
ORIGINAL ARTICLE

Assembly line balancing based on an adaptive
genetic algorithm

Jianfeng Yu & Yuehong Yin

Received: 1 February 2009 /Accepted: 19 August 2009 /Published online: 2 September 2009
Springer-Verlag London Limited 2009

Abstract An adaptive genetic algorithm is presented as an
intelligent algorithm for the assembly line balancing in this
paper. The probability of crossover and mutation is dynam-
ically adjusted according to the individual’s fitness value. The
individuals with higher fitness values are assigned to lower
probabilities of genetic operator, and vice versa. Compared
with the traditional heuristic algorithms, the adaptive genetic
algorithm has effective convergence and efficient computation
speed. The computational results demonstrate that the
proposed adaptive genetic algorithm is an effective algorithm
to deal with the assembly line balancing to obtain a smoother
line.

Keywords Assembly line . Balancing . Adaptive
probability . Genetic algorithm

1 Introduction

This paper is focused on the assembly line balancing in the
reconfigurable assembly systems. Different from the normal
manufacturing systems, assembly line balancing (ALB)
problem is showing great importance. The topic of
assembly line balancing is always attached importance by
factory engineers and operation researchers. There are two

kinds of ALB problem. If the cycle time is fixed, the
objective of ALB problem is to minimize the number of
workstations needed (ALB-1 problem), the other is mini-
mizing the cycle time given the number of workstations,
task time, and priority sequence (ALB-2 problem). The
ALB problem belongs to complex NP-hard class of
combinatorial optimization problems. Genetic algorithm
has been proven to be very powerful in finding heuristic
solutions from a wide variety of applications. Some
scientists have studied the assembly line balancing prob-
lems using genetic algorithms [1–6]. Chiang studied the
assembly line balancing with tabu search algorithm [7].
This paper considers two targets of the balancing problem
ALB-1, which are minimizing the number of the work-
stations and balancing the workload between workstations.

2 Genetic algorithm for solving the combinatorial
optimization

2.1 The character of the genetic algorithm

In 1975, John Holland published his book “Adaption in
Natural and Artificial Systems”, which lays a foundation of
genetic algorithms (briefly GAs). Genetic algorithms are an
adaptive global optimization probability search methodol-
ogy, simulating the laws of natural selection and the genetic
evolutionary process. The primary character is the popula-
tion search strategy, information exchanging between the
individuals in the population, and the evolution process is
independent of the gradient information.

Genetic algorithms keep a group of near-optimal
solutions rather than a single-current solution, which are
the greatest difference from the other meta-heuristic
algorithms. In this sense, genetic algorithms have a natural

J. Yu (*)
Mechanical and Electrical Products Testing Center,
Jiangsu Entry–Exit Inspection and Quarantine Bureau,
Wuxi 214174, China
e-mail: robotmcu@126.com

Y. Yin
School of Mechanical Engineering,
Shanghai Jiao Tong University,
Shanghai 200240, China

Int J Adv Manuf Technol (2010) 48:347–354
DOI 10.1007/s00170-009-2281-7

parallelism while simulated annealing algorithm and the
tabu search algorithm approach the optimal solution with a
single solution. GAs are adaptive methods, which, through
many generations, let the natural population evolve by the
natural selection according to the principle “the survival of
the fittest”. Essentially, during selection process, the
individual with higher fitness will have higher tendency to
be selected. The quality of the offsprings are improved in
the evolution process. GA’s ability comes from technical
robustness, so it has been widely applied in the optimiza-
tion problems.

Different from other traditional optimization algorithms,
genetic algorithms deal with a group of individuals which
are the potential solutions, the near-optimal solution can be
searched in the globe solution space. While all the other
methods process a single point in the search space [8].
These kinds of the point-to-point searching algorithms often
fall into local optimal solution of single apex in the multi-
apex distribution searching space. By contraries the genetic
algorithm deals with many individuals of the population at
the same time, which is evaluating many solutions in the
searching space simultaneously. This feature enables the
genetic algorithm to search the space thoroughly and to
take less risk of finding a local optimal solution.

2.2 Basic steps of the standard GA

In order to use the genetic algorithm, the following key
parts are critical to the success of the GA: gene represen-
tation, fitness function design, and probabilities of the
genetic operators. The basic steps are as follows:

Step 1: Representation. Generate the initial population
randomly. The individual coding could be binary
code or real number. These individuals are the
gene of chromosome. The size of the population
could be arbitrarily chosen according to the
complexity of the controlling problem.

Step 2: Fitness evaluation. Decode all the chromosomes
and evaluate the objective function of their
corresponding candidate solution. Calculate the
fitness value of the chromosome according to the
given objective function. The fitness represents its
probability to survive. The greater the fitness of a
chromosome is, the greater the probability to
survive.

Step 3: Genetic operations. Generate a new population by
the repetition of the following:

Selection: select two agnate chromosomes from
the population according to the adaptability. The
higher its adaptability is, the more possible the
chromosome will be chosen. Usually the gambling
wheel selection is used.

Crossover: given the crossover probability, the
crossover agnate generates the new offspring. If
there’s no crossover, the offspring is the exact copy
of the agnate.
Mutation: given the mutation probability, the
mutation occurs in a certain place of a chromo-
some and a new individual is born.

Step 4: Parent selection. Choose pairs of individuals from
the population in such a way that those with
higher fitness will get more copies. Usually the
roulette wheel selection is used.

Step 5: Output. Stopping the calculation cycle and output
the optimal solution of current population if
satisfying the termination criterion; or return to
Step 2.

The nature of GA is the process of dynamic adaptive
calculation. Probabilities of genetic operators in standard
GA are static during the evolution process, which is against
the nature of GA. Adaptive GA is researched, where the
dynamic probabilities of crossover and mutation are used
[9–12]. Higher crossover probability can exploit bigger
solution space, and decrease the possibility of stopping at
the non-optimal solution. The mutation probability enhan-
ces the proportion of new individuals entering the next
generation. If the mutation probability is too low, some
useful gene might not be produced, while if too high, too
many random genes may cause worse quality of the
offsprings compared with their parents. Carefully designing
the probabilities of the genetic operators are an important
topic in adaptive genetic algorithms.

3 Mathematic model of assembly line balancing

Assembly line balancing problem in this paper is defined
as: given a single product, knowing its tasks set and
sequence priority constraint relationships, assembly time of
each task, and cycle time. The objective is minimizing the
workstation numbers and balancing the workload between
them. Precedence relationship is always represented by
topology network, tasks are expressed by nodes, and direct
priority relationships are expressed by arcs.

Cycle time is defined as the maximum time available
for each work cycle, which reflects the efficiency of the
assembly line. When a fixed cycle time is given, all the
workstation must finish its assembly task in the cycle
time.

In the reconfigurable assembly system, workstations are
can be workers or robots, and accomplishing all the
assembly tasks allocated to this workstation. The primary
data of assembly system includes: (1) cycle time, (2)
priority relationship, and (3) assembly time for each task.

348 Int J Adv Manuf Technol (2010) 48:347–354

The ideal model is assumed as: (1) each task must be
allocated to a workstation respectively, (2) none of the tasks
can be allocated twice, (3) operating time on each machine
must be less than the cycle time, (4) if task a is prior to task
b, task b cannot be allocated before the task a.

Genetic algorithms are well adopted in solving ALB
problems [13]. According to the characteristic of ALB
problems, four aspects must be considered during the
design of GA:

1. The individual representation of GA should be fit for
the assembly line balancing.

2. Encoding method should be effective.
3. Simple and practical genetic operators should be

implemented to maintain the feasibility of the solutions.
4. Avoid the premature convergence and slow conver-

gence rates.

4 Adaptive genetic algorithm

Genetic operations determine the convergence rates and
optimal solution searching. Convergence rate is realized by
selection operation, while the optimal solution searching is
achieved by crossover and mutation. At the beginning of
evolution, because of heavier choosing pressure, the
convergence rate is very high. At the anaphase of evolution,
because of the small difference between the fitness of each
individual, convergence rate becomes lower, and premature
convergence may appear. Crossover probability and muta-
tion probability are important factors affecting the perfor-
mance of GA, which can avoid the premature convergence.
The value of parameters in standard GA is unchanged once
determined. Adaptive genetic algorithm introduced in this
paper uses reconfigurable probabilities of crossover and
mutation.

4.1 Encoding

The operation object of GA is gene. The primary job of GA
is encoding. Three encoding methods for assembly line
balancing are introduced [14], e.g., workstation-oriented
representation, sequence-oriented representation, operation-
oriented representation:

Task-oriented representation is implemented in this
paper. Gene of chromosome is expressed by real
number, such as 1, 2, 3,..., n. The length of chromosome,
denoted as n, is the total number of tasks to be arranged.
Each gene represents one assembly task. When encoding,
the diagram of tasks priority constraint is loaded at first, so
every gene satisfies the precedence relationship. Each real
number between 1 and n must and should appear only one
time.

The precedence relationship is represented by a prece-
dence matrix of n×n:

pij ¼ aij
� �

n�n
ð1Þ

Where, aij ¼ 1; task i precedes task j
0; others

�
.

The generation of the initial population must ensure that
every individual is a feasible solution, and we will put
forward the specific steps to create the initial population
according to the precedence constraints.

Step 1: Create initial nodes without precedence relation,
we call it as partial order set; at the same time,
create a new void sequence set.

Step 2: Choose a task node (for example ith node) from
partial order set at random, put it into sequence set,
and set the ith node’s row value to zero. Repeat
above procedure until partial order set is empty.

Step 3: Judge whether the nodes appeared in the partial
order set iterate all the task nodes, if it does, quit
the program, if not, go to Step 4.

Step 4: Look for the node without precedence constraint
and append it to the partial order set, then return
to Step 2.

Note that in Step 3, if all the precedence operations of
the successor tasks have already been appeared in the
sequence set, the individual definitely is a feasible
sequence. If population number is p, then execute the
above steps p times.

4.2 Genetic operation

To improve the adaptability of the population, two basic
operators, crossover and mutation, are employed to modify
the chromosome. The detailed descriptions of the two
genetic operators are as follows.

1. Crossover: crossover operation is the leading method in
creating new individuals in GA. Traditional two-point
crossover or multi-point crossover is not suitable for the
combinatorial optimization problems. Three crossover
operators (PMX, OX, LOX) are very suited for the
combinatorial optimization problems. In the proposed
adaptive genetic algorithm, the Partially Mapped
Crossover operator is used. It solves the irregularity
caused by two-point crossover by repair strategy. It’s
specific steps are as follows:

Step 1: Choose two random cut points of parents, and
we call the strings defined by these two points
as mapped segments

Step 2: Exchange the two segments of the parents,
create a new offspring

Int J Adv Manuf Technol (2010) 48:347–354 349

Step 3: Definite the mapping relation of the two
segments

Step 4: According to the precedence relation, make
the offspring feasible through repair strategy

2. Mutation: after crossover, the mutation operator is
applied to enhance the genetic diversity in the
population and prevents a population prematurely
converging at local minima. The mutation of the
binary system is not effective in the real number
coding, and will cause duplication of the genes. In the
assembly line balancing problem, each gene in the
chromosome should not be repeated to ensure feasible
offsprings. We use a simple and effective mutation
method called the feasible insertion which is to
replace one or more genes in the chromosome. The
procedure may be summarized as follows: we choose
two mutation positions in the chromosome randomly.
If the gene in the first mutation position does have the
sequence constraint relationship with its back neigh-
boring gene, then arrange the two genes in their
inverse order, otherwise, the two genes keep their
original positions. For the gene in the second mutation
position, the same method is used. The concrete steps
are described as follows:

Step 1: Choose a chromosome randomly. For exam-
ple: chromosome 1 3 2 5 4 6.

Step 2: Produce two random number p1 and p2,
which are the mutation positions. If the gene
in the first mutation position does have the
sequence constraint with its back neighboring
gene, then arrange the two genes in their
inverse order, otherwise, the two genes keep
their original positions. For the gene in the
second mutation position, the same method is
used. For example: p1=4, p2=2, moving
backward, the new chromosome: 3 1 5 2 4 6.

Step 3: The offspring chromosome replaces the parent
chromosome.

4.3 The reconfigurable probability of the crossover
and mutation operator

The efficiency and the quality are the contradiction in
the design of the genetic algorithm. Their effect is
controlled by the probability parameter Pc and Pm. In the
standard genetic algorithm, the range of Pc is between 0.5
and 1.0, and Pm often lies between 0.001 and 0.5. The
standard genetic algorithm completely neglects the evolu-
tion of the fitness where the probability of the crossover
and mutation is fixed. In such a circumstance, the
excellent individuals in the population will be destroyed
by the genetic operations. It brings the negative effects in

the efficiency and quality of the algorithm. Crossover
operation is run in every generation, in order to improve
the convergence rate, we could adjust the probability
during the evolution process. That is to say, the higher
fitness of the individual, the lower the probability of their
crossover and mutation, the adaptive probability can
ensure that the algorithm can obtain the optimal solution.
The probability of the genetic operators is adapted by
itself, when the fitness of the individual is increased, the
probability of the crossover and mutation should be
reduced to speed up the convergence; and vice verse
[15–17]. In this paper we give a reconfigurable strategy
for the probability of the crossover and mutation. The
probabilities of the crossover and mutation are outlined
below:

Pc ¼ k1 þ k3 � k1ð Þ* fmax � fcð Þ= fmax � fð Þ; fc � f
k3; fc < f

:

�

ð2Þ

Pm ¼ k2 þ k4 � k2ð Þ* fmax � fið Þ= fmax � f
� �

; fi � f
k4; fi < f

:

�

ð3Þ
In Eqs. 2 and 3, k1, k2, k3, and k4 are all less than 1 to

restrain Pc, Pm between 0.0 and 1.0. fc is the bigger fitness
in two individuals of the crossover. fi is the fitness of the ith
individual in the population. fmax is the maximum fitness of
the current population, f is the average fitness of the current
population.

When GA converges, the difference of the fitness
between the individuals in each population will be
smaller and smaller. The sum of the fitness difference
between the ith individual and other individuals is
expressed as Eq. 4:

C fið Þ ¼
Xn
j¼1

fi � fj
�� ��; i 6¼ j: ð4Þ

The standard fitness difference is equal to the sum of
fitness difference divided by n� 1ð Þmaxj fi � fj

�� �� [10],
which is described as Eq. 5:

~
C fið Þ ¼

P
n
j¼1 fi � fj

�� ��
n� 1ð Þmaxj fi � fj

�� �� ; i 6¼ j: ð5Þ

Thus
~
C fið Þ is between 0 and 1. It is effective to adjust

the mutation probability by
~
C fið Þ, when ~

C fið Þ increased, it
shows that the differences between this individual and the
other individuals in the current population are enlarged, we
should use the higher mutation probability to mutate this
chromosome. According to the above description, we could

350 Int J Adv Manuf Technol (2010) 48:347–354

set the mutation probability of the individual according to
Eq. 6:

Pm ¼ k2 þ k4 � k2ð Þ* fmax � fið Þ* ~
C fið Þ= fmax � f

� �
; fi � f

k4; fi < f
:

�

ð6Þ
Through well-designed parameters according to the

Eqs. 2 and 6, we protect the solution which has high
fitness, while the individuals under the average fitness
should be genetic operated with higher probabilities. The
adaptive probabilities strategy pushes the population to
approach to the optimal solution. Therefore the adaptive
probabilities strategy can prevent premature convergence
and speed up the GA convergence rate. To those individuals
far from the optimal solution, we use the higher value of Pc

and Pm to exploit the searching space; to those individuals
close to the optimal solution, we use the lower value of Pc

and Pm to ensure the algorithm not to converge into the
local optimal solution.

4.4 Multi-population selection operator

We also call selection operator as “reproduction”. Its main
purpose is to produce the new offsprings from the current
population following the principle of “the survival of the
fittest”. So the selection operation should ensure the
individual with high fitness to be chosen, and maintain
the diversity of population in order to prevent the premature
convergence. We enlarge population number by two times
in the selection process. At the same time, using elite
preservation strategy, we search the individual with lowest
fitness in the new population, and replace it by the one with
highest fitness in the parent population. The best individual
in the population always leads the direction of the
evolution. The elite preservation strategy speeds up the
convergence rate.

4.5 Fitness

The fitness is the criterion to represent the ability of the
individual, and it is the foundation of “survival of fittest” in
the genetic algorithm. Therefore, it is the driving power for
the genetic algorithm. In general, the fitness function of the
individual is the objective function. Sometimes, the fitness
function is the transformation of the objective function.

The value of the fitness is usually a positive number. The
greater the fitness of a individual, the higher possibility to
survive. So we should transfer the fitness function into a
maximum problem when dealing with the minimum
problem. Various objective criteria have also been pre-
sented to measure the quality of a scheduling in ALB
problems [18]. In this paper, the objective functions of the

assembly line balancing should be optimized, one is to
minimize the number of the workstations, the other is to
balance the workload between the workstations. However,
two different solutions at the same workstation number may
have different balancing result. For example, one assembly
line has three workstations, and the assembly time for each
workstation is 30–40–50 or 50–20–50. We regard the
solution 30–40–50 is better than 50–50–20, because the
former solution is more balancing than the latter. According
to this, we consider two objectives, the minimized
workstation number and the balanced workstation load.
Thus the fitness function f can be defined as Eq. 7:

f ¼ Smax �
ffiX

n
k¼1 Cmax � Tkð Þ2

q
� 2n ð7Þ

n: the number of workstation, Cmax: the desired cycle time,
Tk: the assembly time of the kth task, Smax: a big constant,
to ensure that the objective function is always non-negative
number.

The first part
ffiP

n
k¼1 Cmax � Tkð Þ2

q
in Eq. 7 is to find

the best balancing solution at the same number of
workstation situation, and we call it as the smoothness
index. When it equals to zero, it denotes that the perfect
balancing is achieved. The second part 2n is to minimize
the number of workstations. Here, we consider it more
important than the first. So the weight factor is 2. The
higher the fitness function, the smaller the number of
workstations, also the more balanced workload between the
workstations.

5 Numerical illustrations

Example 1: Supposed the product’s working procedure as
follows. The productivity of assembly line is
53.33 U/h, the efficiency is 96%, so the cycle
time is 1.08 min, and the task sequence
relationship is illustrated in Fig. 1. Here, we
use the Kilbridge–Wester algorithm [19] and
adaptive GA to allocate the tasks to the
workstations, considering the best workload
balancing and the minimized workstation
number.

The results computed by the heuristic Kilbridge–Wester
algorithm is shown in the Table 1, the results computed by
adaptive GA is shown in Table 2. We can see that all the
tasks allocation is satisfied with t the sequence relationship
shown in Fig. 1.

Compared the Table 1 with the Table 2, we can find that
the two algorithms output the same number of workstation
number, both are five workstations. The tasks combination
allocated by AGA is shown in Fig. 2. The smoothness

Int J Adv Manuf Technol (2010) 48:347–354 351

index from the balancing results of the adaptive GA isffiP
n
k¼1 Smax � Skð Þ2

q
¼ 0:245, while the smoothness index

from the balancing results of the Kilbridge–Wester algo-

rithm is
ffiP

n
k¼1 Smax � Skð Þ2

q
¼ 0:3094. That is to say, the

adaptive GA can produce better balancing effect than the
Kilbridge–Wester algorithm.

Example 2: Supposed the 25 tasks precedence relationship
is shown in Fig. 3. The cycle time for the
workstation is 30 min. Here, we use the
Monte Carlo simulation algorithm [20] and
adaptive GA to allocate the tasks to the
workstations, considering the best workload
balancing and the minimized workstation
number.

The results computed by the Monte Carlo simulation
method is shown in Fig. 4, the results computed by AGA is
shown in Fig. 5. All the 25 tasks are both allocated on the
six workstations.

The smoothness index from the balancing results of the

AGA is
ffiP

n
k¼1 Smax � Skð Þ2

q
¼ 3:316, The smoothness

index from the balancing results of Monte Carlo algorithm

is
ffiP

n
k¼1 Smax � Skð Þ2

q
¼ 4:242. The results show that the

genetic algorithm reduces the smoothness index and thereby
results in a smoother line than Monte Carlo algorithm.

6 Conclusions

This paper puts forward an adaptive genetic algorithm,
carries out further research on the adaptive crossover

Table 1 Stations assigned according to the Kilbridge–Wester method

Workstation no. Task node Assembly time
(min)

Total assembly
time (min)

1 2 0.4 1.0
1 0.2

5 0.3

4 0.1

2 3 0.7 0.81
6 0.11

3 8 0.6 0.92
7 0.32

4 10 0.38 0.65
9 0.27

5 11 0.5 0.62
12 0.12

Table 2 Stations assigned according to the AGA

Workstation no. Task node Assembly time
(min)

Total assembly
time (min)

1 1 0.2 0.7
2 0.4

4 0.1

2 3 0.7 0.81
6 0.11

3 7 0.32 0.62
5 0.3

4 8 0.6 0.98
10 0.38

5 9 0.27 0.89
11 0.5

12 0.12

1

2

3

4

5

6

7

8

9

10

11 12

Fig. 2 Workstation allocation diagram

1

2

3

4

5

6

7

8

9

10

11 12

0.2

0.4

0.7

0.1

0.3

0.11

0.32

0.6

0.27

0.5

0.38

0.12

Fig. 1 Sequence precedence diagram for 12 tasks

352 Int J Adv Manuf Technol (2010) 48:347–354

1

2 5 10

3 6 11 13 14 15 16 17

18 21 23

25 24 22 19

7 8

4 9 12

20

6

6 9 10 5 5 10

8 5

6

10

15 10 124 52 5 5 5

4

5

8 6 6

Fig. 3 Sequence precedence
diagram for 25-task case

Task: 1 2 3 4 6 Task: 5 7 8 10 Task: 9 11 12 13 14 15

Task: 16 17 18 Task: 19 20 21 Task: 22 23 24 25 9

Fig. 4 Tasks assigned
according to the Monte Carlo
simulation method

Task: 1 2 3 4 6 Task: 5 7 8 9 11 Task: 10 12 13 14 15

Task: 16 17 18 Task: 19 20 21 Task: 22 23 24 25 9

Fig. 5 Tasks assigned accord-
ing to the AGA

Int J Adv Manuf Technol (2010) 48:347–354 353

probability and mutation probability. This paper provides
the sequence-oriented coding solution to ensure that
chromosome is subject to the task precedence. Two
computation examples demonstrate that adaptive genetic
algorithm is better than the heuristic Kilbridge–Wester
algorithm and Monte Carlo algorithm in solving the ALB-1
problem. The adaptive genetic algorithm provides an effective
and practical method to solve the ALB-1 problem, which can
results in a smoother assembly line.

Acknowledgement This research work was partially supported by
the National Natural Science Fund of China (Grant No. 60205006).
The authors are grateful to Dr. Song Yin, Jiareng Song, Shiyi Chen,
and Tianpu Han for their help in preparing this paper.

References

1. Kim YK, Kim YJ, Kim Y (1996) Genetic algorithms for assembly
line balancing with various objectives. Comput Ind Eng 30
(3):397–409

2. Sabuncuoglu I, Erel E, Tanyer M (2000) Assembly line balancing
using genetic algorithms. J Intell Manuf 11:295–310

3. Ubinovitz J, Levitin G (1995) Genetic algorithm for assembly line
balancing. Int J Prod Econ 41:343–354

4. Gonçalves JF, Almeida JRD (2002) A hybrid genetic algorithm
for assembly line balancing. J Heuristics 8:629–642

5. Ponnambalam SG, Aravindan P, Naidu GM (2000) A multi-
objective genetic algorithm for solving assembly line balancing
problem. Int J Adv Manuf Tech 16:341–352

6. Aytug H, Khouja M, Vergara FE (2003) Use of genetic algorithms
to solve production and operations management problems: a
review. Int J Prod Res 41(17):3955–4009

7. Chiang WC (1998) The application of a tabu search metaheuristic to
the assembly line balancing problem. Ann Oper Res 77:209–227

8. Khoo LP, Loi MY (2002) A tabu-enhanced genetic algorithm
approach to agile manufacturing. Int J Adv Manuf Technol
20:692–700

9. Oyama A, Obayashi S, Nakamura T (2001) Real-coded adaptive
range genetic algorithm applied to transonic wing optimization.
Appl Soft Computing 1(3):179–187

10. Wu QH, Cao YJ, Wen JY (1998) Optimal reactive power dispatch
using an adaptive genetic algorithm. Electrical Power & Energy
Systems 20(8):563–569

11. Chew EP, Ong CJ, Lim KH (2002) Variable period adaptive
genetic algorithm. Comput Ind Eng 42:353–360

12. Mak KL, Wong YS, Wang XX (2000) An adaptive genetic
algorithm for manufacturing cell formation. Int J Adv Manuf
Technol 16:491–497

13. Wong WK, Mok PY, Leung SYS (2006) Developing a genetic
optimization approach to balance an apparel assembly line. Int J
Adv Manuf Technol 28:387–394

14. Guo ZX, Wong WK, Leung SYS, Fan JT, Chan SF (2008) A
Genetic-algorithm-based optimization model for solving the
flexible assembly line balancing problem with work sharing and
workstation revisiting. IEEE Trans Syst Man Cybern C Appl Rev
38(2):218–220

15. Srinivas M, Patnaik LM (1994) Adaptive probabilities of
crossover and mutation in genetic algorithms. IEEE Trans Syst
Man Cybern C Appl Rev 24(4):656–667

16. Raman S, Patnaik LM (1996) Performance-driven MCM parti-
tioning through an adaptive genetic algorithm. IEEE Trans Very
Large Scale Integr (VLSI) Syst 4(4):434–444

17. Tang HC (2003) Using an adaptive genetic algorithm with
reversals to find good second-order multiple recursive random
number generators. Math Methods Oper Res 57:41–48

18. Guo ZX, Wong WK, Leung SYS, Fan JT, Chan SF (2008) A
genetic-algorithm-based optimization model for scheduling flex-
ible assembly lines. Int J Adv Manuf Technol 36:156–168

19. Ponnambalam SG, Aravindan P, Naidu GM (1999) A comparative
evaluation of assembly line balancing heuristics. Int J Adv Manuf
Tech 15:577–586

20. Nkasu MM, Leung KH (1995) Computer-integrated manufactur-
ing assembly system design. Integr Manuf Syst 6(6):4–14

354 Int J Adv Manuf Technol (2010) 48:347–354

	Assembly line balancing based on an adaptive genetic algorithm
	Abstract
	Introduction
	Genetic algorithm for solving the combinatorial optimization
	The character of the genetic algorithm
	Basic steps of the standard GA

	Mathematic model of assembly line balancing
	Adaptive genetic algorithm
	Encoding
	Genetic operation
	The reconfigurable probability of the crossover �and mutation operator
	Multi-population selection operator
	Fitness

	Numerical illustrations
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

