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Abstract The concept of directional factor for chatter
stability analysis has been used from a long time ago. The
analysis of its evolution for different feed directions in
milling processes provides a good way of selecting the best
cutting conditions. For very stable cutting directions,
corresponding to very low directional factors, the single
frequency analysis gives unacceptable results and multi-
frequency, or alternative solutions as semi-discretisation
must be used. It is found also that the period doubling lobes
extend at both sides of the tooth pass frequency equivalent
to twice the natural frequency. In these cases, helix angle
has a very important effect on the stability. For end milling
processes, where the mill axial pitch can be of the order of
the stable limit depth of cut, a very stable situation is found
except in those areas corresponding to period doubling,
where instability islands are found. Besides, a graphical
construction for accurate estimation of the stable limit depth
of cut and starting rotational speed of the period doubling
lobes is proposed.
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1 Introduction

The first theories explaining the uprising of chatter as a
regenerative phenomenon were developed by Tobias and

Fishwick [1] and by Tlusty and Polacek [2]. Later, Merrit
[3] interpreted the system as a feedback process, what
simplified the understanding. Since those days, the concept
of directional factor was used as a way to quantify the
projections of cutting force to mode direction and of mode
direction to chip thickness.

For milling processes, where these geometrical projec-
tions vary constantly, Opitz [4] and Tlusty [5] proposed two
alternative ways of calculating ‘equivalent’ directional
factors. By means of them, limit depth of cut diagrams for
milling, for one degree of freedom systems, could be
obtained.

Much more recently, Altintas and Budak [6] showed the
way of obtaining the lobe diagrams for milling processes
for systems with two or even three degrees of freedom. In
this case, they worked on a Cartesian base and did not use
the concept of directional factors. Instead, they used a
directional matrix, which is more difficult to be interpreted.
This directional matrix was developed in a Fourier series in
the harmonics of the rotation frequency. The system was
simplified by considering the zero order term of the Fourier
series only.

Later, Budak and Altintas [7] developed the solution for
obtaining the lobe diagram of milling processes including
more than one term of the Fourier series development. This
approach gives rise to the so-called multi-frequency solution,
in which chatter vibration has several frequency components
separated by the cutting frequency.

Other developments by Davies et al. [8], Insperger and
Stépán [9, 10] and Bayly et al. [11] obtained the stability
limits using different methods in the time domain, by
separating the solution between the forced part and the
stability problem, giving rise to an eigenvalue system.
These methods showed that in milling with low radial
immersion new instability areas, period doubling or flip
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lobes appear. Later, Merdol and Altintas [12] showed that
the multi-frequency solution can also be used in order to
obtain the period doubling instability.

By using the multi-frequency approach, Zatarain et al.
[13] showed that the helix of the tool produces the
transformation of the added lobes into instability islands.
Insperger et al. [14] arrived to the same conclusion by using
the semi-discretisation method.

All these modern developments have forgotten the
concept of directional factor. Indeed, they all, or almost
all of them, considered systems with modal displacements
parallel to one of the coordinate axes. For modes coming
from the deformation of the tool or of the main spindle, this
approach seems reasonable, but for structural modes, it is
not possible to accept such a simplification.

Lobe diagrams for milling with modes in directions not
parallel to the Cartesian axes could be obtained by using
directional matrices, but an approach by means of direc-
tional factors is more natural and intuitive. Indeed, it gives
the possibility of easily estimating stable limit depths of cut
without the need of using computers and specially
developed software systems.

2 Directional factors in time independent systems

In a time-invariant system with a single mode, like the
turning process shown in Fig. 1, the effect of the cutting
force on the modal displacement is obtained by including
the cosines of the angle between force and mode direction,

::
qþ 2� z � wn � :

qþ w2
n � q

� � ¼ f� f � cos a ð1Þ

where q is the modal participation (displacement), ωn and ζ
are, respectively, the natural frequency and damping ratio,
φ is the tool-work relative mode amplitude for a unit modal
mass, f is cutting force and α is the angle between force and
mode displacement direction.

The chip thickness is obtained by adding up the static
chip thickness, due to the feed per revolution, with the
dynamic component coming from the modal displacement.
The static component gives rise to a constant force, which
does not influence the dynamic stability. As a consequence,
it is possible to consider only the dynamic component,
which is calculated by including the current and the
previous revolution displacements,

h ¼ �f� qðtÞ � q t � tð Þð Þ � cos b ð2Þ

where β is the angle of the mode displacement and the chip
thickness directions.

The dynamic component of the cutting force is obtained
by multiplying the dynamic chip thickness by the cutting
coefficients,

ff g ¼
kt
kr
ka

8<
:

9=
;b� h ¼ kt �

1
rr
ra

8<
:

9=
;� b� h

¼ kc �
rt
rr
ra

8<
:

9=
;� b� h ð3Þ

In Eq. 3, two different alternatives are proposed: that of
using the tangential cutting force coefficient kt and that of
using the total force coefficient kc. The choice of one or the
other has a direct influence on the values of the directional
factors that will be obtained, but of course, the final result is
unaffected.

Combining Eqs. 1, 2 and 3

::
qþ 2� z � wn � :

qþ w2
n � q

� �
¼ �f2 � b� kc � yc � qðtÞ � q t � tð Þð Þ
¼ �f2 � b� kt � y t � qðtÞ � q t � tð Þð Þ

yc ¼ cos a � cos b � directional factor based on kc

y t ¼ cos a � cos b=rt � directional factor based on kt

ð4Þ
In Eq. 4, directional factor was defined as the product of the
cosines of the angles, α, between cutting force and modal
direction and β between modal direction and chip thickness
direction, as shown in Fig. 1.

Applying the Laplace transform to Eq. 4, and taking into
consideration that f2 ¼ 1=m, m being the mass reduced to
the modal relative displacement between tool and work-
piece:

m� s2 þ 2� z � wn � sþ w2
n

� �� Q

¼ �b� kc � yc � Q� 1� e�s�tð Þ ð5Þ

α

β

direction of reduction 
of chip thickness

Mode 
displacement

cutting force

Fig. 1 Cutting force and mode and chip directions
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The stability lobe diagram is obtained by solving Eq. 5
to obtain pure imaginary solutions for the Laplace variable
s. For that, we substitute s by jω, and operating:

b ¼ �1

2� kc � yc � R
ð6Þ

where R is the real part of the transfer function

Δ
F

¼ 1

m� s2 þ 2� z � wn � sþ w2
n

� � ð7Þ

From Eq. 6, it is clear that, provided that the directional
factor is positive, the real part of the transfer function must
be negative for the limit depth to be a positive value. That
means that the lobes will start at the condition where the
vibration frequency gives rise to real part of transfer
function equal to zero, for which the limit depth is infinite,
and then continue through the left part of the Nyquist
diagram, that is, higher vibration frequencies. The
corresponding rotation frequency is obtained by the
equation:

tan
w� t
2

� �
¼ I

R
ð8Þ

where R and I are the real and imaginary parts of the
transfer function, ω is the vibration frequency and τ is the
period of the rotation, inverse of the frequency in Hz.

It is well known that the absolute minimum stable depth
of cut is obtained for the vibration frequency that produces
the maximum negative value of the real part of the transfer
function. For small damping factors, which are the general
cases in machine tools so that frequency can accurately be
estimated by

w ¼ wn � 1þ zð Þ ð9Þ
and the value of the real part is:

R ¼ �1

4� k � z � 1þ zð Þ ð10Þ

where k is the stiffness of the mode reduced to the relative
displacement between tool and part.

As a consequence, the absolute minimum stable depth of
cut is

b ¼ 2� k � z � 1þ zð Þ
kc � yc

ð11Þ

2.1 Evolution of directional factors with mode direction

From Fig. 1, it becomes clear that for different mode
directions, the value of the directional factor will be
different. Figure 2 shows this evolution. Whenever the

mode is perpendicular to the resultant cutting force, or to
the chip thickness direction, the directional factor will null.

For some mode directions, the directional factor will
become negative (see Fig. 2). It is possible to understand
negative directional factors as cases in which the cutting
force produces a mode displacement tending to further
penetration of the tool into the workpiece. Positive
directional factors mean that the cutting force tends to
produce separation of the tool from the workpiece.

As the absolute limit depth of cut is inversely propor-
tional to the directional factor, situations with very small
directional factors will produce very stable processes.

2.2 Adimensional lobe diagrams

For single-mode systems, it is possible to work with
adimensional lobe diagrams, by normalising the rotation
frequency by the natural frequency, and the limit depth of
cut by the product 2� k � z � 1þ zð Þ=kc � yc where k is
the stiffness of the mode, equal to m×ωn

2. In this way, the
diagrams only differ when damping is changed, and the
absolute limit depth of cut is always 1. Figure 3a shows
the lobes diagram for a system with positive directional
factor. Figure 3b shows the zero-order lobe for three
different values of damping ratios.

As was shown before, directional factors can have negative
values, whenever the projection of the cutting force on the
mode direction produces an increase in chip thickness, that is,
when the cutting force produces penetration of the tool into
the workpiece. This is not an uncommon case, but it seems
that it has been paid very little attention in the bibliography.

Negative directional factors produce a change in the
frequency range at which chatter can arise. In this case,
chatter frequencies are lower than the natural frequency.
Figure 4a shows the lobe diagram of a system with negative
directional factors, and Fig. 4b shows the zero-order lobe
for different values of damping ratio.

It is interesting to note that by calculating the directional
factor, it is possible to exactly obtain the absolute minimum
limit depth of cut, both for positive and negative factors.
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Fig. 2 Dependency of directional factor with mode direction
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3 Directional factor for milling processes

Milling processes are characterised by the variation of the
geometry of the process as the tool rotates, as shown in
Fig. 5. That gives rise to a much more difficult problem to
solve than that of continuous processes like turning.

The extrapolation of the equation of limit stable depth of
cut for continuous processes to the discontinuous process of
milling should consider the proportion of time in cut to the
total time and also the number of teeth of the mill. The
transformed equation could be written as:

b ¼ �1

2� kc � yc � Δu
2�p � z� R

ð12Þ

where Δυ is the arc in cut (angular distance between start
angle and exit angle), and z is the number of teeth of the
tool.

As in milling processes, the directions of the cutting
force and of the chip thickness change constantly, also the
value of the directional factor changes. Opitz [4] proposed
to use the average of the directional factor in the cutting
arc:

yav ¼
1

uex � ust

Z
ex

ust

y � du ð13Þ

Later, Tlusty [5] proposed to use the geometric mean of the
directional factor, or in other words, calculate the direc-
tional factor for the middle of the immersion:

u0 ¼ ust þ uex
2

ð14Þ

Altintas et al. [6] and Budak et al. [7] showed that the
milling process can accurately be modelled by using a
Fourier expansion of a directional matrix. For large angular
immersions, the first term of the expansion gives suffi-

x

y

y

Fr

υ

x
Ft

Fig. 5 Cutting force in milling process
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Fig. 4 Adimensional stability diagram for negative directional factor
(a) and three different damping ratios (b)
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(a) and three different damping ratios (b)
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ciently accurate results, and it coincides exactly with the
approximation proposed by Opitz [4].

3.1 Repetitive impact-driven chatter

When angular immersion is small, additional stability lobes
appear, producing an increase of stability in a small area
and a reduction in a larger area [8–12]. For the main flip
lobe, only harmonics 0 and −1 are relevant, and they both
have equal amplitude and different phase. The resulting
equation is

Q�1

Q0

� �
¼ �b� kc � 1� e�j�w�t

� �

� y0 � H�1 y�1 � H0

y1 � H�1 y0 � H0

� �
Q�1

Q0

� �
ð15Þ

where H0 and H−1 are, respectively, the transfer functions at
frequencies ω and ω−ω, while ψ0 ψ1 ψ−1 are the harmonics
of the directional factor.

Taking into account that at flip situation Ω ¼ 2� w, then
1� e�j�w�t ¼ 1� e�j�w�2�p

2�w ¼ 1� e�j�p ¼ 2, so

Q�1

Q0

� �
¼ �2� b� kc

� y0 � H�1 y�1 � H0

y1 � H�1 y0 � H0

� �
Q�1

Q0

� �
ð16Þ

Also, H�1 ¼ H �j� wð Þ ¼ H � j� wð Þ ¼ H�
0 ¼ H� , and

y�1 ¼ y�
1
, where * indicates complex conjugate. Working

out, the eigenvalue problem to be solved becomes

y0 � H � þl y�
1 � H

y1 � H� y0 � H þ l

� �
Q�1

Q0

� �
¼ 0

l ¼ 1
2�b�ks

ð17Þ

The eigenvalues of the matrix are

l ¼ �y0 � R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

0 � R2 � y2
0 � y1j j2

� �
� Hj j2

r
¼

¼ �y0 � R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1j j2 � Hj j2 � y2

0 � I2
q

ð18Þ
where R, I, are, respectively, the real and imaginary parts of
the frequency response function.

For the eigenvalues to take real values, the following
must be fulfilled:

y1j j2 � Hj j2 � y2
0 � I2 � 0 ð19Þ

or

I2

Hj j2 � y1j j2
y2

0

ð20Þ

Whenever the magnitude of the harmonic 1 of the
directional factor is lower than that of harmonic 0, the
meaning of Eq. 20 can be appreciated in Fig. 6. The red
circle-like curve represents the Nyquist plot of the
frequency response function (FRF). The vectors ψ0 and ψ1

represent the harmonics 0 and 1 of the Fourier development
of the directional factor. The harmonic 1 is represented in
vertical, while the harmonic 0 is represented at an angle
such that its vertical projection equals the length of the first
harmonic. Then, the intersection of this vector with the FRF
indicates the vibration frequency at which period doubling
lobe will start.

From Fig. 6, it follows that for flip bifurcation to occur,
the vibration frequency must be larger than the limit
frequency defined by the dotted blue vector. In milling as
in turning, the directional factor can be negative. In that
case, period doubling limit is at the other side of the
imaginary axis, and the chatter frequency will be lower than
the limit frequency defined by the dashed green line. As a
comparison, Hopf lobes start at exactly –π/2, corresponding
exactly to the natural frequency. For illustration purposes, a
system with the following parameters will be considered:

– Machine/part/tool dynamic parameters: natural fre-
quency 319.4 Hz, damping ratio 0.0196, stiffness
21.6 N/μm, mode direction parallel to X-axis.

– Process parameters: end mill, diameter 20 mm, four
flutes, helix angle 30º corresponding to 27 mm axial
pitch, tangential cutting pressure 713.12 N/mm2, radial
to tangential ratio 0.21, axial to tangential ratio −0.279;
radial immersion 50% of diameter of tool.

Figure 7 shows the evolution of harmonic 0 and of the
magnitude of harmonics 1 and 3 for these parameters for
variable angle between feed direction and X-axis.

Imag (FRF)

ψ 1

ψ 0

flip limit ψ 0 < 0

Real (FRF)

flip limit ψ 0 > 0

Fig. 6 Starting frequency for period doubling chatter
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4 Influence of helix angle of tool on flip lobes

Zatarain et al. [13] and Insperger et al. [14] showed that the
helix angle is an important issue when analysing period
doubling lobes. It was shown [13] that the helix gives rise
to a reduction of the ψ1 harmonics and subsequent of the
directional factor. That produces the change of the flip
lobes into instability islands. The factor of reduction for the
first harmonic is

g1 ¼ 1� e�j�2�p�b
p

j� 2�p
p

ð21Þ

which is represented in Fig. 8.
Figure 9 shows in black the stability limit for helical

mill, where the islands are unstable closed areas inside a
stable region. For comparison, the dotted blue line shows
the stability limit for the same conditions except mill was
considered non helical. It becomes clear that flip does not
appear for depths of cut equal to multiples of the tool axial
pitch.

4.1 Lobe diagrams for very small harmonic 0

The condition that the harmonic 1 of the Fourier develop-
ment of the directional factor should be smaller than the
harmonic 0 is not always satisfied. Varying the feed
direction, provided that the passive force coefficients are
not extremely large, the value of harmonic 0 will null for
some directions. On the contrary, as shown in Fig. 7, the
magnitude of harmonic 1 has smaller variations with the
feed direction, and as a consequence, it is possible that it
takes larger values than the value for harmonic 0.

If Eq. 9, obtained considering only the harmonic 0, is
applied to the frequency with the most negative real part,
the absolute limit depth of cut is obtained:

blimit ¼ 2� k � z � 1þ zð Þ
y0 � z� kt � Δu

2�p

ð22Þ

The evolution of the limit calculated from Eq. 22 for
different feed directions is shown in Fig. 10

The lobe diagrams calculated by the single frequency
solution for feed directions 0º, 30º and 90º are shown in
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Fig. 10 Evolution of absolute limit depth of cut
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Fig. 11. The diagram is in semi-logarithmic scale because
the limits for feed at 30º are extremely high. The absolute
stability limits obtained are exactly equal to the limits
calculated by Eq. 22. For feed direction 30º the directional
factor is almost null, producing a very stable situation if the
single frequency calculation is used.

Figure 12 shows the lobe diagrams for the same
conditions except feed directions are 30º, 28º and 32º,
illustrating the behaviour for small directional factors.

Coming back to Eq. 20, it becomes clear that when
harmonic 1 of the directional factor is larger than harmonic
0 period doubling chatter is not limited to one or the other
side of the natural frequency. Working out Eq. 17 for values
of harmonic 1 larger than harmonic 0 produces the absolute
limit depth of cut due to flip instability:

bflip ¼ k � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1j j2 � y2

0

q
� z� kt � Δu

2�p

if jy1j > y0j j ð23Þ

Figure 13 shows absolute limits calculated after Eq. 22
for Hopf lobes and after Eq. 23 for flip lobes. This latter

was only applied for the feed directions producing a
harmonic 1 with larger magnitude than harmonic 0.

From Fig. 13, it is followed that in many instances, flip
absolute limit will take much lower values than Hopf limits.
The lobe diagram for the feed direction 30º, which is very
favourable from the point of view of the Hopf instability, is
shown in Fig. 14. Dashed blue line corresponds to a straight
mill, while the continuous black islands are the instability
limits for the helical mill with axial pitch 27 mm. Semi-
logarithmic scale is applied again, because of the very high
limit depths for the helical mill.

It is interesting to remark that Fig. 14 was obtained with
the same data used for Fig. 11 for feed direction 30º. The
only difference was that multi-frequency was applied rather
than single-frequency approach. The diagrams were vali-
dated by the semi-discretisation method, which produced
very similar results.

If the mill is straight, or has a very long axial pitch, the
stability limit calculated by single-frequency approach is
enormously larger than when multi-frequency is applied,
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Fig. 13 Absolute limit depth of cut (mm) estimated after Eqs. 22
and 23

0 2.5 5 7.5 10 12.5 15

Rotation speed (1000 r/min)

Li
m

it 
de

pt
h 

of
 c

ut

feed direction 30º feed direction 28º feed direction 32º

1

10

100

1000

10000

Fig. 12 Lobe diagrams for feed directions close to the one with
directional factor equal to zero

0 2 4 6 8 10 12
1

10

100

1000

Rotation speed (1000 r/min)

Li
m

it 
de

pt
h 

of
 c

ut
feed direction 0 feed direction 90 feed direction 30

Fig. 11 Lobe diagrams for different feed directions obtained by single
frequency calculation

0 2 4 6 8 10 12 14 16 18 20
1

10

100

1000

1

10

100

1000

de
pt

h 
of

 c
ut

 / 
to

ol
 p

itc
h ω n

2· ω n

pitch

2·pitch

Rotation speed (1000 r/min)

Fig. 14 Stability lobes for helical mills (black line) and straight mills
(dashed blue line)

Int J Adv Manuf Technol (2010) 47:535–542 541



which should be considered the exact solution. In this
example, the limit depth calculated by single frequency was
325 mm, while by multi-frequency is 2.85 mm, with limits
for other speeds than the worst in the range of 10 mm.

But when the mill is helical, and the helix is taken into
consideration in the calculation, the reduction of stability by
inclusion of the harmonics of the directional factor is only
important for cutting frequencies close to twice the natural
frequency. In this region, the low stability of 2.85 mm is
maintained, whereas for the other speeds the limit obtained
by single-frequency approach is correct.

It becomes evident that in the situations when the
harmonic 0 of the directional factor becomes small, flip
instability produces a very important reduction of the
stability, even with large radial mill immersions.

5 Conclusions

From the analysis carried out, it can be concluded that the
harmonic 0 of the directional factor provides a good way to
characterise the best feed directions for milling.

Nevertheless, there could be some special situations. In
the literature, the situations with negative directional factors
have been paid very low attention. It was shown in this
paper that in processes giving rise to this situation, the
shape of the stability limit lobes is completely changed.

Moreover, the period doubling instability arises for low
radial immersion milling. In this research, a simple equation
for calculating the absolute stable limit depth of cut at flip
situation is proposed, and also, a graphical construction for
obtaining the starting frequency of flip chatter, both for
positive and negative directional factors, is detailed.

In some circumstances, for particular feed directions, the
harmonic 0 of the directional factor becomes very small. In
this case, the harmonic 1 controls the lobe diagram,
producing lobe diagrams with shape different to the usual.
Flip lobes are not limited to one or to the other side of the
natural frequency but extend to both sides. These lobes take
a pronounced V-shape, different to the usual shape of flip
lobes, and limit the stability for a large part of the cutting
frequencies.

However, when the mill is helical and its axial pitch is
not much larger than the stability limit depth of cut, the
reduction of stable depth only arises at the flip cutting
frequency, around twice the natural frequency.
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