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Abstract This article introduces a step-by-step optimiza-
tion method based on the radial basis function (RBF)
surrogate model and proposes an improved expected
improvement selection criterion to better the global perfor-
mance of this optimization method. Then it is applied to the
optimization of packing profile of injection molding
process for obtaining best shrinkage evenness of molded
part. The idea is first, to establish an approximation
function relationship between shrinkage evenness and
process parameters by a small size of design of experiment
with RBF surrogate model to alleviate the expensive
computational expense in the optimization iterations. And
then, an improved criterion is used to provide direction in
which additional training samples could be added to better
the surrogate model. Two test functions are investigated and
the results show that stronger global exploration perfor-
mance and more precise optimal solution could be obtained
with the improved method at the expense of increasing the
infill data properly. Furthermore the optimal solution of
packing profile is obtained for the first time which indicates
that the type of optimal packing profile should be first
constant and then ramp-down. Subsequently, the discussion
of this result is given to explain why the optimal profile is
like that.

Keywords Injectionmolding . Shrinkage evenness . Packing
profile . Radial basis function . Expected improvement

1 Introduction

Injection molding process can be divided into three stages:
filling, packing and holding, and cooling. During packing
and holding stage, additional material is “packed” into the
mold cavity at a high pressure to compensate for part
shrinkage due to cooling and solidification until the gate is
frozen [1]. Packing stage plays an important role on
controlling part shrinkage and overcoming warpage defect
led by uneven volume shrinkage of molded part, and
therefore shrinkage evenness of part can be defined as an
index for the optimization of packing profile.

It is commonly known that the larger the packing
pressure, the smaller are the shrinkage and its evenness.
But packing profile doesn’t only refer to the magnitude of
packing pressure, but also refers to the type of pressure
curve, such as constant, ramp, and the combination of both.
Thus, many researchers have furthered their studies on the
optimization of the type of packing profile along with
pressure magnitude. Chen et al. [2, 3] have studied optimal
packing profile experimentally to achieve most uniform
part quality, and the conclusion has been drawn that the
ramp-down profile of the packing pressure is beneficial to
reduce the cavity pressure difference and improve the part
evenness. However, packing profile is restricted to ramp
type, and the optimal solution obtained from design of
experiment (DOE) is sketchy. Qiu et al. [4] have studied
effects of packing profile on products surface quality with
Moldflow software and found that profile as shown in
Fig. 1 with the type first constant from tf to tc and then
linear fall from tc to te could lead to better surface quality.
But this is not the optimal solution in design space, but only
a conclusion drawn from qualitative analysis.

The optimal solution also called best design of process
parameters can be obtained by classic Taguchi method [5]
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with the merit of easy implementation, but it is only the
best combination of given process levels, and also not the
optimal one in the design space. To solve this problem,
evolution algorithms such as genetic algorithm [6] have
been introduced. However, these strategies are regarded as
too time-consuming to be used in practical applications
because of the large number of objective functional
evaluations with computer aided engineering simulation
during the optimization process.

In order to reduce the computational cost, some
researchers have employed surrogate models in optimiza-
tion procedure, such as artificial neural network [7], kriging
[8] and response surface model [9], to establish a
mathematical approximation for replacing the expensive
simulation analyses. However, a big size of DOE and
additional validation samples are prerequisite for an
accurate surrogate model to find the optimal solution in
one step, which shadows practical applications of these
methods.

Therefore, a small DOE size is expected in order to
reduce computing expense, and consequently some step-by-
step optimization methods have been proposed. A sequen-
tial optimization method has been proposed by [10] based
on kriging surrogate model, which could improve the
surrogate function using a current optimal solution in the
each optimization iteration until the convergence criteria are
satisfied. Thus, the requirement of substantive samples for
modeling is needless, but it may easily get trapped in a
local optimum with this method if the objective function is
multimodal. To make the method with global search ability,
a variance index for measuring uncertainty of predictor has
been introduced by [11] to explore the unexplored space by
finding additional training points. Similarly, expected
improvement (EI) sample selection criterion has been
introduced by [12] and it can be considered as a balance
selection between optimization of the predictor and areas of
maximum uncertainty, but this single infill sample method

is not competent enough to optimize the complicated
multimodal optimization problem.

In this paper, an improved EI samples selection criterion
was proposed based on radial basis function (RBF)
surrogate model for enhancing the global exploration
performance of the method. With this criterion, several
infill data were selected to improve the model, one of which
was the optimum of current predictor and the others were
from the most uncertain areas associated with the predictor.
And subsequently, two simulation applications were inves-
tigated to show the advantage of this criterion compared
with the original one. Finally, this method was applied to
optimize the packing profile for ameliorating the shrinkage
evenness of the molded part. Moreover, the optimal result
was interpreted from technical aspect of injection molding.

2 EI selection criterion base on RBF surrogate model

2.1 Radial basis function interpolation [13, 14]

Given N designs [x1,x2,...,xN] and its corresponding
responses y=[y1,y2,...,yN], a RBF predictor at any point x
in design space is given by

by ¼ bf ðxÞ ¼ XN
i¼1

wif jjx� xijjð Þ ð1Þ

where, ωi is weight coefficient; f �ð Þ is nonlinear basis
function and �k k is Euclidean distance. Defining Φi;j ¼
f jjxðiÞ � xðjÞjj� �

i; j ¼ 1; 2; � � � ;N and provided the inverse
of Φi,j exists, then a prediction byNþ1 made at xN+1 is

byNþ1 ¼ fΦ�1yT ð2Þ

where, f ¼ f jjxNþ1 � x1 jjð Þ; � � � f jjxNþ1 � xN jjð Þ½ �. Through-
out this work, exponentially decaying Gaussian basis
function

fðrÞ ¼ exp
�r2

2s2

� �
ð3Þ

is adopted to facilitate the deviation of EI function, and σ is
an undetermined hyperparameter in (3).

2.2 Expected improvement selection criterion

Assuming that each deterministic response y(x) is the
realization of some Gaussian stochastic process Y(x), then
using the Gaussian distributions of the N responses y
collected so far, the mean and the variance of the assumed
stochastic process at xN+1 are (2) and

s2byNþ1
¼ 1� fΦ�1fT ; ð4Þ

Fig. 1 Idealized sketch of packing profile
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respectively, and σ is used for measuring the uncertainty ofbyNþ1 [15].
EI function is interpreted as the expectation for any point

in design space to be promoted to the optimum. If the
current best function value is Ymin ¼ min y1; y2; � � � ; yNf g,
then the improvement at x is

IðxÞ ¼ max Ymin � yðxÞ; 0f g:

According to the hypothesis of Gaussian distribution,

EðIÞ ¼
ZI¼1

I¼0

I
1ffiffiffiffiffi

2p
p

sðxÞ exp � I � Ymin � byðxÞð Þ
2s2ðxÞ

� �( )
dI :

By using integration by parts, equation above can be
written as

EðIÞ ¼ Ymin � byðxÞð Þ<ðuÞ þ sðxÞyðuÞ
0

�
if sðxÞ> 0
if sðxÞ¼ 0

ð5Þ

where, < �ð Þ and y �ð Þare the standard normal distribution
function and the standard normal density function, respec-
tively, and u ¼ Ymin�byðxÞ

sðxÞ [16].
The first term of Eq. 5 called local term is the prediction

deviation between the Ymin and byðxÞ, penalized by the
probability of improvement. Hence, it is large where byðxÞ is
small. The second term called global term is large where
σ(x) is large and byðxÞ is close to Ymin. Hence, it is large
where there is much uncertainty about whether y will be
better than Ymin. Therefore, EI function can be considered
as a balance between seeking promising areas of the design
space and the uncertainty in the model. EI selection
criterion is just to pick out the point x that makes the value
of EI function (5) maximized.

3 Improved EI selection criterion and its realization

3.1 Improved EI selection criterion

Though global exploration ability is enhanced by EI
criterion, optimization process still easily gets trapped in a
local optimum because only one sample is added into the
training collection in the iteration, and it is a compromise
between global exploration and local exploitation, and thus
we may lose some promising seeking point in this way. An
improved method presented by [13] to boost global
exploration ability is to increase the weight of global term
in (5), but it will bring about another problem that is how to
choose the weight in practical application, which is also
difficult to solve.

To boost the global exploration performance of EI
selection criterion, an improved EI selection criterion
featured by several infill data is put forward. One of these
data is the promising point of current model obtained by
optimizing the local term of Eq. 5 that is

LEðIÞ ¼ Ymin � byðxÞð Þ<ðuÞ; ð6Þ
and the others are the most uncertain points obtained by
optimizing the global term of Eq. 5 that is

GEðIÞ ¼ sðxÞyðuÞ
0

�
if sðxÞ> 0
if sðxÞ¼ 0:

ð7Þ

We call Eq. 6 and Eq. 7 as local expected improvement
(abbreviated as LEI function) and global expected improve-
ment (abbreviated as GEI function), respectively. Thus, the
original EI function (5) is just split into LEI and GEI
functions for optimization to find infill points with the
improved criterion instead of one infill point in the original
criterion, and therefore the improved EI selection criterion
is more suitable for finding the optimum of multimodal
function than the original criterion at the expense of more
infill points.

3.2 Optimization procedure with improved EI selection
criterion

The abovementioned surrogate model optimization proce-
dure with improved EI selection criterion can be illustrated
in Fig. 2 and summarized as below:

(1) Generate initial N samples with DOE method and get
their corresponding objective function values. A
random Latin hypercube experimental design [10] is
used to build these initial samples, because it has
advantages of small sample size and stable results.

(2) Determine the optimal hyperparameter σ of RBF with
leave-one-out cross-validation procedure. After data
normalization, the problem domain of searching for σ
is over the range [10−1, 101], and 20 values of σ
logarithmically spread over the range are considered to
reduce the computation expense of applying leave-
one-out method.

(3) Optimize GEI function with sequential quadratic
programming (SQP) method and find n different xig
with the largest GEI function values, where xig is a
solution in the feasible region of GEI function and n is
the number of global uncertain infill points. One
hundred random initial points are selected for search-
ing the maximums with SQP. Three of the solutions
are selected after optimization with the largest GEI
function values. Then reject xig satisfying GEIðxigÞ < d
and finally get n xig, where, 0 � n � 3. The threshold δ
can affect global exploration performance of optimiza-
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tion method. The larger δ, the weaker is the global
performance.

(4) Optimize LEI function with sequential quadratic
programming method and find xl with the largest LEI
function value, where xl is a solution in the feasible
region of GEI function. And then if LEI xlð Þ > 0 then
m=1, and otherwise m=0, where m represents the
number of local promising infill point and 0 � m � 1.
The optimization procedure is similar as done in step 3,
except that 1,000 random initial points are selected to
guarantee finding the global maximum because of the
multimodal characteristic of LEI function.

(5) Update parameter σ of RBF model. Parameter σ has to
be updated by leave-one-out method with the exten-
sion of training collection. However, it is unnecessary
to update it in the each iteration, so we determine to
renovate it after six data have been added into the

collection since last renovation. Another situation that
calls for renovation is when m=0, which means
promising point doesn’t exist under current approxi-
mate model.

(6) The optimization iteration should be terminated when
no points could be filled for two consecutive times, or
times of iteration exceed upper limit.

4 Simulation results

4.1 Example one

In this case, a two-variable modified Rosenbrock function
[13] is considered for iteration optimization with both EI
and improved EI selection criterion. We choose initial
DOE size N=20 and threshold δ=0.01, and the main
optimization results are listed in Table 1, where three
initial collections are adopted repeatedly due to the effect
on optimization results from distribution of initial samples.
As shown in Table 1, there is no obvious difference
between these two criterions in the number of additional
training points and optimal objective values under initial
collection 1 and 2, but the optimal solutions of improved
criterion are closer to real optimum. However, original
criterion makes the solution trapped in local minimum
with the distance 1.7747 from real global minimum under
initial collection 3, whereas the improved criterion still
works well.

4.2 Example two

In this case, a two-variable Ackley’s path function [13] is
considered for iteration optimization. We choose initial
DOE size N=30 and threshold δ=0.02, and the main
optimization results are shown in Table 2. After iteration,
all the solutions are near the global minimum, and those
solved by improved criterion are much closer at the expense
of increase of number of training points by no more than
twice. However, this expense is much more less than the

Fig. 2 Flowchart of iterative optimization with improve EI selection
criterion

Table 1 Comparison of two optimization methods

Initial collection 1 Initial collection 2 Initial collection 3

EI Improved EI EI Improved EI EI Improved EI

Iteration times 27 14 30 10 15 6

Additional training points 27 29/7/22a 30 29/7/22 15 24/6/18

Minimum objective values −152.13 −153.85 −153.81 −153.9 −150.11 −153.12
Deviation from optimum 0.0349 0.0038 0.0072 0.003 1.7747 0.0438

a Additional training points of improved criterion is explained as total number/EIG’s number/EIL’s number
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traditional one-step modeling and optimization method that
needs a mass of training data.

5 Optimization of packing profile

5.1 Optimization problem

The shrinkage evenness problem was simulated with
Moldflow MPI 6.1, which is a commercial injection molding
process simulation. A rectangular slab of 150 mm by 30 mm
by 2 mm with fan gate shown in Fig. 3 was investigated for
the research, and it was meshed with the fusion type of
mesh. The total number of the elements was 1,950
containing 1,912 triangular elements, 38 beam elements,
and 997 nodes. As a typical semicrystalline material, high-
density polyethylene (Dowlex, IP-10) was selected for its
large dimensional dependence on the packing pressure.

Shrinkage evenness of the slab could be expressed with
variance of volumetric shrinkage results from Moldflow
analysis. Since the length of the slab is much larger than
width, the variance of eighteen locations along the flow
path with approximately equal distance interval as shown in
Fig. 4 was used to represent the evenness of the whole part.
Thus, the shrinkage evenness is determined as

Evenness ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

di � d
� �2
n� 1

vuuut ð8Þ

where, di is the volumetric shrinkage at location i; d is the
average of the shrinkage at different locations; n is the total

number of locations, which is 18 here. It is obvious, that a
smaller value of Eq. 8 represents a better part evenness.

The packing profile is determined by four parameters,
the packing duration te, the initial constant pressure pc, the
turning time tc, and the end pressure pe as shown in Fig. 1.
Therefore, the optimization problem can be written as

find x ¼ te; pc; tc; pe½ �
minmize evennessðxÞ
s:t: 4:5s � te � 7s

100MPa � pc � 120MPa
0 � tc � te
0 � pe � pc

ð9Þ

Types of profile are restricted by constraint conditions of
te and pe to three kinds: constant, ramp-down, and first
constant and then ramp-down. Moreover, te is considered as
input of model as it can be effected by average holding
pressure and its range is determined by gate seal time
under maximum and minimum average holding pressure.
Specially, negative reciprocal of evenness was used as
actual optimization index to magnify tiny differences of
evenness nearby optimum and consequently facilitate
modeling and optimization.

5.2 Optimization results and discussion

As procedures mentioned in Section 3.2, 30 initial samples
were firstly generated with Latin hypercube experimental
design method, and then evenness was gotten with Moldflow
software. Other process parameters besides shape parameters
of packing profile are listed as follows: melt temperature is
220°C, mold temperature is 40°C, and injection velocity is

Table 2 Comparison of two optimization methods

Initial collection 1 Initial collection 2 Initial collection 3

EI Improved EI EI Improved EI EI Improved EI

Iteration times 22 15 30 14 22 23

Additional training points 22 38/10/28 30 37/8/29 22 32/13/19

Minimum objective values 0.2145 0.0532 0.1106 0.073 0.2154 0.0497

Deviation from optimum 0.0817 0.0163 0.0316 0.0215 0.0516 0.0254

Fig. 3 Fusion model of rectangular product and its gating system Fig. 4 Measured points on the part
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40 mm·s−1. Let threshold δ=0.01. Under the above settings,
the optimal solution [7.0, 120.0, 5.5, and 60.8] was obtained
after 14 times iteration with improved EI selection criterion.
The results during iteration are listed in Table 3. The profile
corresponding to the optimal solution is shown in Fig. 5 with
the solid line, and its type is first constant and then ramp-
down, with pc=120 MPa, tc=5.5 s, te=7 s, and pe=
60.8 MPa.

The practical significance of optimal profile is illustrated
in Fig. 6, in which the long and short dashed lines represent
the cavity pressure at points A and B of the part in Fig. 3
while exerting the optimal packing profile. The pressure
starts to rise at about 4.5 s due to the partial solidification of
part’s edge and then the bottom edge of the part (right side

of the point B) is about to solidify totally at 5.5 s, and
before 5.5 s, constant holding pressure should be adopted to
make the part with the least shrinkage. While from 5.5 s to
gate seal (7 s), which is the solidification process of the
whole part, ramp-down profile should be used to reduce the
volume shrinkage difference between far gate and near gate
parts of the molded part and consequentially make the part
evener.

However, actual gate seal time is not 7 s but 6.1 s from
Moldflow analysis results. The reason for that can be
explained by evenness pressure curves under two condi-
tions of te=7 s and 6.1 s with pc=120 MPa and tc=5.5 s
shown in Fig. 7, which are plotted from data generated by
surrogate model. It can be seen that end pressures with
minimum evenness corresponding to the minima of the

0 5.5 6.1 7

60.8

90.5

120

sec

M
P

a

profile of 7s
profile of 6.1s

Fig. 5 The optimal packing profiles in the cases of te equal to 6.1 s
and 7 s

Table 3 Number of training samples, model parameter, and minimum
evenness among training samples for each step of iteration

Cumulative samples EIL/EIG σ Emin

1 30 1/3 1.58 0.03280

2 34 0/3 1.58 0.03280

3 37 1/3 0.89 0.02213

4 41 1/3 0.89 0.02213

5 45 1/3 0.89 0.02194

6 49 1/3 0.89 0.02194

7 53 0/2 0.89 0.02194

8 55 1/0 0.89 0.02141

9 56 – – 0.02141

10 56 3/1 0.79 0.02141

11 60 1/1 0.79 0.02115

12 62 – – 0.02115

13 62 1/0 0.71 0.02115

14 63 – – 0.02004

0 4.5 5.5 7

120

sec

M
P

a

Pressure at A
Pressure at B
Pressure profile

Fig. 6 Cavity pressure at points A and B of part while exerting
optimal packing profile

0 20 40 60 80 100 120
60

50

40

30

20

10

0

end pressure

1/
ev

en
ne

ss

Packing 7s
Packing 6.1s

Fig. 7 Evenness curves with end pressure in the cases of te=6.1 s and
7 s with pc=120 MPa and tc=5.5 s
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curves in Fig. 7 are both between 0 and 120. The optimal
packing profile under te=6.1 s is plotted with dashed line in
Fig. 5, and it can be known that the two curves nearly
coincide with each other. And they are actually the same
profile from technical analysis, since the volume shrinkage
will not be affected by holding pressure after gate seal time.
Therefore, it is easy to infer that infinite number of
solutions exist between the duration 6.1 s and 7 s, whereas
only the solutions under 7 s is found by this step-by-step
optimization method with surrogate model driven by data.
If the solution with the shortest packing duration 6.1 s is
expected, more accurate model and more complicated
optimal parameter setting have to be relied on.

6 Conclusions

In this study, a step-by-step optimization method based on
RBF surrogate model and improved EI samples selection
criterion is proposed and shown to be theoretically sound
and practically applicable to the optimization of the injection
molding simulation process. The modified criterion employs
several additional samples with global exploration and local
exploitation performance to improve the surrogate model in
the each optimization iteration. From the results of the testing
functions and packing profile optimization example, the
modified method proposed can effectively establish the
surrogate model with minimum computational resources and
adaptively search for the global optimal solution for injection
molding.

Based on the optimization results of shrinkage evenness,
the type of optimal packing profile is first constant and then
ramp-down: the initial constant holding pressure should be
the upper limit of pressure; the packing duration should
be more or equal to gate seal time; the turning time should
be the solidification time of the tail end of filled part; end
pressure should be lower than upper limit of pressure. In
practical production, constant holding pressure can be
calculated by the largest clamp force and effective projected
area of part; packing duration can be identified as the time
after which the part weight no longer increases with packing
time; the optimal design of turning time and end pressure
could be simply found by DOE method with shrinkage
evenness or degree of warpage as the optimization index.
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