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Abstract Bead-on-plate welds were carried out on alu-
minum plates Al-1100 using an electron beam weld-
ing machine. The weld runs were conducted as per
central composite design. Regression analysis was then
carried out to establish input–output relationships of
the process. The weldment area was minimized, after
satisfying the condition of maximum bead penetra-
tion. The above constrained optimization problem was
solved utilizing a genetic algorithm (GA) with a penalty
function approach. The GA was able to determine opti-
mal weld-bead geometry and recommend the necessary
process parameters for the same. An attempt was also
made to model the complicated dagger-like profile of
electron-beam welded material by utilizing three third-
order curves. The profiles were predicted by utilizing
both back-propagation trained and GA-tuned neural
networks. The latter was able to yield better predictions
compared to the former.
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1 Introduction

Electron beam welding (EBW) is a process wherein
required parts are fabricated by fusing the base metals
with the heat obtained from a concentrated beam com-
posed primarily of high-velocity electrons [1]. The ki-
netic energy of these high-velocity electrons is changed
to thermal energy, upon striking the surfaces to be
joined, thereby melting and fusing the workpiece metal.
The main advantage of this autogenous process lies
in the fact that it can produce deep and narrow welds.
The welded structure is monolithic, which may be di-
vided into three distinct zones, namely, (1) fusion zone,
(2) heat-affected zone (HAZ), and (3) un-affected
zone. Out of these, the fusion zone and HAZ undergo
metallurgical changes. The mechanical properties of
the welded structure depend upon the metallurgical
features present in both the fusion and HAZ. Thus,
the size and shape of the fusion zone has got impli-
cation over the metallurgical properties. The shape
of the weldment in EBW is generally found to be
different from those formed with conventional weld-
ing processes. The shapes in conventional welding
processes are seen to be parabolic, whereas in case of
EBW, it is found to have a dagger-like structure due
to the key-hole formation. The operating parameters
of the process influence the shape of the weldment.
Thus, the mechanical properties, to a large extent, are
also governed by the shape and size of the weldment.
The conventional method of specifying the bead geom-
etry of a weldment is in terms of its height, width,
and penetration. Specifying the bead shape in terms
of the above features may carry some incomplete in-
formation but does not highlight the contour of the
weldment.
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2 Literature review

EBW, like any other welding technique, has various
control parameters. Accelerating voltage, beam cur-
rent, welding speed, vacuum level in the chamber, and
distance of the focal point from the workpiece sur-
face are some of the parameters that need to be con-
trolled during the welding. Various researchers have
tried several techniques to relate these variables to the
bead geometry of the weldment. Koleva [2] used multi-
response statistical techniques to predict the depth and
width of the beads while welding stainless steel. Koleva
[3] utilized thermal efficiency in connection with the
bead-geometric parameters. In this study, bead pene-
tration and width were formulated as a function of ther-
mal efficiency of the process. Since there are too many
parameters involved in a welding process, Gunaraj and
Murugan [4, 5] studied the main and interaction effects
of the process control variables on bead-geometric pa-
rameters using non-linear regression models. Although
the authors used non-linear regression methods, it was
established by Yang et al. [6] that linear regression
equations could give correlation coefficients similar to
those obtainable from the curvilinear regression equa-
tions. It is generally seen that the above statistical
regression analysis gives satisfactory results to predict
the anchor points only. However, there might be some
significant deviations in prediction at the intermediate
points, particularly near the center. To overcome this
problem, Ganjigatti et al. [7] developed a new method-
ology to model the input–output relationships by car-
rying out regression analysis cluster-wise, which took
care of the forecasting of intermediate points, as well.
The non-linearity aspect amongst the various factors
was solved by Benyounis et al. [8] with the help of
response surface methodology to predict the weld-bead
profile.

The welding process is a very complicated phenom-
enon, and its variables generally have highly non-linear
relationships with one another. Non-linearity to this
extent cannot be very well-defined by a fixed-order
regression equation. To overcome this, some investi-
gators tried to model the input–output relationships
using neural networks. Nagesh and Datta [9] used a
back-propagation neural network to predict the bead
geometries of mild steel electrodes deposited on cast
iron plates. De et al. [10] used artificial neural network
(ANN) to predict the quality of welding in the pulsed-
current gas metal arc welding (GMAW) process. Kim
et al. [11] showed that a neural network-based model
could give better prediction of the bead height than the
empirically developed equations could do. In a similar

fashion, it was shown by Lee and Um [12] that the
neural network could predict back the bead geometries
better than the empirical relationships developed by
the regression analysis did. Ping et al. [13] modified the
structure of a conventional feed-forward multi-layer
perceptron network with a single output instead of the
multi-outputs. This type of network was named self-
adaptive offset network (SAON). The authors proved
that SAON could work better than the conventional
networks.

Several attempts were also made by various re-
searchers to optimize the weld-bead geometry. Tay and
Butler [14] used a radial basis function to approximate
stochastically the non-linear dynamics of the welding
process, in order to optimize the basic welding pa-
rameters. In welding, where filler materials are used,
not only the bead-geometric parameters, but also the
total volume of metal added for welding is important
from a quality point of view, as it adds on to the cost.
Gunaraj and Murugan [15] considered the volume of
the electrode to be a parameter and then utilized the
optimization tool of MATLAB to optimize the vol-
ume of the weldment. Tarng and Yang [16] used the
Taguchi method to conduct their experiments with the
gas tungsten arc (GTA) welding process. The Taguchi
method was then systematically and efficiently used
for searching the welding process parameters with an
optimal weld-bead geometry. The optimal weld-bead
geometry had the-smaller-the-better quality character-
istics for the front height, front width, back height,
and back width of the weld bead. A slight variation to
this method will give rise to the Grey-based Taguchi
method [17], in which a Grey relational grade was
obtained. This was used to evaluate the multiple per-
formance outputs, and thus, complicated multiple per-
formance characteristics could be converted into the
optimization of a single Grey relational grade. Olabi
et al. [18] utilized an ANN to generate suitable welding
data necessary to optimize the welding parameters of
CO2 laser by Taguchi method, so that the maximum
ratio of weld depth to width could be obtained.

To optimize the welding parameters, Kim et al.
[19] developed a technique called controlled random
search (CRS), where the near-optimal settings of the
welding process parameters were determined through
the experiments conducted as per the response surface
methodology (RSM). The objective function of RSM
need not be differentiable. The parameters of welding
were also optimized using a genetic algorithm (GA)
[20]. In cases where the search space is large and
the objective functions become highly complicated, the
computational time of a GA increases drastically and
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it becomes difficult to get any solution in real time. To
overcome this difficulty, Kumar and Debroy [21] and
Mishra and Debroy [22] showed that multiple sets of
welding variables capable of producing the target weld
geometry could be determined in a realistic time frame
by coupling a real-coded GA with a neural network
model.

During welding, disturbances and changes in the
welding working environment lead to variations in the
output variables associated with the weld quality. To
enhance the weld quality, it is essential to optimize
the welding process by taking both the variance and
average value of the output variables into considera-
tion. Kim et al. [23] used a dual response approach to
determine the welding process parameters, which could
produce the target value with minimal variance. The
dual response approach could optimize the penetration
in GMA welding. The regression models for the mean
values and standard deviations of the penetration were
developed first, and subsequently, an optimization al-
gorithm was applied based on the regression models
and constraints to determine the welding process para-
meters that generated the desired penetration with the
minimized variance.

Application of the GA in tandem with a neural
network was shown in the form of comparative studies
of back-propagation neural network (BPNN) and GA-
tuned NN (GANN) by various investigators. Dutta
and Pratihar [24] compared the results of regression
analysis, BPNN, and GANN for modeling the bead
geometries of a TIG welding process and found the
GANN to perform better than both the BPNN and
regression analysis. Moreover, Mollah and Pratihar
[25] determined input–output relationships of the TIG
welding process using the radial basis function neural
networks (RBFNNs).

Some attempts were also made to predict the weld
bead profile. Kim et al. [26] tried to predict the par-
abolic weld bead profile of GMA with the help of
penetration shape factor, reinforcement shape factor,
etc. Peretz [27] developed a mathematical model based
on heat transfer to predict the capillary shape and
weld cross-section profile in case of laser beam weld-
ing. Dimensionless numbers like Peclet numbers and
Marangoni numbers [28, 29] were used to predict the
shapes of the knives obtained as the bead profile. A
preliminary attempt was made by Dey et al. [30] to
determine optimal weld bead geometry and its corre-
sponding optimized set of input parameters for carry-
ing out bead-on-plate welding on stainless steel plates.
However, no attempt was made in that work to predict
the contour of the weldment.

In the present study, bead-on-plate welding has been
carried out on aluminum plates of size 75 × 30 ×12 mm,
as per central composite design of experiments using
an EBW technique. The weld-bead geometry has been
optimized using a GA along with a penalty function
approach for handling the constraints. An attempt has
also been made to predict the contour of the weldment
for a set of input process parameters.

3 Problem formulation and proposed methods
of solution

Figure 1 shows the schematic view of a weld bead
geometry. No filler material is used in the EBW. Thus,
it is an autogenous process, and consequently, no re-
inforcement is generally found at the top of the bead.
Only the geometric parameters like bead width and
penetration were measured during the data collection.
Weld profiles were divided into three parts. For each
etched specimen, a1, b 1, a2, b 2, BW, and BP were
measured. The weldment was found to have a dagger-
like shape. The area of the weldment was estimated
mathematically, which depends on both BW and BP.
A GA with a penalty function approach was utilized
to determine the parameters required for obtaining the
minimum weldment area, after ensuring the maximum
penetration. As the weldment had a complex geometry,

Fig. 1 A schematic view of weld bead geometry
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six third-order curves were utilized to represent the
same. Neural network-based models were also devel-
oped to predict the weld bead profile.

3.1 Application of a GA to minimize
the weldment area

GA, introduced by John Holland [31], is a population-
based search and optimization tool. The GA works
equally good in either continuous or discrete search
space. It is a heuristic technique inspired by the natural
evolutionary process comprising of a few operators,
namely selection, crossover, mutation, and others. The
evolution starts with a population of randomly gener-
ated individuals in the first generation. In every gener-
ation, the fitness of each individual in the population
is evaluated, compared with the best value, and mod-
ified (recombined and possibly randomly mutated), if
required, to form a new population of solutions. The
new population is then used in the next iteration of
the algorithm. The algorithm terminates when either a

maximum number of generations has been produced
or a satisfactory fitness level has been reached for the
population. Figure 2 shows the working cycle of a GA.

Each side of the weldment (as shown in Fig. 1), was
supposed to be comprised of three third-order curves.
The equations representing the weldment can be writ-
ten as follows:

Y = A10 + A11x + A12x2 + A13x3 (1)

Y = A20 + A21x + A22x2 + A23x3 (2)

Y = A30 + A31x + A32x2 + A33x3 (3)

where A10, A11, A12, A13, A20, A21, A22, A23, A30,
A31, A32, and A33 were the co-efficients to be deter-
mined. The above equations were subjected to various
boundary conditions. The coefficients were determined
by solving 12 equations after putting the boundary
conditions. The equations are shown below in a matrix
form.
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(4)

The fitness f of the GA solution was expressed as the
area of the weld profile bound within the six curves rep-
resenting the contour of the weldment. The GA will try
to minimize the weldment area, after ensuring a maxi-
mum value of the bead penetration. A penalty function
approach was utilized to solve the said constrained opti-

mization problem. In this approach, the fitness function
of a solution (say i-th) is expressed by modifying its ob-
jective function as follows: Fi (X) = fi (X) ± Pi, where
Pi indicates the penalty used to penalize an infeasible
solution. For a feasible solution, Pi was set equal to 0.0,
whereas, for an infeasible solution, Pi was expressed
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Fig. 2 Working cycle of a GA

like the following: Pi = C
∑q

k=1{φik (X)}2, where C indi-
cates the user-defined penalty coefficient and {φik (X)}2

represents the penalty term for the k-th constraint, cor-
responding to the i-th objective function. The penalties
can be either static, adaptive, or dynamic in nature. For
a further detailed discussion on the working principle
of the GA, interested readers may refer to the works of
Chakrabori [32] and Pratihar [33].

In this study, the aim was to optimize the welding
operating parameters, so that the area of the weldment
could be minimized subject to maximizing the weld
penetration. The weldment area was assumed to be
symmetric about the center line. For the sake of sim-
plicity, the origin of the co-ordinate system was as-
sumed to be at the bottom center of the curve.

The above constrained optimization problem was
mathematically stated as follows:

Minimize weldment area
subject to the condition that BP takes the maximum
value and

Vmin ≤ V ≤ Vmax,

Imin ≤ I ≤ Imax,

Smin ≤ S ≤ Smax.

Fig. 3 A schematic view of a
neural network
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A binary-coded GA was used to solve the above
optimization problem. The fitness f of the GA solution
was expressed as the area of the weld profile bound
within the six curves. The minimum value of BW and
maximum value of BP may be obtained by varying the
input process parameters, that is, V, I, and S within
their respective ranges. The GA will try to minimize
the weldment area by pushing the values of both BW
and BP towards their respective minimum values. How-
ever, the aim of the present study is to minimize the
weldment area by maximizing the BP. To solve the said
problem, the concept of penalty term was used. If the
above condition was not maintained by a GA solution,
its fitness value was penalized by using a term given
below.

P = C ×
[(

BW
BWmin

)a

+
(

BPmax

BP

)b
]

, (5)

where a, b , and C were non-negative numbers, whose
values were determined through a careful study.

3.2 Application of BPNN and GANN to predict
the weldment profile

Each side of the curve was assumed, intuitively, to be
consisting of three different curves. The endpoints of
the curves (as shown in Fig. 1) are denoted by O, P1;
P1, P2; and P2, P3, respectively. The coordinates of
three points, P1, P2, and P3, were

( a1
2 , b1

)
,

( a2
2 , b2

)
,

and
(BW

2 , BP
)
, respectively. The symbols: BP and BW

represent bead penetration and width, respectively.
The values of the above coordinates for all 51 (i.e.,
17 × 3) cases were measured and utilized in deriving
the regression equations. The equations were then used
to generate 1,000 test cases at random, which were

Fig. 4 A schematic view showing the working cycle of a GA-NN
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Table 1 Composition of Al-1100

Al Si Fe Cu Mn Mg Ti Cr Ni B Zr V Sb Ga P

98.8694 0.45827 0.13617 0.00983 0.47047 0.01191 0.00083 0.00066 0.00039 0.00039 0.00095 0.00630 0.00059 0.01506 0.00095

utilized to train the network. A neural network (refer
to Fig. 3) was used to predict the outputs. The network
consisted of three layers, namely, input, hidden, and
output. Three inputs were considered in the input layer,
namely, accelerating voltage (V), beam current (I), and
welding speed (S). The output layer had six neurons
carrying information of a1, b 1, a2, b 2, BW, BP. The hid-
den layer had seven neurons. The neurons of the input,
hidden, and output layers were assumed to have the
linear, log-sigmoid, and log-sigmoid transfer functions,
respectively. A fixed value of bias b = 0.00009505 was
added to all the neurons. The connecting weights be-
tween the input and hidden layers were represented by
[V], and those between the hidden and output layers
were denoted by [W]. The values of [V] and [W] lie in
the range of 0.0 to 1.0, whose initial values were gen-
erated at random. A batch mode of training had been
adopted. Mean squared deviation (MSD) in prediction
denoted by E was calculated as follows:

E = 1
S

S∑
s=1

1
M

M∑
m=1

1
2

(
Ts

om − Os
om

)
, (6)

where S denotes the number of training cases, M rep-
resents the number of outputs, Ts

om is the target output
of the mth neuron lying on the output layer corre-
sponding to the sth training case, and Os

om represents
the predicted output of the mth neuron lying on the
output layer corresponding to the sth training case. The
connecting weights [V] and [W] were updated to reduce
the error E during the training of the network.

In the genetic-neural system (GA-NN), the error
in prediction of the network was minimized by using
a GA, in place of the back-propagation algorithm. A
GA-string carries information of the weight values, co-

efficient of transfer functions, etc. The schematic view
of the GA-NN scheme is shown in Fig. 4. A batch mode
of training was adopted, where the whole training set
was passed through a neural network represented by a
GA string. The fitness function f of the GA was ex-
pressed using the same expression of mean squared de-
viation in prediction given in Eq. 6. The population of
GA strings was then modified using the operators like
reproduction, crossover, and mutation. The number of
hidden neurons and bias value were kept the same as
those used in the BPNN. The GA string was found to
be 1,360 bits long. Tournament- selection scheme was
adopted in the model. A uniform-crossover scheme had
been utilized in the GA.

4 Experimental data collection

Bead-on-plate welding experiments were conducted
on a 24-kW EBW machine, indigenously developed
at CDM, Bhabha Atomic Research Centre, Mumbai,
India. Welding was carried out on Al-1100 plates,
whose chemical compositions are shown in Table 1.
Three parameters, namely, accelerating voltage, beam
current, and welding speed were varied during the
experiments. Three levels, such as the maximum, min-
imum, and mid-value, were considered for each input
process parameter, the details of which are shown in
Table 2. A central composite design (CCD) was ob-
tained, in which 23 + 2 × 3 + 3 = 17 combinations of
input process parameters were considered to conduct
the experiments. As three replicates were considered
for each combination of input parameters, a total of
3 × 17 = 51 experiments were conducted. The welded
specimens were cut along the cross sections. They were
then polished and etched to reveal the weldment area.

Table 2 Input process
parameters and their ranges

Inputs Units Coded Un-coded Minimum Mid-value Maximum
symbol symbol value value value

Acc. voltage kV X1 V 60 75 90
Beam current mA X2 I 30 40 50
Weld speed mm/min X3 S 1,000 1,200 1,400
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The specimens were then scanned in a scanner to 12
times of their sizes.

5 Results and discussion

Results related to conventional regression analysis, op-
timization of weld bead geometry, and prediction of the
bead profile are stated and discussed below.

5.1 Regression analysis

Non-linear regression analysis was carried out to es-
tablish input–output relationships of the process. The
obtained response equations are shown below.

5.1.1 Bead penetration

Equation 7 shows the regression equation for bead
penetration, expressed in its coded form.

BPcoded = 5.65913 + 1.68014X1 + 1.86107X2

− 0.49440X3 + 0.07801X2
1

+ 0.14402X2
2 − 0.06054X2

3

+ 0.33712X1 X2 − 0.24639X1 X3

+ 0.01007X2 X3 (7)

A significance test was carried out to investigate the
contribution of process parameters on the said re-
sponse. It was observed that the parameters X1, X2, X3,
X2

2 , X1 X2, and X1 X3 had significant contributions on
BP (refer to Table 3). It is important to mention that
a correlation coefficient of 0.993 was obtained for this
response. The lack of fit, as shown in Table 4, was found
to be significant.

The inter-relationships among various working pa-
rameters and the responses were better revealed in
the surface plots, as shown in Fig. 5. Bead penetration

Table 3 Significance test for BP

Sl. no. Term Coeff SE coeff T p

1 Constant 5.65913 0.04746 119.228 0.000
2 X1 1.68014 0.03508 47.898 0.000
3 X2 1.86107 0.03508 53.056 0.000
4 X3 −0.49440 0.03508 −14.094 0.000
5 X2

1 0.07801 0.06777 1.151 0.256
6 X2

2 0.14402 0.06777 2.125 0.040
7 X2

3 −0.06054 0.06777 −0.893 0.377
8 X1 X2 0.33712 0.03922 8.596 0.000
9 X1 X3 −0.24639 0.03922 −6.283 0.000
10 X2 X3 0.01007 0.03922 0.257 0.799

S = 0.1921 R2 = 99.3% R2(adj) = 99.1%

Table 4 ANOVA test for BP

Source DF Seq SS Adj SS Adj MS F p

Regression 9 200.462 200.462 22.2736 603.41 0.000
Linear 3 195.927 195.927 65.3089 1,769.28 0.000
Square 3 0.349 0.349 0.1162 3.15 0.035
Interaction 3 4.187 4.187 1.3957 37.81 0.000
Residual error 41 1.513 1.513 0.0369
Lack-of-fit 5 0.696 0.696 0.1392 6.13 0.000
Pure error 36 0.817 0.817 0.0227
Total 50 201.976

Fig. 5 Surface plots of BP with V, I, and S (a–c)
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was found to increase with the increase in accelerating
voltage and beam current, whereas it reduced with the
increase in welding speed. Thus, it may be concluded
that, in order to get the maximum bead penetration,
the welding should be done at a lower welding speed
and higher accelerating voltage and beam current. The
above observation exactly matches with that of Table 3.
The un-coded form of BP was found to be as follows:

BPun−coded = −7.29937 + 0.0717787V − 0.171138I

+ 0.00958261S + 0.000780140V2

+ 0.00144023I2 − 0.00000151356S2

− 0.00337119V I − 0.000123193VS

− 0.00000503661IS (8)

The performance of the developed model was tested on
eight cases. The model-predicted BP were compared
with its experimental values for eight test cases and the
values of percentage deviation in prediction were comput-
ed. Figure 6 shows the values of percentage deviation
in prediction of BP for the said cases. It is important
to note that the values of percentage deviation in pre-
diction of BP were lying between −28.15% and 2.30%.

5.1.2 Bead width

The coded form of the regression equation for the
response BW was found to be as follows:

BWcoded = 4.50330 + 0.29119X1 + 0.49422X2

− 0.27003X3 + 0.00973X2
1

+ 0.09896X2
2 + 0.05508X2

3

− 0.07919X1 X2 − 0.08240X1 X3

− 0.11774X2 X3 (9)

Fig. 6 Percent deviations in prediction of BP from the experi-
mental values

Table 5 Significance test for BW

Sl. no. Term Coeff SE coeff T p

1 Constant 4.50330 0.03800 118.496 0.000
2 X1 0.29119 0.02809 10.368 0.000
3 X2 0.49422 0.02809 17.597 0.000
4 X3 −0.27003 0.02809 −9.614 0.000
5 X2

1 0.00973 0.05426 0.179 0.859
6 X2

2 0.09896 0.05426 1.824 0.075
7 X2

3 0.05508 0.05426 1.015 0.316
8 X1 X2 −0.07919 0.03140 −2.522 0.016
9 X1 X3 −0.08240 0.03140 −2.624 0.012
10 X2 X3 −0.11774 0.03140 −3.750 0.001

S = 0.1538 R2 = 93.0% R2(adj) = 91.5%

Analysis was carried out at a confidence level
of 95%. The significance test of BW is shown in
Table 5. The terms X1, X2, and X3 were found to be
significant. All the second-order terms were found to
be insignificant, which clearly stated the prevalence of
linear relationships. However, all the interaction effects
like X1 X2, X2 X3, and X3 X1 were seen to be significant.
The coefficient of correlation was found to be equal to
0.93 for BW. Thus, the model was seen to be statisti-
cally adequate to make further predictions. The lack
of fit was insignificant (refer to Table 6), and it implies
that the insignificant terms could be removed from the
model.

To interpret the inter-relationship amongst different
operating parameters and BW, surface plots were plot-
ted, as shown in Fig. 7. Figure 7a indicates that the bead
width increased with the increase of both accelerating
voltage as well as beam current. From Fig. 7b, it can
be observed that BW increased with the increase in
accelerating voltage and decrease in welding speed.
The BW was also found to increase, when the welding
was carried out at the higher beam current and lower
welding speed, as shown in Fig. 7c. The un-coded form
of the response equation related to BW, as shown in
Eq. 10, was used to test its performance on eight test
cases.

Table 6 ANOVA test for BW

Source DF Seq SS Adj SS Adj MS F p

Regression 9 12.9528 12.9528 1.43920 60.82 0.000
Linear 3 12.0587 12.0587 4.01958 169.86 0.000
Square 3 0.2479 0.2479 0.08264 3.49 0.024
Interaction 3 0.6462 0.6462 0.21539 9.10 0.000
Residual error 41 0.9702 0.9702 0.02366
Lack-of-fit 5 0.2382 0.2382 0.04765 2.34 0.061
Pure error 36 0.7320 0.7351620 0.02033
Total 50 13.9230
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a

b

c

Fig. 7 Surface plots of BW with V, I, and S (a–c)

BWun−coded = −2.35266 + 0.0966160V + 0.0963347I

+ 0.000583644S + 0.0000972885V2

+ 0.000989569I2 + 0.00000137708S2

− 0.000791937V I − 0.0000412001VS

− 0.0000588689IS (10)

The MSD in prediction of BW was found to be equal
to 0.109277. Figure 8 shows the values of percent devia-

Fig. 8 Percent deviations in prediction of BW from the experi-
mental values

tion in prediction of BW, which were found to lie in the
range of −4.47% to 15.8%.

In a similar way, the regression equations (repre-
sented by Eqs. 11 through 14) were developed for other
co-ordinates, like a1, b 1, a2, and b 2. The correlation
coefficients for the co-ordinates were found to be equal
to 0.968, 0.995, 0.953, and 0.993, respectively.

a1 = −8.91098 + 0.306079V + 0.122215I

− 0.00171240S − 0.00143017V2

+ 0.000586272I2 + 0.0000018425S2

− 0.00118376V I − 0.0000350917VS

− 0.0000405610IS (11)

b 1 = −10.9743 + 0.273702V − 0.214996I

+ 0.00438048S − 0.000688303V2

+ 0.00203828I2 + 0.000000509135S2

+ 0.00315302V I − 0.000114171VS

+ 0.00000169463IS (12)

a2 = −1.99449 + 0.113778V + 0.136124I

− 0.00205764S − 0.000113210V2

+ 0.000363211I2 + 0.00000181982S2

− 0.00108518V I − 0.0000320195VS

− 0.0000358773IS (13)

Table 7 Optimized working parameters

Operator Value

Accelerating voltage 80 kV
Beam current 50 mA
Welding speed 1,055.3 mm/min
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Table 8 Optimized weld bead geometries

Bead width 5.7 mm
Bead penetration 10.4 mm

b 2 = −7.75613 + 0.112882V − 0.201489I

+ 0.00854328S + 0.000432734V2

+ 0.00205200I2 − 0.00000166835S2

+ 0.00299155V I − 0.000104147VS

+ 0.00000517494IS (14)

5.2 Optimization of bead geometry

The fitness of the binary-coded GA f was calculated
as the area within the curves representing the weld-
bead profile. The input variables were V, I, and S. As
the performance of a GA is dependent on its operating
parameters, a careful parametric study was conducted.
The following GA parameters were found to give the
best results: probability of mutation pm = 0.001; pop-
ulation size N = 100; maximum number of generation
G = 50. A uniform crossover with probability pc equal

Fig. 9 Parametric study for
BPNN (a–e) a b

c d

e
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to 0.5 was utilized for the said purpose. Through a
careful study, the minimum value of BW (i.e., BWmin)
and maximum value of BP (i.e., BPmax) were found to
be equal to 3.7 and 10.4 mm, respectively. Moreover,
the values of the variables: a, b , and C in Eq. 5 were
found to be equal to 2, 40, and 1, respectively, through a
detailed study. Thus, the penalty term P took the form
shown below.

P = 1.0 ×
[(

BW
3.7

)2

+
(

10.4
BP

)40
]

(15)

The optimal GA parameters were obtained through a
thorough and careful study. The following GA parame-
ters were found to yield the best results: pm = 0.0035;
N = 100; G = 50. A uniform crossover scheme was
utilized for the said purpose.

The GA could find the minimum area of weldment
as 28.6 mm2. It was able to push the bead parameters
like width and penetration towards their minimum and
maximum values, respectively. A combination of the
welding parameters shown in Table 7 could yield the
desired weld geometries, as given in Table 8. However,

it might be a difficult task to determine the most ap-
propriate set of the above parameters, so that the GA
could reach the globally minimum weldment area.

5.3 Bead profile prediction

The regression equations developed in Section 5.1 were
utilized to generate 1,000 training cases at random
by varying the input process parameters within their
respective ranges. These were used to train both the
BPNN and GA-NN separately. Details of the architec-
tures and their results are discussed below.

5.3.1 Back-propagation neural network

A parametric study was carried out to determine the
suitable parameters for neural network, in which one
parameter was varied at a time, keeping the others
unaltered. Figure 9 shows the results of the same. The
number of neurons of the hidden layer, constant term—
a, learning rate, momentum constant, and number of
epochs were adjudged to be 7, 2.5, 0.8, 0.8, and 14,000,
respectively. The same constant term a was used for
the log-sigmoid transfer function in both the hidden

Fig. 10 Parametric study for
GA-NN (a–c)

(a) (b)

(c)
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Fig. 11 Weld bead profiles
predicted by the BPNN and
GA-NN approaches

Test Case BPNN predicted GA-NN predicted
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Fig. 11 (continued) Test Cases BPNN predicted GA-NN predicted
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and output layers of the network. A back-propagation
algorithm was used to train the neural network by
following a batch mode of training.

5.3.2 Genetic-neural system

The back-propagation algorithm was replaced by a GA
in this approach. The following GA parameters were
found to yield the best results (obtained through a care-
ful study, as shown in Fig. 10): pm = 0.0015, population
size = 380, number of generations = 300. A uniform
crossover with probability pc = 0.5 had been utilized.

5.3.3 Comparisons

After optimizing both of the networks, eight test cases
were passed through them for performance evaluation.
The outcomes of both of the networks were the coordi-
nates of the points lying on the bead profile. These data
were utilized in a Matlab script file, which generated
the profiles. For each of eight test cases, BPNN- and
GANN-predicted weld-bead profiles were compared
with their respective actual profiles (refer to Fig. 11).
The actual and predicted profiles were represented us-
ing black-dashed and blue lines, respectively. It is to be
noted that the negative dimensions shown in the above
figure indicate the direction of measurement only. The
GA-NN was found to perform better than the BPNN
in predicting the bead profiles. Being a gradient-based
method, the chance of the back-propagation algorithm
for being trapped into the local minima is greater. On
the other hand, the probability of the GA solutions for
getting stuck at the local minima is less. Thus, GA-NN
was seen to outperform the BPNN in predicting the
weld bead profile.

6 Concluding remarks

Bead-on-plate welding was carried out on Al-1100
plates as per central composite design of experiments.
Regression analysis was conducted to determine input–
output relationships of the process. A constrained
optimization problem was formulated to minimize
weldment area, after ensuring the condition of max-
imum bead penetration. A binary-coded GA with a
penalty term was used to solve the said problem. The
GA was able to reach near the globally optimal solu-
tion, after satisfying the above constraints. Weld-bead
profiles had been predicted using the neural networks.
The GA-NN was found to perform better than the
BPNN. It might have happened due to the exhaustive
search carried out by the GA in the GA-NN approach.
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