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Abstract In the past, roughness values measured directly
on machined surfaces were used to develop mathematical
models that are used in predicting surface roughness in
turning. This approach is slow and tedious because of the
large number of workpieces required to obtain the rough-
ness data. In this study, 2-D images of cutting tools were
used to generate simulated workpieces from which surface
roughness and dimensional deviation data were determined.
Compared to existing vision-based methods that use
features extracted from a real workpiece to represent
roughness parameters, in the proposed method, only
simulated profiles of the workpiece are needed to obtain
the roughness data. The average surface roughness Ra, as
well as dimensional deviation data extracted from the
simulated profiles for various feed rates, depths of cut,
and cutting speeds were used as the output of response
surface methodology (RSM) models. The predictions of the
models were verified experimentally using data obtained
from measurements made on the real workpieces using
conventional methods, i.e., surface roughness tester and a
micrometer, and good correlation between the two methods
was observed.

Keywords Prediction . Design-of-experiment . Surface
roughness . Dimensional deviation .Machine vision

1 Introduction

The surface quality and dimensional accuracy of a finished
workpiece are equally important in determining its perfor-
mance in service. The ability to predict the surface quality
even before machining based on the input variables, such as
cutting speed, feed rate, depth of cut, etc., will give
manufactures an advantage in terms of cost saving, shorter
cycle time, and less re-work or rejects. This capability, if
built into automated machines, could also lead to better-
quality products and increases in productivity.

Extensive works have thus been reported over the last
two decades in predicting the surface quality of workpieces
for a given set of machining parameters and tool conditions.
Benardos and Vosniakos [1] reviewed more than 40 papers
on the prediction of surface roughness. Lu [2] reviewed
several methodologies employed for the prediction of
surface profile and roughness and presented the author's
own work on the prediction of surface profile using the
RBF neural network.

In order to develop a methodology to predict the surface
roughness, two general approaches have been attempted
previously. In one approach, the response surface method-
ology (RSM) in combination with design of experiment
(DoE) or regression analysis is used to develop a
mathematical model for predicting the surface roughness
for a given set of input parameters. For instance, Cakir et al.
[3] studied the effects of cutting parameters on the surface
roughness through mathematical models developed using a
series of turning experiments. Fifty-four experiments were
conducted using chemical vapor deposition (CVD) and
physical vapor deposition (PVD) coated tools, and the
surface roughness parameter Ra on each workpiece was
measured. Regression analysis using least squares method
was used to develop linear, second-order, and exponential
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models. Choudhury and El-Baradie [4] used RSM to
develop first- and second-order surface roughness predic-
tion equations. Each experiment was started with a new
cutting tool and the surface roughness was measured using
the tactile roughness tester. Arbizu and Pérez [5] used
factorial design with regression techniques to develop first-
order linear and second-order polynomial models to predict
surface roughness. A similar study was carried out by
Dabnun et al. [6] in the turning of a glass–ceramic
composite.

In another approach, artificial intelligence methods,
particularly neural networks, have been applied to predict
the surface roughness based on the input variables. Karayel
[7] developed a feed-forward, multi-layered neural network
that takes depth of cut, cutting speed, and feed rate as input
parameters to predict the surface roughness in a CNC lathe.
Thirty-five experimental data were used to train the
network. A control algorithm was also developed to
determine the cutting parameters for the desired roughness
value. Risbood et al. [8] used neural network to predict
surface roughness and dimensional deviation of the
workpiece by using the radial acceleration of the tool
holder vibration as feedback.

Although many researchers in the past achieved varying
degrees of success in predicting the surface roughness, both
approaches required extensive experimental work to collect
data in developing the models or training the neural
networks. In most cases, the roughness values were
measured directly using the standard stylus-type (tactile)
roughness testers after machining the workpiece. The data
are then used to develop the models.

In recent years, the development of machine vision
hardware and advanced image processing technology has
opened up new possibilities in the field of tool condition
monitoring. Several researchers employed machine vision
and other optical methods to obtain data that were used in

surface roughness prediction. For instance, Lee and Tarng
[9] predicted the surface roughness in a turning operation
using features extracted from images of the workpiece
surface using a polynomial network. The feature extracted
was the arithmetic average of the gray level intensity of the
image. The polynomial network, based on a self-organizing
adaptive modeling method, was applied to predict the
actual surface roughness of the workpiece using the feature.
Lee et al. [10] used a vision system to predict the surface
roughness of the workpiece using an abductive network.
Two features obtained from the captured images, namely
principal component magnitude squared and standard
deviation of gray level of images, were used as the input
of the network to predict Ra as the output parameter. Ho et
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al. [11] proposed a method to predict the surface roughness
using a machine vision approach. Their method was based
on a neuro-fuzzy system that was able to predict the actual
surface roughness using machining parameters and features
of surface images. Lee et al. [12] established a model to
predict Ra based on an adaptive neuro-fuzzy inference
system (ANFIS). This method was based on features
obtained from the images captured, i.e., spatial frequency,
arithmetic mean value, and standard deviation of gray
levels, without using the machining parameters. All the
machine vision approaches proposed in the past also
required preparation of the real samples used in developing
the models.

One of the main advantages of the machine vision
method is that the images captured can be easily manipu-
lated or analyzed digitally to obtain the desired effects or
extract the required features. In our recent work [13], the
workpiece surface roughness was determined from the 2-D
image of the surface profile captured at high resolution with
the aid of backlighting. This method was proven to be
accurate when compared to the standard stylus-type
roughness tester. The advantages of the machine vision
method in turning studies are that (1) it enables the

measurement of surface roughness to be carried out without
removing the workpiece from the lathe, (2) the measure-
ment can be done rapidly at different parts of the
workpiece, and (3) it is non-contacting. If a high-
resolution camera is used, the vision method of roughness
measurement on turned parts could be even more accurate
than the stylus method because every point on the surface
profile is used for roughness calculation, while the accuracy
of the stylus method is limited by the probe tip radius (2–
3 μm) and the sampling frequency of the instrument.

The potential of the machine vision method is extended
further in this work for the prediction of surface roughness
and dimensional deviation of the workpiece for different
machining conditions. Unlike the conventional (non-vision
based) methods used in the past for surface roughness
prediction, the possibility of using only the 2-D image of
the cutting tools (new or worn) for generating simulated
workpiece profiles from which roughness data are extracted
is demonstrated. Although roughness prediction is well
studied and reported, the prediction of both roughness and
dimensional deviation of the workpiece was reported by
only a few researchers, e.g., [8].

2 System set-up

Figure 1 shows a photograph of the hardware used to
capture the images of cutting tool and surface profile of the
workpiece. A high-resolution (1,296×1,024 pixels) CCD
camera (model JAI CV-A1), a 50-mm lens, a 220-mm
extension tube, a Data Translation (DT3162) frame grabber,
and a Pentium IV (2 GHz) personal computer were used to
capture and digitize the images. A diffused backlight was

(a)                                                         (b) 

(c)                                                   (d) 

Region of interest
         (ROI) 

 

Depth 
of cut  

Fig. 3 a Unworn cutting tool
tip, b worn cutting tool tip after
5 min of machining, c ROI of
worn tool, and d inverted image

Table 1 Variables and levels in the DoE

Low Center High

Coding −1 0 1

Cutting speed (m/min) 170 188 206

Feed rate (mm/rev) 0.2 0.25 0.3

Depth of cut (mm) 0.15 0.2 0.25

Machining duration (min) 0 2.5 5
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used to highlight the contour of the cutting tool. The
horizontal and vertical scaling factors for the output images
were determined using a high-resolution Ronchi ruling (200
line/mm) supplied by Edmond Optics. The horizontal and
vertical scaling factors are 0.93 and 1 μm/pixel, respec-
tively. The field of view of the lens is 1.2 by 1.0 mm.

The machine tool used was a conventional lathe machine
(Pinacho S90/200, Spain). A 70-mm-diameter AISI 304
stainless steel rod was used as the workpiece, which was
machined using uncoated carbide cutting tools (CNGP-12-
04-04_H13A) manufactured by Sandvik, Sweden. The
cutting tools were selected from the G class due to their
closer tolerance. The cutting speed, feed rate, depth of cut,
and duration of machining were changed to obtain different
tool wear patterns and workpiece surface profiles. The
machining time was between 0 and 5 min in dry cutting.

3 Methodology

3.1 Input variables and determination of experiment size
using DOE method

Figure 2 shows the various stages of the algorithm used to
predict the average surface roughness (Ra) and the
dimensional deviation (Dd) of the workpiece. In stage 1,
the appropriate size of the experiment was determined
using Design-Expert software (version 6.0.7) based on
DoE. The input variables, i.e., cutting speed, feed rate,
depth of cut, and duration of machining, were organized in
three levels, i.e., −1 for minimum value, 0 for center value,
and +1 for maximum value. Previous studies have shown
that cutting tool geometry, cutting speed, feed rate, depth of
cut, and tool wear have significant effects on the surface
quality [5, 14–17]. Table 1 shows the machining variables
used to design the experiments at different variable levels.

3.2 Capturing and digital processing of images

In stage 2, the CCD camera was used to capture a 2-D
image of the nose area of the cutting tool and an edge
profile of the workpiece intermittently during machining.
The tool was moved away from the freshly cut surface and
the lathe was switched off before capturing the images.
Compressed air was used to blow off dirt and chips
adhering to the surface of the workpiece and cutting tool.
In stage 3, Wiener filtering was used to recover the images
that were affected by noise. In stage 4, the images were
segmented to separate the object (dark region) from the
background (bright region) using Otsu's thresholding
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Fig. 5 Image of surface profile
of simulated workpiece a before
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chine spindle using a worn
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Fig. 4 2-D schematic shape of workpiece produced on a lathe
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method [18]. Detailed descriptions of the image processing
stages can be found in our previous paper [19]. Figure 3a
and b show the 2-D images of unworn (new) and worn
cutting tools.

3.3 Simulation of surface profile of workpiece

The depth of cut was chosen smaller than 0.25 mm in
order to study the surface quality of the workpiece in a
finish turning operation, where the cutting process uses
only the nose area of the cutting tool. In stage 5, a region
of interest (ROI) in the nose area was cropped automat-
ically. The black pixels (intensity 0) in the nose area
(Fig. 3c) were inverted to white (intensity 1), while the
white pixels were inverted to black, as shown in Fig. 3d, so
that the image can be used for generating the workpiece
profile.

In a turning operation, the surface profile of the
workpiece is created periodically due to the interaction
between the tool feed and workpiece rotation. The
wavelength of the waviness pattern on the surface is equal
to the feed per revolution of the spindle. The combination
of the cutting tool movement and the workpiece rotation
produces a helical pattern as in Fig. 4. The figure shows
that the flank wear land in zone B located on the major
cutting edge (VBB) does not affect the surface roughness of
the workpiece, whereas the flank wear land in zone C
(VBC) affects the roughness significantly due to its direct
contact with the freshly cut surface.

In stage 6, a black rectangle (intensity 0) was created to
simulate the unmachined workpiece as in Fig. 5a. The
height and the length of the rectangle are two optional
parameters defined in the initial part of the Matlab program
developed to generate the simulated surface. The height of
the black rectangle is equal to the height of the cutting tool
image cropped in stage 5, and the length is equal to five
times the feed. The inverted image of the cutting tool in
Fig. 3d was added pixel-by-pixel to the black rectangle.
Figure 5b shows the result of this process. The surface
profile of the simulated “workpiece” was generated in this
manner by moving the reference point along the surface in
steps of 0.3 mm (equivalent to 322 pixels) for a feed rate of

0.3 mm/rev. Figure 5b–d show one wavelength, two
wavelengths, and five wavelengths of surface profile
simulated using this method, respectively. This is equiva-
lent to one, two, and five rotations of a real workpiece. It
was necessary to replicate the profile in this manner so that
at least two peaks occur within the sampling length [20].
This process generates a simulated digital image of the

Table 2 Machining parameters designed using DoE

Test
no.

Machining
duration (min)

Feed rate
(mm/rev)

Cutting
speed
(m/min)

Depth of
cut (mm)

1 0 0.20 170 0.15

2 0 0.30 170 0.15

3 0 0.20 206 0.15

4 0 0.30 206 0.15

5 0 0.25 188 0.20

6 0 0.20 170 0.25

7 0 0.30 170 0.25

8 0 0.20 206 0.25

9 0 0.30 206 0.25

10 2.5 0.25 188 0.15

11 2.5 0.25 170 0.20

12 2.5 0.20 188 0.20

13 2.5 0.25 188 0.20

14 2.5 0.25 188 0.20

15 2.5 0.25 188 0.20

16 2.5 0.25 188 0.20

17 2.5 0.25 188 0.20

18 2.5 0.25 188 0.20

19 2.5 0.30 188 0.20

20 2.5 0.25 206 0.20

21 2.5 0.25 188 0.25

22 5.0 0.20 170 0.15

23 5.0 0.30 170 0.15

24 5.0 0.20 206 0.15

25 5.0 0.30 206 0.15

26 5.0 0.25 188 0.20

27 5.0 0.20 170 0.25

28 5.0 0.30 170 0.25

29 5.0 0.20 206 0.25

30 5.0 0.30 206 0.25

h1 h2

Profile using 
lower feed 

Profile using
higher feed

D1 D2

A

Fig. 6 Schematic of superimposed simulated workpiece profiles for
feed rates f1 and f2

Table 3 Machine tool and other parameters

Machine tool Conventional lathe machine
(Pinacho S90/200, Spain)

Workpiece Alloy steel rod, AISI 304

Coolant Air

Cutting tool Cemented carbide: CNGP-12-04-04_H13A
(Sandvik, Sweden)
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Images of real workpieces Images of simulated workpieces

(b) Sample no. 16

(a) Sample no. 8

(c) Sample no. 23

Fig. 7 Comparison between
images of real workpieces (left)
and images of simulated
workpiece using cutting tool
image (right). a Sample no. 8.
b Sample no. 16. c Sample
no. 23

Table 4 Comparison between average roughness (Ra(r)) and dimensional deviation (Dd(r)) for real workpiece (measured) and the corresponding
values determined from simulated images (Ra(s) and Dd(s))

Sample no. Average roughness values Ra Dimensional deviation

Ra(r) (μm) Ra(s) (μm) ΔRa(r,s) (μm) ΔRa(r,s) % Dd(r) (μm) Dd(s) (μm) ΔDd(r,s) (μm) ΔDd(r,s) %

1 4.3 4.2 0.1 2.3 35 32 3 8.6

2 7.5 7.8 0.3 4 60 58 2 3.3

3 4.8 4.5 0.3 6.2 34 32 2 5.9

4 7.7 7.6 0.1 1.3 57 54 3 5.3

5 5.6 5.8 0.2 3.6 40 44 4 10

6 4.5 4.2 0.3 6.7 35 32 3 8.6

7 7.4 7.6 0.2 2.7 55 56 1 1.8

8 4.5 4.3 0.2 4.4 32 30 2 6.3

9 7.8 8.1 0.3 3.8 60 58 2 3.3

10 6.4 5.9 0.5 7.8 45 44 1 2.2

11 6.2 6.1 0.1 1.6 39 36 3 7.7

12 4.1 4.4 0.3 7.3 32 34 2 6.3

13 5.8 6 0.2 3.4 46 44 2 4.3

14 6 5.8 0.2 3.3 46 42 4 8.7

15 6.3 6.1 0.2 3.2 48 44 4 8.3

16 5.7 6 0.3 5.3 46 50 4 8.7

17 6.3 6 0.3 4.8 48 46 2 4.2

18 6.1 6.2 0.1 1.6 45 46 1 2.2

19 7.6 7.6 0 0 67 64 3 4.5

20 6.4 5.9 0.5 7.8 48 46 2 4.2

21 5.7 5.5 0.2 3.5 46 44 2 4.3

22 4.3 4.4 0.1 2.3 36 34 2 5.6

23 8.1 8.3 0.2 2.5 57 56 1 1.8

24 1.9 2.1 0.2 10.5 13 14 1 7.7

25 1.1 1.2 0.1 9.1 12 12 0 0

26 6.8 6.5 0.3 4.4 50 52 2 4

27 4.3 4.4 0.1 2.3 30 32 2 6.7

28 7.2 7 0.2 2.8 51 48 3 5.9

29 1.6 1.8 0.2 12.5 16 14 2 12.5

30 1.0 0.9 0.1 10 11 10 1 9.1

$Ra r;sð Þ ¼ Ra rð Þ � Ra sð Þ
�� �� $Ra r;sð Þ% ¼ Ra rð Þ�Ra sð Þ

Ra rð Þ

���
���� 100 $Dd r;sð Þ ¼ Dd rð Þ � Dd sð Þ

�� �� $Dd r;sð Þ% ¼ Dd rð Þ�Dd sð Þ
Dd rð Þ

���
���� 100
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workpiece profile in turning when the tool cuts the
workpiece at a known feed rate.

The pixel-by-pixel addition of the tool image to the
simulated workpiece produces an image similar to the
surface profile of the workpiece in an actual machining
operation and is given by:

f5 x; yð Þ ¼ f4 x; yð Þ þ f3 x; yð Þ; ð1Þ
where

f3 (x, y) is the image of the cutting tool from stage 6
of the algorithm.

f4 (x, y) is the image of simulated workpiece before
“machining” (f4 (x, y)=0).

f5 (x, y) is the simulated surface profile of workpiece
after “machining”.

The distance between each tool image added to the uncut
“workpiece” image is equal to the feed in the x direction
(along the axis), while the depth of the image overlap
depends on the depth of cut in the real machining. The
scaling factors obtained by calibration were used to convert
the actual feed and depth-of-cut from millimeters to pixels
because the simulated images have dimensions in pixels.
Figure 5d shows the image of one side of the surface profile
of the simulated workpiece generated using the image of a
worn cutting tool for feed of 0.3 mm/rev. In stage 7 of the
algorithm, the simulated surface profile was cropped to
evaluate the average surface roughness. The cut-off
distance for roughness measurement was 0.8 mm for feed
rates of 0.2, 0.25, and 0.3 mm/rev based on the BS1134-2
(1990) standard [21]. The scaling factors were used to
change the cut-off from millimeters to pixels.

3.4 Surface roughness measurement from simulated
workpiece

In stage 8, the profile of the simulated surface was extracted
using the algorithm published in our previous work [22]
and was used to find the roughness value. In stage 9, the
average roughness (Ra) value was determined by subtract-
ing each point on the profile from its mean line. If equal
spaces of horizontal distances, assumed as 1, 2, … n, have
absolute heights h1, h2, ... hn, respectively, then Ra is given
by:

Ra ¼ h1j j þ h2j j þ h3j j þ . . .þ hnj j
n

¼ 1

n

Xn

i¼1

hij j ð2Þ

The accuracy of the average roughness extracted from a
2-D profile of a real workpiece was verified with a stylus-
type roughness tester and found to be within 10% [22].

3.5 Determination of the dimensional deviation (Dd)
of simulated workpiece

In stage 10, the profile of the simulated workpiece was used
to determine the dimensional deviation Dd (labeled as Dd(s))
caused by different feeds. Figure 6 shows a schematic of
the superimposed profiles for two different feeds (f1 and f2)
machined using a new tool. The difference between
maximum heights of two superimposed surface profiles
Dd gives the dimensional deviation of workpiece due to the
two different feed rates, i.e.,

Dd ¼ D1 � D2 ¼ 2 h1 � h2ð Þ; ð3Þ
where D1 and D2 are the outside diameters of the workpiece
machined using feed f1 and f2, respectively, and h1 and h2
are the maximum heights of two surface profiles (using f1
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and f2), respectively. The maximum heights (h1 and h2)
were determined from the simulated profile. The dimen-
sional deviation obtained from the simulated surface was
compared with that measured from the real workpiece using
a 1-μm-resolution micrometer (Mitutoyo, model 293-153-
30) with an accuracy of ±1 μm.

3.6 Modeling and prediction of surface roughness
and dimensional deviation using response surface
method (RSM)

The response surface method (RSM) is a statistical method
used to model and analyze problems in which several
variables affect the response of interest. RSM is usually
used when the optimization of output response is the

objective of the study. The process yield is the output
parameter (y) via the input variables such as cutting speed
(x1), feed rate (x2), depth of cut (x3), and duration of
machining (x4), which can be written as:

y ¼ f1 x1; x2; x3; x4ð Þ þ "1; ð4Þ
where ε1 represent the noise or error of the response y.

If the expected response is given by

EðyÞ ¼ f x1; x2; :::ð Þ; ð5Þ
then the response surface η is

h ¼ f x1; x2; :::ð Þ ð6Þ
RSM is based on the regression method to find an
approximation surface that is best fitted to the data. The

Table 5 Comparison between average roughness (Ra(a)) and dimensional deviation (Dd(a)) from approximation models and corresponding values
(Ra(r) and Dd(r)) from direct measurement on real workpieces

Sample no. Ra(r) (μm) Ra(a) (μm) ΔRa(r,a) (μm) ΔRa(r,a) % Dd(r) (μm) Dd(a) (μm) ΔDd(r,a) (μm) ΔDd(r,a) %

1 4.3 4.2 0.1 2.3 35 32.6 2.4 6.9

2 7.5 7.8 0.3 4 60 58.1 1.9 3.2

3 4.8 4.5 0.3 6.2 34 32 2 5.9

4 7.7 7.6 0.1 1.3 57 54.5 2.5 4.4

5 5.6 5.7 0.1 1.8 40 42.6 2.6 6.5

6 4.5 4.2 0.3 6.7 35 32.1 2.9 8.3

7 7.4 7.6 0.2 2.7 55 56.6 1.6 2.9

8 4.5 4.3 0.2 4.4 32 30.5 1.5 4.7

9 7.8 8.1 0.3 3.8 60 58 2 3.3

10 6.4 5.8 0.6 9.4 45 42.6 2.4 5.3

11 6.2 6 0.2 3.2 39 34.6 4.4 11.3

12 4.1 4.3 0.2 4.9 32 32.6 0.6 1.9

13 5.8 6.1 0.3 5.2 46 46.8 0.8 1.7

14 6 6.1 0.1 1.7 46 46.8 0.8 1.7

15 6.3 6.1 0.2 3.2 48 46.8 1.2 2.5

16 5.7 6.1 0.4 7 46 46.8 0.8 1.7

17 6.3 6.1 0.2 3.2 48 46.8 1.2 2.5

18 6.1 6.1 0 0 45 46.8 1.8 4

19 7.6 7.5 0.1 1.3 67 62.6 4.4 6.6

20 6.4 5.8 0.6 9.4 48 44.6 3.4 7.1

21 5.7 5.4 0.3 5.3 46 42.6 3.4 7.4

22 4.3 4.4 0.1 2.3 36 34 2 5.6

23 8.1 8.3 0.2 2.5 57 56.5 0.5 0.9

24 1.9 2.1 0.2 10.5 13 14.4 1.4 10.8

25 1.1 1.2 0.1 9.1 12 11.9 0.1 0.8

26 6.8 6.4 0.4 5.9 50 50.6 0.6 1.2

27 4.3 4.4 0.1 2.3 30 32.5 2.5 8.3

28 7.2 7 0.2 2.8 51 48 3 5.9

29 1.6 1.8 0.2 12.5 16 13.9 2.1 13.1

30 1 0.9 0.1 10 11 10.4 0.6 5.5

$Ra r;að Þ ¼ Ra rð Þ � Ra að Þ
�� ��; $Dd r;að Þ ¼ Dd rð Þ � Dd að Þ

�� ��
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equation of this surface should be able to model the responses
of interest using the independent variables (x1, x2, ...). The
second-order or third-order models are more complex than
first-order models to analyze the relationship between input
variables and output parameters. However, the first-order
model is not always a suitable approximation as a true
function to correlate the input variables (x1, x2, ..., xk) and
output values (y1, y2, ..., yk). Therefore, a second- or third-
order model is used to find a suitable approximation model.
The second-order approximation function y is given by

y ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

biix
2
i þ

X

i< j

X
bijxixj þ "; ð7Þ

where β0, βi, βii, and βij are the coefficients of approximation
of second-order function, xi and xj are the input variables,
and k is the number of input variables.

The relationship between the responses and the input
variables is usually assessed using the statistical parameter
R2 value [23]. A value of R2 closer to unity is desirable,
indicating a good fit. In stage 11, the average roughness
Ra(s) and dimensional deviation Dd(s) of simulated work-
pieces obtained from stage 9 and stage 10 were used as the
response values to determine the approximation model.

4 Results and discussion

This section consists of three subsections. In sub-
section 4.1, the average roughness and dimensional
deviation obtained using the approximation model, simu-
lated images, and the actual values measured using the
conventional methods are compared. In sub-section 4.2,
five tests were repeated, and the data obtained using the
simulated images are compared with those obtained using
the approximation models. In subsection 4.3, an attempt to
optimize the output response using RSM for a given range
of input parameters is described.

4.1 Modeling and prediction of surface roughness
and dimensional deviation using 2-D images of cutting tool
and RSM

Several workpieces under different machining conditions
determined using DoE were machined using uncoated
cutting tools to develop the RSM models for Ra and Dd.
The combinations of machining parameters in the DoE
were obtained using Design-Expert (version 6.0.7) software
and are shown in Table 2. When the cutting tools were used
to machine samples 1 to 9, the machining durations were
about 3 to 4 s. Thus, the machining durations for these
samples were not exactly 0 min as shown in the table. Also,

the deviation in machining duration for samples 10 to 30 is
about ±2 s. However, for simplicity, the machining
durations were rounded to 0, 2.5, and 5 min. Table 3 gives
the other machining parameters.

The images of cutting tools and surface profiles of
workpieces were captured for each combination of machin-
ing parameters in Table 2. The image of the tool shows the
nose area affected by nose wear. The simulated surface
profiles were generated using these images as outlined in
section 3.3. Figure 7a–c compare the real and simulated
surface profiles for three workpieces, where the tool images
were chosen from test numbers 8, 16, and 23 in Table 2.
Visual comparison between the surface profiles of simulat-
ed workpieces generated using 2-D images of tools and the
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Fig. 10 Comparison the Ra values between results using surface
roughness tester and approximation model
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Fig. 11 Comparison the Dd values between results using micrometer
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real profile clearly shows their similarity. This shows that
the workpiece profiles can indeed be generated using the
2-D profiles of the worn tool, thus enabling various feed
rates and depths of cut to be easily experimented on with
while generating the images.

The surface roughness Ra(r) and dimensional deviation
Dd(r) for each real workpiece in Table 2 were measured
using a stylus-type surface tester (Mitutoyo, model SJ-
201P) and a 1-μm-resolution micrometer, respectively.
The corresponding values for the simulated workpieces
(Ra(s) and Dd(s)) were also determined using the algorithm.
The results are shown in Table 4. The differences in
surface roughness (ΔRa(r,s)) and dimensional deviation
(ΔDd(r,s)) between the real and simulated images are also
shown in the same table. The mean and standard deviation
in the differences for ΔRa(r,s) from 30 results are 0.21 and
0.11 μm, respectively. Meanwhile, the mean and standard
deviation in the differences for ΔDd(r,s) are 2.2 and
1.03 μm, respectively. Expressed as a percentage of the
values measured on the real surface, the mean difference
in average roughness from the 30 tests is 4.7%, thus
showing that the accuracy of the roughness measured
using the profile of the simulated workpiece is acceptable.
The occasional large differences (e.g., samples 24, 29, and
30) could be due to several factors, including machine
harmonics. Also, the mean difference (in percentage) in
dimensional deviation between measurement from the real
workpiece and the simulated profile is 5.7%. The small
difference also shows that the proposed method is suitable
for evaluating the dimensional deviation Dd using the
simulated workpiece.

Figure 8 compares the Ra(r) and Ra(s) values and Fig. 9
compares the Dd(r) and Dd(s) values for the 30 samples. The

R2 values were 0.985 and 0.977 for roughness and
dimensional deviation, respectively. The close correlation
indicates that the differences between the values obtained
from the real workpieces and those obtained using the
simulated images are small.

In the next step, the tool box of RSM in Design-Expert
was used to generate two mathematical models that relate
the input variables (duration of machining, feed rate,
cutting speed, and depth-of-cut) and output parameters,
namely average, roughness and dimensional deviation. The
Ra(s) and Dd(s) values from the simulated workpieces
(Table 4) were used as the output parameters, while the
input parameters are as given in Table 2.

For the second-order approximation model, the initial
results showed that the difference between the predicted
output and those obtained from direct measurement (Ra(r)

and Dd(r)) was found to be up to 30%. Due to the large
difference, the third-order model was finally adopted. The
R2 parameters for the third-order model were 0.997 for
average roughness and 0.989 for dimensional deviation,
indicating a good fit. The equations for the approximation
models for predicting average roughness (Ra(a)) and
dimensional deviation (Dd(a)), respectively, are given by

Ra að Þ ¼ 6:14þ 0:35t þ 1:6f � 0:1c� 0:2d � 0:119t2

� 0:269f 2 � 0:269c2 � 0:569d2 � 0:575tf

� 1:18tc� 0:125td � 0:525fc� 0:05fd

þ 0:075cd � 0:437t2f � 0:988t2c

þ 0:0875t2d � 1:49tf 2 � 0:513tfc� 0:113tfd

þ 0:0125tcd þ 0:137fcd ð8Þ

Sample no. Machining time Feed rate (mm/rev) Cutting speed (m/min) Depth-of -cut (mm)

11 2 min 30 s 0.25 170 0.20

12 2 min 30 s 0.20 188 0.20

15 2 min 30 s 0.25 188 0.20

20 2 min 30 s 0.25 206 0.20

28 5 min 0 s 0.30 170 0.25

Table 6 The random machining
parameters used to verify the
capability of approximation
models

Sample no. Ra(s) (μm) Ra(a) (μm) ΔRa(s,a) (μm) ΔRa(s,a) (%)

11 6.5 6 0.5 7.7

12 3.8 4.3 0.5 13.2

15 5.7 6.1 0.4 7.0

20 6.4 5.8 0.6 9.4

28 6.5 7 0.5 7.7

Mean of differences 0.5 9.0

Table 7 Comparison of average
surface roughness between
results obtained from approxi-
mation model and measurement
on image of real workpieces

$Ra s;að Þ ¼ Ra sð Þ � Ra að Þ
�� ��;

$Ra s;að Þ %ð Þ ¼ Ra sð Þ�Ra að Þ
Ra sð Þ

���
���� 100
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Dd að Þ ¼ 46:8þ 4t þ 15f þ 5c� 0:000d � 0:211t2

þ 0:789f 2 � 7:21c2 � 4:21d2 � 4:25tf

� 7:25tc� 0:75td � 2:75fc� 0:25fd

þ 0:75cd � 6:75t2f � 12:8t2c� 0:75t2d

� 12:3tf 2 � 2:75tfc� 0:75tfd þ 0:25tcd

þ 0:75fcd; ð9Þ
where t is the duration of machining, f is the feed, c is the
cutting speed, and d is the depth of cut, as in Table 1 (all are
coded values). The coefficients of the coded variables show
which variable affects the output parameter significantly.
The equations can be used to predict the roughness and
dimensional deviation if the input values are known.

Equation 8 shows that feed rate affects the surface
roughness of the workpiece significantly because the
coefficient of f (1.6) is larger than the coefficient of t, c,
and d. The published reports of other researchers also
showed the importance of feed rate on Ra [14, 24, 25].
Meanwhile, the equation shows that cutting speed alone
does not affect the surface roughness significantly because
the coefficient of c is only about 0.1. The results published
in the literature agree on the effect of cutting speed on the
surface roughness of the workpiece where the duration of
machining is fixed. The papers published by Ozel and
Karpat [24] and Choudhury and Bartarya [16], where the
same duration of machining was used to study the effect of
machining parameters on Ra, showed that the effect of
cutting speed on Ra is not significant. However, the
combination of t and c affects the surface roughness
significantly because the coefficient of tc is 1.18 and
coefficient of t2c is 0.988. Fang and Dewhurst [25] reported
that the cutting speed affects Ra when the machining
process was carried out for different machining durations,
i.e., t was not fixed. The results obtained for different
durations of machining (0, 2.5, and 5 min) in this study
agree with their findings. Thus, it can be concluded that, for
the same duration of machining, cutting speed does not
affect the average roughness Ra significantly, but it affects
Ra when different durations of machining are used due to
the different amounts of tool wear. Also, the equation

Sample no. Dd(s) (μm) Dd(a) (μm) ΔDd(s,a) (μm) ΔDd(s,a) % (μm)

11 30.1 34.6 4.5 15.0

12 36.3 32.6 3.7 10.2

15 50.9 46.8 4.1 8.1

20 40 44.6 4.6 11.5

28 42.7 48 5.3 12.4

Mean of differences 4.4 11.4

Table 8 Comparison of dimen-
sional deviation between pre-
dictions of approximation model
and results obtained from real
images of workpieces

$Dd s;að Þ ¼ Dd sð Þ � Dd að Þ
�� ��;

$Dd s;að Þ %ð Þ ¼ Dd sð Þ�Dd að Þ
Dd sð Þ

���
���� 100

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Fig. 12 Comparison between the binarized images of cutting tools
described in: a–e sub-section 4.2 (samples 11, 12, 15, 20, and 28,
respectively) and f–j sub-section 4.1 (samples 11, 12, 15, 20, and 28,
respectively)
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shows that a combination of t and f2 affects Ra significantly.
Thus, feed affects Ra alone or in combination with duration
of machining. However, the depth of cut does not affect Ra

significantly. This agrees with the results published by Jiao
et al. [26].

Equation 9 shows that the effect of feed rate on the
dimensional deviation of the workpiece is greater compared
to the other variables. However, the coefficients in the
equation show that the combination of machining duration
and cutting speed affects the dimensional deviation greatly.
The effect of variable d on the dimensional deviation is also
not significant. Thus, Eqs. 8 and 9 show that the effect of
machining duration, feed rate, cutting speed, and depth of
cut on Ra and Dd more and less follow the same trend.

The predicted values for Ra(a) and Dd(a) from Eqs. 8 and
9 are shown in Table 5 for all the 30 samples and were
compared with the values obtained by direct measurement
on the real workpiece. Figures 10 and 11 show that values
of Ra and Dd from the approximation models and those
from direct measurement are close because of the high R2

values. The absolute difference ΔRa(r,a) between Ra

obtained using stylus roughness tester and the approxima-
tion model are also shown in the table. The mean and the
standard deviation of these differences are 0.22 and
0.14 μm, respectively. Also, the mean and the standard
deviation for ΔDd(r,a) are 1.91 and 1.12 μm, respectively.
The corresponding mean deviation in percentage for ΔRa(r,a)

is 4.8%, while that for ΔDd(r,a) (%) is 5.1%.
The small mean and standard deviations values for

ΔRa(r,a) and ΔDd(r,a) from the 30 data show that the
relationship between the input variables and output varia-
bles can be modeled accurately using the RSM developed
using data extracted from the simulated workpiece surface.
Thus, the 2-D images of cutting tools can be used to
simulate the workpieces from which surface roughness and
dimensional deviation can be determined, i.e., it is not
necessary to extract the data from the actual workpiece in
developing the models.

4.2 Comparison between prediction of approximation
models and measurement from real images in a repeated
run

The mathematical models in Eqs. 8 and 9 can be used for
predicting the surface roughness and dimensional deviation
of the workpiece when the machining parameters are
known. In order to verify the capability of the approxima-
tion models in predicting these values, a new set of tests
was arranged randomly among the 30 experiments shown
in Table 2. Table 6 shows the tests chosen by using random
sampling. The new set of experiments based on the data
was carried out and the image of cutting tool for each test
was captured in-cycle.

The values of Ra(r) and Dd(r) determined from the images
of real workpiece profiles in the new set of experiments
were compared to those predicted by the models (Tables 7
and 8). The binarized images of cutting tools (for test
numbers 11, 12, 15, 20, and 28) are shown in Fig. 12a–e.
Similar images of cutting tools used in the study described
in sub-section 4.1 to develop the approximation models are
shown in Fig. 12f–j. Comparison between the two sets of
images shows that tool wear pattern under the same
machining condition is not exactly the same, although the
machining was repeated. This is suspected to be due to the
non-homogeneous characteristics of cutting tool and work-
piece that affect the surface profile, and also due to random
vibration during cutting. Thus, the values of Ra(r) and Dd(r)

can be expected to be slightly different from those predicted
by the mathematical models (Ra(a) and Dd(a)) generated with
a different set of cutting tool images.

The data predicted by the models, i.e., Ra(a) and Dd(a), for
the new set of experiments are also shown in Table 7 and 8.
The mean difference of average roughness between the
values obtained using the real images and those predicted
by the approximation model (ΔRa(s,a)) is 9% (Table 7).
Also, the mean difference of dimensional deviation (ΔDd(s,a))
between the real images and the approximation model is

Table 9 The optimized machining variables

Variables set no. Machining time Feed rate (mm/rev) Cutting speed (m/min) Depth of cut (mm) Ra (μm)

1 9 min 28 s 0.30 182 0.186 3.14

2 9 min 01 s 0.29 184 0.204 3.46

3 9 min 59 s 0.29 185 0.201 3.02

4 8 min 49 s 0.27 189 0.226 3.94

5 8 min 23 s 0.30 183 0.195 3.87

6 8 min 20 s 0.26 192 0.247 3.53

7 8 min 32 s 0.29 187 0.217 3.21

8 9 min 29 s 0.26 191 0.238 3.15

9 9 min 23 s 0.24 192 0.249 3.98

10 9 min 11 s 0.30 182 0.191 3.94

224 Int J Adv Manuf Technol (2010) 48:213–226



11.4% (Table 8). These results show that the models can
predict the surface roughness (Ra) and dimensional deviation
(Dd) reasonably well. Thus, the surface profile of the
workpiece can be generated using the 2-D images of the
cutting tool alone to determine the parameters required to
develop the model. It is not necessary to measure the values
of Ra and Dd directly from the real workpiece to generate the
models. When only new cutting tools are considered or if the
tool wear is negligible, the values of Ra and Dd can be
obtained even without actual machining.

The small difference between the results from the real
images of the workpiece and the approximation model are
suspected to be due to inaccuracy and instability of the
lathe machine during machining. Part of this deviation
could also be due to non-homogenous workpiece and
cutting tool materials. The limited resolution of the CCD
camera used, which was about 1 μm/pixel, could be another
reason for this deviation. Also, the results obtained from 12
different samples produced using the conventional lathe
machine showed that the deviation in the values Ra and Dd

(in different locations of one sample) can vary up to 8.6%
and 12.9%, respectively. Thus, use of a higher-resolution
CCD camera and a more stable and accurate lathe machine
is recommended to increase the accuracy of the results.

4.3 Optimization of the roughness value using RSM

Optimization of the output response is one of the goals of
RSM. To achieve this, the range of desirable output
responses and duration of machining were defined using
Design-Expert software. The range for Ra was set arbitrarily
between 3 and 4 μm. Also, the time of machining was
limited between 8 and 10 min. These ranges were defined
in order to control the surface quality of the workpiece. Ten
groups of machining variables to fulfill the desirable output
responses were obtained using Design-Expert software and
are shown in Table 9. Use of each series of machining
variables shown in Table 9 should give the desired Ra
values. The results show that the RSM models can be used to
predict suitable values of feed rate, cutting speed, and depth
of cut to obtain a desirable surface quality. The results also
show that the values of Ra can be controlled using the
proposed method to attain the required surface quality, which
is one of the important aims of finish turning.

5 Conclusion

This study has shown that data extracted from images of a
workpiece that are digitally simulated using the 2-D profile
of cutting tools can be used for generating mathematical
models to predict the average roughness and dimensional
deviation of the turned workpiece. Unlike previous work on

the prediction of surface roughness in turning, where data
extracted from the actual workpieces were used for
developing the models, the proposed method requires only
an image of the cutting tool to obtain the required data. By
using an image of the tool, the workpiece profiles
corresponding to different feed rates can be simulated,
from which roughness and dimensional deviation can be
determined. This removes the tedium associated with actual
machining of the workpiece for different feed rates and
direct measurement of roughness and dimensional devia-
tion. The mathematical models developed were successfully
used to predict the average roughness and dimensional
deviation in randomized cutting operations.
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