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Abstract In this paper, we study the single-machine
scheduling problems with learning effect and setup
time considerations. The setup times are propor-
tional to the length of the already-processed jobs, i.e.,
the setup times are past-sequence-dependent (p-s-d).
The objective functions are to minimize the sum of
the quadratic job completion times, the total waiting
time, the total weighted completion time, the maxi-
mum lateness, the total absolute differences in waiting
times, and the sum of earliness penalties subject to no
tardy jobs, respectively. We show that the sum of the
quadratic job completion times minimization problem,
the total waiting time minimization problem, the to-
tal absolute differences in waiting times minimization
problem, and the sum of earliness penalties minimiza-
tion problem subject to no tardy jobs can be solved in
polynomial time, respectively. We also show that the
total weighted completion time minimization problem
and the maximum lateness minimization problem can
be solved in polynomial time under some special cases.
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1 Introduction

In classical scheduling problems, the processing time
of a job is assumed to be a constant. However, in
many realistic problems of operations management,
both machines and workers can improve their perfor-
mance by repeating the production operations. There-
fore, the actual processing time of a job is shorter if
it is scheduled later in a sequence. This phenomenon
is known as the “learning effect” in the literature.
Biskup [1] and Cheng and Wang [2] were among the
pioneers that brought the concept of learning into the
field of scheduling. Biskup [1] assumed that the process-
ing time of a job is a log-linear learning curve, i.e.,
if job J; is scheduled in position 7 in a sequence, its
actual processing time is p; = p;*, where p; is the
normal processing time of job J;, a <0 is a constant
learning effect. He proved that single-machine schedul-
ing problems to minimize the sum of job flow times
and the total deviations of job completion times from
a common due date are polynomial solvable. Cheng
and Wang [2] considered a single-machine scheduling
problem in which the job processing times decrease
as a result of learning. A volume-dependent piecewise
linear processing time function was used to model
the learning effect. The objective is to minimize the
maximum lateness. They showed that the problem is
NP-hard in the strong sense and then identified two
special cases that are polynomially solvable. They also
proposed two heuristics and analysed their worst-case
performance. Later, Mosheiov [3, 4] investigated sev-
eral other single-machine problems and the minimum
total flow time problem on identical parallel machines.
Mosheiov and Sidney [5] considered a job-dependent
learning curve, where the learning rate of some jobs is
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faster than that of the others. They showed that the
makespan minimization problem, the total flow time
minimization problem, a due date assignment prob-
lem, and total flow time minimization on unrelated
parallel machines remain polynomially solvable. Wang
and Xia [6] considered flow shop scheduling problems
with a learning effect. The objective was to minimize
one of two regular performance measures, namely the
makespan and the total flow time. They gave a heuris-
tic algorithm with a worst-case error bound of m for
each criterion, where m is the number of machines.
They also found polynomial time solutions for two
special cases of the problem, i.e., identical processing
times on each machine and an increasing series of
dominating machines. Wang [7] considered the same
problem of Wang and Xia [6]. He suggested the use of
Johnson’s rule as a heuristic algorithm for two-machine
flow shop scheduling to minimize the makespan. Kuo
and Yang [8] considered a single-machine scheduling
problem with a time-dependent learning effect. The
time-dependent learning effect of a job is assumed to
be a function of the total normal processing time of
the jobs scheduled in front of it. They showed that the
shortest processing time (SPT) sequence is the optimal
sequence for the objective of minimizing the total com-
pletion time. Eren and Guner [9] considered the single-
machine total tardiness problem with a learning effect.
They developed an integer programming model for the
problem. Wang, Ng, Cheng, and Liu [10] considered the
same model of Kuo and Yang [8]. They proved that
the weighted shortest processing time (WSPT) rule, the
earliest due date (EDD) rule, and the modified Moore—
Hodgson algorithm can, under certain conditions, con-
struct the optimal schedule for the problem to minimize
the following three objectives: the total weighted com-
pletion time, the maximum lateness, and the number
of tardy jobs, respectively. They also gave an error
estimation for each of these rules for the general cases.
Cheng, Wu, and Lee [11] considered some scheduling
problems where the actual job processing time is a
function of jobs already processed. Eren and Guner
[12] considered a bicriteria parallel machine scheduling
with a learning effect. They developed a mathematical
programming model for solving the problem. Wang,
Wang, Wang, Yin, Huang, and Feng [13] proposed a
new sum-of-processing-time-based learning effect and
deteriorating jobs. This model has two opposing para-
meters. One makes the processing time longer and the
second one shorter. They showed that the makespan
minimization problem can be solved by the largest
processing times first (LPT) rule. Wang, Wang, Gao,
Huang, and Feng [14] considered two single-machine
scheduling problems with the effects of deterioration
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and learning. For the weighted sum of completion
times minimization problem and the maximum lateness
minimization problem, they gave two heuristics accord-
ing to the corresponding problems without learning
effect. They also gave the worst-case error bound for
the heuristics. An extensive survey of research related
to scheduling with learning effects was provided by
Biskup [15].

On the other hand, it is reasonable and neces-
sary to consider scheduling problems with setup times
(Allahverdi, Gupta, and Aldowaisan [16]). There are
two types of setup time or setup cost: sequence-
independent and sequence-dependent. In the first case,
the setup time/cost depends solely on the task to be
processed, regardless of its preceding task. While in the
sequence-dependent type, setup time/cost depends on
both the task and its preceding task. For recent results
and trends in scheduling problems with setup times or
costs, the reader may refer to the recent review paper of
Allahverdi, Ng, Cheng, and Kovalyov [17]. Koulamas
and Kyparisis [18] first introduced a scheduling prob-
lem with past-sequence-dependent (p-s-d) setup times,
i.e., the setup time is dependent on all already sched-
uled jobs. The objectives are the makespan, the total
completion time, and the total absolute differences in
completion times. They proved that the standard single-
machine scheduling with p-s-d setup times and any
of the above objectives can be solvable in polynomial
time. They also extended their results to nonlinear
p-s-d setup times.

However, to the best of our knowledge, apart from
the recent papers of Kuo and Yang [19], Wang [20],
Wang, Wang, Wang, Lin, Yin, and Wang [21], and
Wang, Jiang, and Wang [22], the scheduling models
considering the setup times and learning effect at the
same time have not been investigated. Kuo and Yang
[19] considered single-machine scheduling with p-s-d
setup times and job-independent (job-dependent)
learning effect. They considered the following objective
functions: the makespan, the total completion time,
the total absolute differences in completion times and
the sum of earliness, tardiness, and common due-date
penalty. They proposed the polynomial time algorithms
to optimally solve the above objective functions. Wang
[20] studied single-machine scheduling problems with
p-s-d setup times and time-dependent learning effect.
They proved that the makespan minimization prob-
lem, the total completion time minimization problem,
and the sum of the quadratic job completion times
minimization problem can be solved by the SPT rule,
respectively. Wang, Wang, Wang, Lin, Yin, and Wang
[21] considered single-machine scheduling problems
with p-s-d setup times and exponential time-dependent



Int J Adv Manuf Technol (2010) 48:739-746

741

learning effect. They proved that the makespan min-
imization problem, the total completion time mini-
mization problem, and the sum of the quadratic job
completion times minimization problem can be solved
by the SPT rule, respectively. Wang, Jiang, and Wang
[22] studied single-machine scheduling problems with
p-s-d setup times and the effects of deterioration and
learning. They proved that the makespan minimiza-
tion problem, the total completion time minimization
problem, and the sum of the §th power of the job
completion times minimization problem can be solved
in polynomial time, respectively.

The phenomena of p-s-d setup times occurring can
be found in many real-life situations. For example,
in high-tech manufacturing environments, in which a
batch of jobs consists of a group of electronic compo-
nents mounted together on an integrated circuit (IC)
board. These jobs must be processed one-by-one by a
machine while they are mounted together on the board.
The machine’s operation on any of these components
has an adverse effect on the “readiness” of all the
other components that have not yet been processed
due to the flow of electrical current through the IC
board while the machine is operating. Once a com-
ponent is fully processed, its condition is not affected
by the subsequent operation of the machine even if
it remains mounted on the IC board. The degree of
“un-readiness” of any component is proportional to the
amount of time it has been exposed to the machine’s
operation on other components. Consequently, prior to
a component’s processing, a setup operation, propor-
tional to the degree of “un-readiness” of the respective
component, is needed to restore it to “full-readiness”
status; this setup operation has no effect on the “readi-
ness” of the remaining unprocessed components. The
overall manufacturing process is completed when all
components on the IC board have been processed
by the machine (Koulamas and Kyparisis [18]). The
learning effect in scheduling may arise in a company
that produces similar jobs on a machine for a number
of customers. In many cases, jobs will have different
normal processing times due to varying (order) quan-
tities or slightly different components that make up the
products. Nevertheless, by processing one job after the
other, the skills of the workers continuously improve,
e.g., the ability to perform setups faster or to deal with
the operations of the machines and software or handle
raw materials or components or similar operations of
the jobs at a greater pace (Biskup [1]).

In this paper, we consider the same model as that
of Kuo and Yang [19], but with different objective
functions. The remaining part of this paper is organized
as follows: In Section 2, we formulate the model. In

Section 3, we consider several single-machine schedul-
ing problems. The last section presents the conclusions.

2 Problems description

Assume that there are n independent jobs to be
processed on a single machine. Each of them is avail-
able at time zero. The machine can handle only one
job at a time and is permanently available at time zero.
For eachjob J; (j=1,2,...,n), the value of its normal
processing time p; is known. Let pp; be the normal
processing time of a job if it is scheduled in the kth
position in a sequence. As in Biskup [1] and Kuo and
Yang [19], we assume that the actual processing time of
job J;if it is scheduled in position r is given by:

pﬁ:p,r“,r,j:l,Z,...,n, (1)

where a <0 is a constant learning effect. Also, as
in Koulamas and Kyparisis [18], we assume that the
p-s-d setup time of job Jy; if it is scheduled in position r
is given by:

r—1

Sy = 0 and S = b ZP[A;], (2)

i=1

where b > 0 is a normalizing constant, Z?:l piip :=0.
For convenience, we denote by LE the learning ef-
fect given by Eq. 1 (see Kuo and Yang [19]) and spe
the p-s-d setup given by Eq. 2 (see Koulamas and
Kyparisis [18]). Using the standard three-field notation
scheme «|B|y introduced by Graham et al. [23], our
scheduling problem can be denoted as 1|LE, spxqly.
Let C; be the completion time of job J;. In this pa-
per, we will study the minimization of the following
function: the sum of the quadratic job completion
times ), C7, the total waiting time TW = Y7_, W;
(where W; represent the waiting time of job J, i.e.,
W;=Cj—pj, j=1,2,...,n), the total weighted com-
pletion time Z';:l w;C}, the maximum lateness Ly =
max{C; —d;|j=1,2,...,n}, the total absolute differ-
ences in waiting times TADW = 371, 377, |[W; — W,
and the sum of earliness penalties subject to no tardy
jobs 37| 8(E)), where d; = d is a common due date
for all the jobs, E; = d — C; is the earliness of job J;,
and g(x) is a strictly increasing function.

3 Main results

First, we give some lemmas; they are useful for the
following theorems.
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Lemma 1 For a given schedule m = [Jy, Jo, ..
Lispsaly, the completion C; of job J is

. Ja] of

j
Citm) =Y _(b(j—i+Dp{.
i=1

Proof From Eqgs. 1 and 2, we have

J

j j—1
i =Y+ p = 3 (b St p;*)
i=1 =1

i=1

J
=) (bG(—-b+Dp,

i=1
where Y0, p/t :=0. O

Lemma 2 (Kuo and Yang [19]) For the problem
LILE, $psa| Cmax, there exists an optimal schedule in which
jobs are sequenced in non-decreasing order of p; (the
SPT rule).

Lemma 3 (Hardy et al. [24]) The sum of products
Z?:] x;y; is minimized if sequence Xy, X, ..., X, is or-
dered non-decreasingly and sequence yi,ya, ..., Yy, is
ordered non-increasingly or vice versa, and it is maxi-
mized if the sequences are ordered in the same way.

3.1 The 1|spsal 31, C7 scheduling problem

Townsend [25] considered a single-machine scheduling
problem with a quadratic cost function of completion
times, i.e., the sum of the quadratic job completion
times. He showed that the problem 1|| ZC? can be
solved optimally by the SPT rule. By using the job in-
terchanging technique, we can show that the solution of
Townsend still holds for the problem 1|LE, syl D C?.

Theorem 1 For the problem 1|LE, spq] 27:1 C?, there
exists an optimal schedule in which jobs are sequenced
in non-decreasing order of p; (the SPT rule).

Proof Let m and n’ be two job schedules, where
the difference between m and n’ is a pairwise inter-
change of two adjacent jobs J; and Ji, that is, 7 =
[S], J]', Jk, S2], = [Sl, Jk, Jj, Sz],where Sl and S2 are
partial sequences and S; or S, may be empty. Further-
more, we assume that there are r — 1 jobs in ;. Thus,
Jjand J are the rth and the (r + 1)th jobs, respectively,
in 7 and with p; < pi. In order to show 7 dominates
n’, it suffices to show that (1) Ci(n) < Cj(n’) and
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(2) C(m) + Ci() < Cp(n') + C5(x"). Under x, from
Lemma 1, the completion times of jobs J; and J are

r—1
Ci(m) =Y (b(r—i)+ Dpfh+ pjr'.

i=1

r—1
Ci(m) =Y (bor+1=)+Dp{+ (b + Hp;r

i=1

+ pr(r + D"

Whereas, under n’, they are

r—1

Ce(x'y = Y (b (r— i)+ Dpfh + pur

i=1
and

r—1
Cir'y =Y (br+1—i+Dpf+ b+ 1)per

i=1

+ pi(r+ D"

The proof of part 1 is given in Lemma 2. In addition,
from p; < pi, we have C;(n) < Ci(’); hence,

Ci(m) + Ci(m) < Ci) + Ci(x").

This completes the proof of part 2 and, thus, of the
theorem. o

3.2 The 1|LE, spsq| TW scheduling problem

In this subsection, we consider the problem 1]spsq| TW.
Clearly,

n

n
TW =Y W;=Y (n—rsiy+ pinr)
j=1

r=1

=> (n—r) (1 +b "_Tr_l> r p.- 3)
r=1

Equation 3 can be viewed as the scalar product of two
vectors, the A, = (n —r) (1 +b22=1)r* and py, vec-
tors, respectively (r = 1,2, ..., n). From Lemma 3, we
know that Eq. 3 is minimized by sorting the elements
of the A, and py, vectors in opposite orders. Since the
elements of the A, vector are already sorted in non-
increasing order, hence, we have the following theorem.

Theorem 2 For the problem 1|LE, syq|TW, there exists
an optimal schedule in which jobs are sequenced in
non-decreasing order of p; (the SPT rule).
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3.3 The 1|LE, spsal 2°_; w,C; scheduling problem

In this subsection, we show that the total weighted
completion time minimization problem can be solved
in polynomial time under some special conditions.

Theorem 3 For the problem 1|LE, syl Z?:l w;Cj, if
the jobs have agreeable weights, i.e., p; < pix implies
w; > wy for all the jobs J ; and Ji, there exists an optimal
schedule in which jobs are sequenced in non-decreasing
order of p;/w; (the WSPT rule).

Proof Here, we still use the same notations as in the
proof of Theorem 1. In order to show m dominates
n’, it suffices to show that (1) Ci(7) < C;(n") and (2)
w;Ci(m) + wiCr(m) = wiCr(") + w;C;(x".

The proof of part 1 is given in Lemma 2. We provide
the proof of part 2 as follows.

From Theorem 1, the completion times of jobs J; and
Ji in sequence 7 and 7’ are

r—1
Ci(m) =Y _(b(r— i)+ Dpi} + pir".

i=1

r—1

Ci(m)=Y (b (r+1=i)+1)p{y+b+D)pr+ pi(r + 1),

i=1

r—1

Ci() =Y _(b(r—i) + Dp{y + par
i=1
and

r—1
Cin'y =) (b r+1=D+1)p{y+b+1) per+pj(r+1)°.

i=1

So we have

wiCr(") + w;Ci(n") — w;Cj(m) — wiCr ()
r—1
i=1
+ (wj+w)(pe — pPr — (r + 1Y)
+ br' 4+ o+ DY (wijpk — wip)).

From p;/w; < pr/wk, we have (br®+ (r+ 1%
(wjprx —wipj) = 0. In addition, from p; < px, which
implies w; > wx and r* > (r+1)“, we have (w;+
wi)(pk — pp* — @+ 1% >0. Hence, w;Ci(m)+
wiCr () < wiCy (') + w;Cj(n’). This completes the
proof of part 2 and, thus, the theorem. O

Using the similar method of Theorem 3, the follow-
ing corollaries can be easily obtained.

Corollary 1 For the problem 1|LE, spsq, p = p| Z'}zl
w;Cj, there exists an optimal schedule in which jobs are
sequenced in non-increasing order of w;.

Corollary 2 For the problem 1|LE, spsq, w; = kpj|| ij:l
w;Cj, there exists an optimal schedule in which jobs are
sequenced in non-decreasing order of p; (the SPT rule).

3.4 The 1|LE, spsa| 2~ w;W; scheduling problem

In this subsection, we show that the total weighted
waiting time minimization problem can be solved in
polynomial time under some special conditions.

Theorem 4 For the problem 1|LE, syl Z';zl w; W, if
the jobs have agreeable weights, i.e., p; < py implies
w; > wy for all the jobs J j and Ji, there exists an optimal
schedule in which jobs are sequenced in non-decreasing

order of pj/w; (the WSPT rule).
Proof Similar to the proof of Theorem 3. O

Using the similar method of Theorem 4, the follow-
ing corollaries can be easily obtained.

Corollary 3 For the problem 1|LE, spsq, pj = pl Z’]’,:l
w ;W ;, there exists an optimal schedule in which jobs are
sequenced in non-increasing order of w;.

Corollary 4 For the problem 1|LE, spsa, wj = kp;| 3,
w;W |, there exists an optimal schedule in which jobs are
sequenced in non-decreasing order of p; (the SPT rule).

3.5 The 1|LE, $psd| Lmax scheduling problem

In this subsection, we show that the maximum lateness
minimization problem can be solved in polynomial time
under some special conditions.

Theorem 5 For the problem 1|LE, sysd| Linax, if the jobs
have agreeable conditions, i.e., p;j < py implies d; < dy
for all the jobs J j and Ji, there exists an optimal schedule

in which jobs are sequenced in non-decreasing order of
d; (the EDD rule).
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Proof We still use the same notations mentioned
above. Now we use the job interchanging technique
to prove the theorem. From the proof of Theorem 1,
under 7, the lateness of jobs J; and Jj are

r—1
Litr) =) (b(r—i)+ Dp{+ pijr+ D) —d,,
i=1

r—1

Li(m) =Y (b(r+1—i)+ Dpfi+ b+ Dpr”

i=1

+Pk(r + 1)“ - dka

whereas, under ', they are

r—1

Li(x') = (b(r— i)+ Dpfy + per* — dr.

i=1

r—1
L'y =) (b +1—i+Dpfy+ (b + Dper

i=1

+pir+ 1" —d,.

If d; < di, we have Li(n') < L;(n’). In addition,
if dj<dy and p; < pi, from Theorem 1, we have
Li(r) < Lij(n’) and Lj(w) < Lj(7’). Therefore, we
have max{L ("), Lr(n")} = max{L ;(7), Li(r)}. This
completes the proof of the theorem. O

Using the similar method of Theorem 3, the follow-
ing corollaries can be easily obtained.

Corollary 5 For the problem 1|LE, spsq, pj = p|Lmax
there exists an optimal schedule in which jobs are se-
quenced in non-decreasing order of d; (the EDD rule).

Corollary 6 For the problem 1|LE, sy, d; = d|Liax,
there exists an optimal schedule in which jobs are se-
quenced in non-decreasing order of p; (the SPT rule).

Corollary 7 For the problem 1|LE, sy, dj = kp j| Liax,

there exists an optimal schedule in which jobs are se-
quenced in non-decreasing order of d; (the EDD rule).

3.6 The 1|LE, sp5a TADW scheduling problem
In this subsection, we consider the single-machine

scheduling problems with the objective of minimiz-
ing the total absolute differences in waiting times
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(TADW). This scheduling measure was first considered
by Bagchi [26]. From Bagchi [26], we have

n

n
TADW =Y "W, =Y r(n— (s + pinr)

j=1 r=1

= Z r(n—r)+b Z jm—p|r'py. (4)
r=1

j=r+1

Equation 4 can be viewed as the scalar product of two
vectors, the A, =@F(n—r)+>b Z;;rH jin— j)r* and
Pir vectors, respectively (r = 1,2, ..., n). From Lemma
3, we know that the problem 1|LE, s,q|TADW can be
solved in O(nlogn) time by sorting the elements of the
A, and py, vectors in opposite orders.

The application of the weight-matching solution
approach is demonstrated in the following example
(Bagchi [26]).

Example ] Data: n=7,p;=2,p,=3,p3 =6, py =
9,ps =21, ps =65, p; =82,b =0.1. Assume now
an 80% learning curve, i.e., a = —0.322 (Biskup [1]).
The positional weights are: A; = 11,4, = 11.199, A3 =
10.390, A4 = 8.703, A5 = 6.313, A4 = 3.370, A7 = 0.

According to Lemma 3, the optimal sequence is
[Jz, Jl, J3, J4, J5, .]6, .]7], with TADW = 547.688.

3.7 Minimize the sum of earliness penalties

In this subsection we consider the problem I|LE,
Spsdl Z'}zl g(E;) under the condition Cy, < d. For the
classical problem, there are some results in Chang and
Schneeberger [27], and Qi and Tu [28]. A schedule
is feasible if and only if there is no tardy job in the
schedule. For the optimal schedule, it is obvious that
(1) the last job completion time is d and (2) there is no
idle time between the jobs, the idle time can only exist
before the first job.

Lemma 4 For a given schedule m = [Jy, Ja, ..., J,] of
1|ILE, $psd|Cmax, if the makespan is C, then the starting
time of the first job is

to=C—Y (b(n—i)+ pil".

i=1

Based on the above lemma, we have the following
theorem.

Theorem 6 For problem 1|LE, spq| Z'}zl g(E)), an op-
timal schedule can be obtained by sequencing the jobs
in non-increasing order of p; (the LPT rule), where the
first job starting time is toy =d — Y ., (b(n — i) + 1) p;i*.
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Proof Consider an optimal schedule 7; suppose there
are two adjacent jobs J; and Jy, job J; followed by job
Jk, such that p; < py, in which job J is scheduled in
the (r + 1)th position. Let the completion time of job
Ji be Cy. Perform an adjacent pair-wise interchange
on jobs J; and Ji and get a new schedule 7’; then, we
have:

Cr = Cy, CjZCo—(b(l’l—l’— 1)+1)pk(7’+1)a,

Er=d—Cy, Ej:d—C0+ (bm—r—1)+ 1)pr(r+1)4

C/]Z Co, ;(Z Co— (b(n—r— 1)+ 1)pj(r+ 1)“,

Ej=d—Cy Ey=d— Co+ (b(n—r—1)+1)p;r+1)".

Since p; < pi,then E) < Ej, E’/ = E; thus, we have
8(E) + g(E}) < g(Ex) + g(E)).

The completion times of the jobs processed after
jobs J; and Ji are not affected by the interchange; the
completion times of the jobs processed before jobs J;
and J; become larger and earliness become smaller.
Hence, the value of objective under n’ is strictly less
than that under =. This contradicts the optimality of &
and proves the theorem. O

Remark When g(x) = x, Z';:] g(Ej)) =nd— Z';:] C,.
Since nd is a constant, then the sum of completion
times maximization problem can be solved by the LPT
rule, as though the sum of completion times minimiza-
tion problem can be solved by the SPT rule (Kuo and

Yang [8]).

4 Conclusions

In this paper, we studied the problems of single-
machine scheduling jobs with p-s-d setup times and
learning effect. We proved that the sum of the quadratic
job completion times minimization problem, the to-
tal waiting time minimization problem, the total ab-
solute differences in waiting times minimization prob-
lem, and the sum of earliness penalties minimization
problem subject to no tardy jobs can be solved in
polynomial time, respectively. For some special cases,
we also proved that the total weighted completion
time minimization problem and the maximum lateness
minimization problem are polynomially solvable. We
note that the computational complexity of the total
weighted completion time minimization problem and
the maximum lateness minimization problem remains
open. Future research may focus on considering these

open problems or investigating the model in the context
of other scheduling problems.
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