the proposed algorithms.

It appears that the entire objective functions obtained by
HGA algorithm, benchmark heuristic procedure and global
optimums don not have any difference in small-sized

problems. We present a parameter, called the percent error
(i.e., (global optimum—HGA objective function)/global
optimum, where the global objective value is obtained by
branch and bound. The last column, named “error”, in
Table 3 shows the above errors. In Table 3, it is concluded
that there is no percentage error when different small-sized
problems are selected. It implies that the proposed hybrid
genetic algorithm and heuristic procedures are effective to
solve the presented model in this class of problems. Table 3
can show us another result. As mentioned earlier, a problem
which cannot be solved optimally in 5,400 s is in class of
medium-sized problems. So, problems with greater scale
rather than example M1 in Table 3 are to be in the class of
medium- and large-sized problems.

4.2 Effectiveness of the proposed HGA
in the medium-sized problems

In this section, to illustrate effectiveness of the proposed
HGA, we generate some instances with medium size and
solve them by both B&B algorithm and benchmark
heuristic procedure. As we described earlier, for these
problems Lingo solver which uses branch-and-bound
method to solve the model cannot get us global solutions
in maximum run time (5,400 s). Therefore, in this section,
solutions obtained by HGA are compared with the best
objective function of branch-and-bound method within
limited time to measure effectiveness of the introduced
HGA algorithm in medium-sized problems. Also, we solve
these problems by benchmark heuristic procedure to learn
more about behavior of this algorithm in solving problems.
Table 4 presents results for these problems.

In the examples in Table 4, performance evaluation is
based on the best objective function found in 5,400 s using
B&B algorithm. This table indicates that the comparison

Table 3 Effectiveness of hybrid GA in small-sized problems

Prob. No. Problem info. B&B solution HGA
solution

Heuristic
solution

TB&B

(seconds)
T HGA Error

percent
No. of parts No. of

machines
No. of
scenarios

No. cells Max machine
allowed in
each cell

S1 4×3×1×3 2 28 28 28 1 <1 0.00%

S2 4×4×1×3 2 33 33 33 1 <1 0.00%

S3 4×3×2×3 2 27 27 27 17 <3 0.00%

S4 5×4×1×3 3 39 39 39 58 <3 0.00%

S5 4×4×2×3 3 40.5 40.5 40.5 37 <3 0.00%

S6 5×4×2×3 3 66 66 66 812 <3 0.00%

S7 7×5×1×3 3 115 115 115 3,015 <3 0.00%

M1 8×6×1×3 3 122 (Best Solution) >5,400
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between the results obtained by B&B, benchmark algorithm
and HGA, and characteristics of the examples. The last
column shows the percentage of gap between B&B and
HGA solutions which is computed with the ratio
FBest B&Bð Þ � HGA solutionð Þð Þ=HGA solutionð Þ � 100. As
shown in the last row, the average value of gap is 21.93%
which implicates to a better performance of HGA rather
than the best solution of B&B algorithm in limited time.
Indeed, from Table 4 when the scale of the problems is
increased, solutions obtained by benchmark heuristic
procedure is to be laid between the solutions of B&B and
HGA solutions ZBest

B&B � ZBest
Heuristic � ZBest

HGA

� �
and therefore,

HGA has a better performance rather than benchmark
heuristic algorithm in medium-sized problems, too. These
comparisons show efficiency of the presented HGA in
medium-sized problems. To clarify the problem attempted
in this paper, we consider a typical CMS with three cells. In
this system, ten parts are to be scheduled on eight
machines. The processing time of each part on each
machine and also final solution for problem M4 in Table 4
achieved by HGA approach are given in Table 5.

4.3 Efficiency of HGA in large-sized problems

In this section, we present six numerical examples with
large size to compare proposed HGA with the benchmark
heuristic solutions. Since Lingo solver cannot obtain
feasible solutions for these problems within maximum run
time (5,400 s), we obtain the best solutions only by
benchmark method and it will be the basis to measure
performance of the presented HGA. Table 6 shows results
of this class of problems.

To evaluate performance and efficiency of HGA in large-
sized problems, performance measurement is based on
solutions obtained from benchmark algorithm. Table 5
summarizes this comparison and the other characteristics of
solved examples. In this section, we define a measurement
and named it “improvement percent” computed by
heuristicOFV��HGAOFVð Þ=HGAOFV� 100. The solu-
tion results presented here and also the last row show that
average value of improvement percent which is 6.19%
implicates to a better performance of HGA rather than heuristic
procedure in large-sized problems. In other words, HGA

Table 4 Effectiveness of hybrid GA in medium-sized problems

Problem No. Problem information B&B
solution

HGA
solution

Heuristic
solution

TB&B

(seconds)
T HGA Error

percent
No. of parts No. of

machines
No. of
scenarios

No. of
cells

Max machine
allowed in each cell

M1 8×6×1×3 3 122 101 101 >5,400 4 17.15%

M2 9×6×1×3 3 309 238 238 >5,400 9 22.86%

M3 9×7×1×3 4 345 275 292 >5,400 13 20.21%

M4 10×8×2×3 4 385 280 311 >5,400 17 27.35%

Table 5 Processing time, cells and part families for problem M4

Machines Parts

5 6 9 10 1 2 4 3 7 8

Ia IIb Ia IIb Ia IIb Ia IIb Ia IIb Ia IIb Ia IIb Ia IIb Ia IIb Ia IIb

Cell 1 A 9 9 3 4 5 4 3 4

D 3 1 7 8 4 2

E 3 2 9 9 8 7 3 2

Cell 2 C 4 5 5 3 4 4 3 1 7 5

G 3 3 7 8 5 3

Cell 3 B 9 7 3 2 4 2

F 9 9 5 4 9 10 7 5

H 3 2 4 3

a Processing time in scenario 1
b Processing time in scenario 2
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solutions are better about 6.19% than heuristic solutions which
imply HGA is so effective to solve large-sized problems.

4.4 Robustness of the proposed HGA

In Table 7, we compare solutions obtained by HGA
approach for problem with 30 parts, 19 machines, two
scenarios, and four cells when different parameters in HGA
approach are taken with the same generations as a stopping
rule. It appears that all the minimal costs differ little from
each other. In order to account for it, we present a
parameter, called the percent error, i.e., (objective value—
the best objective value)/the best objective value, where the
best objective value is the least one of all the ten minimal
costs obtained above. The last column named by “error” in
Table 7 is just this parameter. From Table 7, the percent
error does not exceed 2.10% when different parameters for
HGA algorithm are selected, which implies that the hybrid

genetic algorithm is robust to the initial parameter settings
and effective to solve the model.

Therefore, the variation of initial parameters in the
algorithm has slight impact on the optimal objective, which
implies that the algorithm designed in this paper is much
robust.

5 Results and discussion

In this paper, we introduced a notation of SCFP considering
stochastic processing times where described by discrete
scenarios. A conceptual framework and a mathematical
model were proposed. Then mathematical method applied
to linear the proposed model. Also, a hybrid genetic
algorithm was introduced to solve the model. We divided
our computational experiments to four parts. In the first
part, both hybrid genetic algorithm and a heuristic

Table 6 Effectiveness of hybrid GA in large-sized problems

Problem No. Problem information Heuristic
solution

HGA
solution

Improvement
percent

No. of parts No. of
machines

No. of
scenarios

No. cells Max machine
allowed in each cell

L1 15×10×2×3 5 976 945 3.15%

L2 20×13×1×3 6 2,108 1,972 6.45%

L3 30×19×2×4 6 4,836 4,601 4.85%

L4 25×16×2×4 6 6,114 5,769 5.65%

L5 35×22×1×4 6 16,180 14,701 9.14%

L6 40×25×2×5 6 25,239 23,790 5.74%

L7 45×25×1×5 6 26,501 24,829 6.31%

L8 40×28×2×5 7 29,151 27,143 6.89%

L9 50×28×2×6 7 34,981 32,456 7.22%

L10 50×30×2×6 7 41,978 39,379 6.19%

Average 6.16%

GA parameters SA parameters Total cost Error

Pop_size Pc Generation a K

1 20 0.95 250 0.90 150 4,652 1.10%

2 20 0.80 300 0.95 200 4,642 0.90%

3 20 0.75 250 0.85 150 4,661 1.30%

4 20 0.90 300 0.90 200 4,654 1.15%

5 20 0.75 250 0.95 150 4,665 1.40%

6 30 0.85 300 0.85 200 4,679 1.70%

7 30 0.80 250 0.95 150 4,680 1.72%

8 30 0.95 300 0.85 200 4,698 2.10%

9 30 0.90 250 0.90 150 4,601 0.00%

10 30 0.85 300 0.85 200 4,692 1.97%

Table 7 Robustness of the pro-
posed approach
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procedure in the literature were able to find optimal
solutions. In the second part, we compared HGA and
heuristic solutions with the best solutions obtained by
Lingo using branch and bound algorithm. Numerical
examples showed that HGA algorithm had a better
performance than the other approaches. Also, heuristic
solutions were to lie between branch and bound and HGA
solutions. In the third part, Lingo solver cannot get us
feasible solution and therefore we compared HGA algorithm
with proposed heuristic procedure. Computational experi-
ments showed that in large-sized problems HGA works
better than heuristic algorithm. In the last part, robustness of
the algorithm was validated which shows informs that HGA
algorithm was not sensitive to the initial settings. Our
contributions research field consists of: considering stochas-
tic parameters which yield to more flexibility and practical
aspects in real world cases, integrating cell formation
problem with scheduling aspects, linearization of the model
and presenting a hybrid genetic algorithm which had
successful performance in any size of problem.

For future research, we suggest three directions:

& Development of the model under more and the other
stochastic parameters such as costs, processing routes
and machine availability.

& Considering this problem as a multiobjective model
which considers CF decisions in one objective and
scheduling in the other objective.

& Aggregating proposed model with the other production
aspects like layout problem considerations. These
remain a critical issue for future study.
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