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Abstract Machining of new superalloys is challenging.
Automated software environments for determining the
optimal cutting conditions after reviewing a set of exper-
imental results are very beneficial to obtain the desired
surface quality and to use the machine tools effectively. The
genetically optimized neural network system (GONNS) is
proposed for the selection of optimal cutting conditions from
the experimental data with minimal operator involvement.
Genetic algorithm (GA) obtains the optimal operational
condition by using the neural networks. A feed-forward
backpropagation-type neural network was trained to repre-
sent the relationship between surface roughness, cutting
force, and machining parameters of face-milling operation.
Training data were collected at the symmetric and asymmet-
ric milling operations by using different cutting speeds (Vc),
feed rates (f), and depth of cuts (ap) without using coolant.
The surface roughness (Raasymt, Rasymt) and cutting force
(Fxasymt, Fyasymt, Fzasymt, Fxsymt, Fysymt, Fzsymt) were
measured for each cutting condition. The surface roughness
estimation accuracy of the neural network was better for the
asymmetric milling operation with 0.4% and 5% for

training and testing data, respectively. For the symmetric
milling operations, slightly higher estimation errors were
observed around 0.5% and 7% for the training and testing.
One parameter was optimized by using the GONNS while
all the other parameters, including the cutting forces and the
surface roughness, were kept in the desired range.
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1 Introduction

Stellite 6 is a cobalt-based superalloy. It is widely used by
the nuclear, aerospace, biomedical, and gas turbine indus-
tries for its high heat, corrosion, and wear resistance [1–4].
Machining of Stellite 6 will be more important with
increasing use of the alloy for wires, plates, and welding
electrodes [5, 6]. Machining of hard superalloys is difficult.
Minimization of tool-chip contact area, use of sharp cutting
edges, and selection of small cutting depths make the
machining possible. Slow cutting speeds and feed rates ease
the machining of superalloys by reducing heat generation
[4]. To obtain the desired surface quality, extensive
experimentation and experience is necessary. In this study,
the use of genetically optimized neural network system
(GONNS) is proposed to determine the optimal machining
parameters with minimal human involvement from a set of
experimental data. Almost, all computational methods have
limitations. If there is no consistent trend or the relationship
between the inputs and outputs drastically change within
the modeling space, GONNS could not model the relation-
ship with neural networks. The paper will investigate the
feasibility of the GONNS for modeling and optimization of
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the surface roughness of very hard and difficult to cut
materials such as Stellite 6.

In face-milling operations, cutting conditions, tool geom-
etry, tool condition, use of coolant, stability of the machine,
cutting method, tool, and work piece materials determine the
surface roughness [7–17]. The cutting conditions include the
feed rate, depth of cut, number of inserts, and cutting speed.
The nose radius and flank width are the influential tool
geometry parameters. The tool condition is mainly repre-
sented by the progressive tool wear and edge fracture. To
estimate the surface roughness, statistical [7] and numeric
[12] methods have been proposed. Influence of vibration
[11], coolant [13], and tool geometry [16] on the surface
quality has been carefully studied, and the most influential
parameters have been identified [15]. Artificial neural net-
works (ANNs) [18–21] and analytical models [22, 23] have
been used to correlate the machining conditions with the
surface roughness for various materials.

The genetic algorithm (GA) [24] may estimate a large
number of parameters of an objective function by using a

search method which emulates the natural selection process.
Compared to other optimization methods, GA is more robust
avoiding converging to local minima. It works effectively,
with linear, non-linear, even rule-based systems. Some of the
previous GA applications include health monitoring [25],
diagnostic of machining operations [26], selection of optimal
parameters for cutting processes [27–29], prediction of
surface roughness [30], and prediction of tool wear [31].

GONNS is an automated software environment with its
own modeling and search tools. GONNS [32–35] uses
multiple backpropagation (BP)-type neural networks to
represent the relationship(s) between the inputs and outputs
of the considered system. GA searches for the optimal
solution by minimizing or maximizing one of the outputs
and all the other outputs are kept at the desired range.
GONNS have two important advantages over the conven-
tional optimization techniques. First, the conventional opti-
mization methods require an analytic expression to represent
the relationship between the inputs and the outputs. GONNS
learns the relationship from the training data. The user only
needs to estimate the number of the hidden neurons of the
neural network by considering the complexity of the
relationship. It is necessary to estimate either an analytical
or an empirical model for the system when the conventional
methods are used. Later, the parameters of this model should
be estimated with a curve-fitting process. GONNS simplifies

Fig. 1 Neural network structure

Table 1 Properties of the developed backpropagation-type ANN

NN properties

Iteration number 1,000,000

Momentum constant 0.5

Learning rate 0.5

Algorithm Backpropagation

NN structure 3–10–1

Goal 1e−4
Error algorithm Root mean square error

Fig. 2 Neural network structure

Table 2 Properties of developed genetic algorithm

Generation step 10,000

Population size 6

Child number 1

Crossover probability 0.01

Creep mutation coefficient 0.01
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modeling. Second, almost all the other optimization pro-
grams minimize or maximize an objective function provided
by the user. We believe it is difficult and time-consuming
writing this expression. GONNS creates the objective and/or
penalty functions automatically to let the user to reach to his
goals conveniently.

In this paper, the surface roughness and cutting force
estimation performance of the ANNs were evaluated for the
Stellite 6 alloy to determine if a consistent relationship could be
established between the machining conditions of this very hard
material and surface quality. GONNS was used to determine
the optimal operating conditions. Since many papers have
described the theory of the ANN, GA, and GONNS, we will
discuss them in the other sections very briefly.

2 Proposed procedure

2.1 Neural network design

In this study, the performance of the backpropagation-type
ANN was first evaluated by preparing a three input–one
output–two ANN. The structure of feed-forward BP
network is presented in Fig. 1. The inputs of the network
were cutting speed (Vc), feed rate (f), and depth of cut (ap).
The outputs of the neural network were symmetrical and
asymmetrical surface roughness (Rasym and Raasym).

The selected iteration number, momentum constant,
learning rate, learning algorithm, number of the hidden layers
and nodes, targeted error to stop the iterations, and procedure
for calculation of the error are presented in Table 1.

Fig. 3 The architecture of the proposed GONNS for the symmetrical (left) and asymmetrical (right) machining operation

Fig. 4 Symmetric face milling Fig. 5 Asymmetric face milling

Int J Adv Manuf Technol (2010) 46:957–967 959



Two separate GONNSwere prepared tomodel and optimize
the symmetrical and asymmetrical cutting separately. Each
GONNS represented the relationship between three inputs and
each one of the four considered outputs. The inputs were the
cutting speed (Vc), feed rate (f), and depth of cut (ap). The
outputs of eight neural networks were two surface roughness
values (Rasym and Raasym) and cutting forces (Fxsymt, Fysymt,
Fzsymt, Fxasymt, Fyasymt, Fzasymt). The diagram of the neural
networks of the GONNS is presented in Fig. 2. The selected
iteration number, momentum constant, learning rate, learning
algorithm, number of the hidden layers and nodes, type of the
transfer function, targeted error to stop the iterations, and
procedure for calculation of the error are presented in Table 1.

2.2 Genetic algorithm

The inputs of the genetic algorithm were surface roughness
and three force components. There were two separate
GONNS. One of them was for the symmetrical, and the other
one was for asymmetrical cutting. The inputs of the GA for the
symmetrical cutting were Rasym, Fxsymt, Fysymt, and Fzsymt.
The inputs of the GA for the asymmetrical cutting GONNS
were Raasym, Fzasymt, Fxasymt, Fyasymt, and Fzasymt. The
outputs of the genetic algorithm were cutting speed (Vc), feed
rate (f), and depth of cut (ap). The selected generation step,
population size, child number, crossover probability, and
creep mutation coefficient are presented in Table 2.

2.3 GONNS design

ANNs may model any linear, non-linear, or even logical
system without any analytical or empirical model. The user
only selects the number of the nodes at the single hidden layer
of our GONNS program. GA is selected for its flexibility and
robustness against local minimas. GONNS use the ANN–GA
combination to model the system and optimize one of the
outputs while the others are kept within the selected range by
the operator. The proposed GONNS for the current problem is
presented in Fig. 3. Four BP-type ANNs and one genetic

algorithm was used for each optimization system. The
program searched the optimal depth of cut, feed rate, and
cutting speed to minimize or maximize one of the four
parameters while the other parameters were kept at the
desired range. This approach has two advantages over the
conventional objective functions which use a weight
coefficient for each parameter:

1. In many applications there are critical values for param-
eters. When the values of those parameters are not within
these boundaries, optimization results are not acceptable.
In our approach, these boundaries are directly given. In the
conventional approach, the weights have to be adjusted,
and optimization has to be repeated until the values of
these parameters are found within the boundaries.

2. Most of the conventional optimization programs require
the user to write the objective function and to determine
the weight factors for the parameters. In our program, the
user does not need to write any code although we allow
him to give the objective function if he wants to.

3 Experimental procedure

The experiments were performed by using 9 kW JohnFord
WMC-850 CNC milling machine. Symmetrical (Fig. 4) and
asymmetric (Fig. 5) face-milling operations were performed
[4]. The cutting parameters were selected by considering
the ISO 8688-1 tool life test guidelines [24] and presented
in Table 3. Uncoated inserts which are the most suitable for
the rough milling at slow feed rate and cutting speed were
used in the tests. The inserts with 0.18 mm chamfer were
installed to the face-milling cutter. Their hardness was 78
Rockwell C and had 2° angle with the contact surface
during the machining operation.

The workpiece material was Stellite 6 with 44 Rockwell C
hardness. Chemical composition of the workpiece is presented
in Table 4. At the beginning of the tests, the dimensions of
the workpiece were 50 mm×70 mm×120 mm. Cobalt is a
soft and easy to machine material. The carbon, chrome, and
tungsten content of Stellite 6 give it the ductility, resistance
to corrosion, and strength which makes it a superalloy.

4 Surface roughness and cutting force measurements

The diagram of the experimental setup is presented in
Fig. 6. Three-component three-axis Kistler 9265B dyna-

Table 3 Cutting parameters for face milling

Cutting speeds (m/min) 30, 35, and 40

Feed rate (mm/min) 60, 70, 80, 90, and 100

Depth of cut (mm) 0.25, 0.50, and 0.75

Width of cut (mm) 50

Feed rates per tooth (mm/tooth) 0.10

Coolant – Dry

Element C Si Mn Cr Ni Mo W Ti Fe Ta Co

Weight (%) 1.09 1.07 0.49 28.17 1.92 0.96 5.17 0.01 2.88 0.04 Balanced

Table 4 Chemical composition
of Stellite 6
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mometer was used to measure the cutting forces. The
signals of the dynamometer were connected to Kistler
5019B charge amplifier which outputs analog voltage
according to the selected gains with a microprocessor-
based circuit. The signals were digitized by using CTO-
DAS 600 812 ISA A/D converter. Data were displayed with
a Kistler DynoWare 2.31 software and transferred to Excel
spreadsheet for analysis.

The cobalt-based superalloy was cut by using uncoated
hard metal inserts. The averages of the cutting force
components (Fx, Fy, and Fz) were calculated and presented
in Appendix.

Surface roughness strongly influences the coefficient of
friction, wear characteristics, light reflection, heat transmis-

sion, lubricant holding capability, coating, and fatigue resis-
tance of materials [37]. In this study, the average surface
roughness which is often quoted with Ra was measured by
using Mahr M1 perthometer [4, 39]. Ra is calculated by
averaging the departure of the profile from the centerline as
presented in Fig. 7. The following equation was used for
calculation of the Ra [38].

Ra ¼ 1

L

Z L

0
Y ðxÞj jdx

Ra The arithmetic average deviation from the mean line
Y The ordinate of the profile curve

Fig. 6 Experimental setup [4]

Fig. 7 Surface roughness
profile
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The same signals were captured at the each experiment.
They were the averages of the Fx, Fy, and Fz components
and the average surface roughness (Ra). For calculation of
the average force components, about 1,000 values collected
in a 3-s time interval.

5 Results and discussion

The objective of this study is to propose a convenient
method for estimation of the surface roughness after a
series of data is collected at different feed rates, depth of
cuts, and spindle speeds. All the other conditions including
the use of coolant, machine tool, fixture, CNC program,
and the characteristics of the inserts were fixed in out of the
experiments. If the user wants to consider the influence of
these conditions, the data should be collected for possible
cases. For example, data could be collected for the different
values of coolant flow rates. The neural networks have the
flexibility to accommodate these changes. However, the
number of the necessary experiments will drastically
increase with the considered conditions. That is why we
fixed the listed conditions in our experiments.

In this study, two 3 input−1 output and eight 3 input–1
output ANNs were used. The accuracy of the ANN was

Fig. 10 Surface roughness estimation performance of the three input–
one output ANN for asymmetric face-milling operations, training
cases. a Measured surface roughness. b ANN estimation

Fig. 9 Surface roughness estimation performance of the three input–
one output ANN for symmetric face-milling operations, testing cases.
a Measured surface roughness. b ANN estimation

Fig. 8 Surface roughness estimation performance of the three input–
one output ANN for symmetric face-milling operation, training cases.
a Measured surface roughness. b ANN estimation
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evaluated by comparing the two 3 input–1 output ANN’s
estimations with actual values after the training process. The
eight 3 input–1 output ANNs were used by the GONNS.

Performance of the GONNS depends on the character-
istic of the data. Less than 1% estimation error has been
observed when the optimal point is estimated at the surfaces
of the following equations [33]:

f1 ¼ sin �ð Þ þ sinðyÞ ð1Þ

f2 ¼ 0:4 �� 1:8ð Þ2 þ 0:4 sin y� 2ð Þ2 � 1 ð2Þ
GONNS is expected to perform well as long as the
boundaries are covered with smooth surfaces. GONNS is
an effective optimization algorithm for the selection of the
optimal cutting conditions since experimental results
indicate a constant trend and smooth change at the outputs
for different values of the inputs.

The two 3 input–1 output ANN predicted the symmetric
and asymmetric surface roughness by using backpropagation-
type neural network. The training and testing data were

collected at the feed rates of 60, 70, 80, 90, and 100 m/s;
cut depths of 0.25, 0.50, and 0.75 mm; and cutting speeds
of 30, 35, and 40 m/s. Seventy-five cases were used for
training, and 60 cases were used for testing. The ANN
program made 1,000,000 iterations. The training of the
neural network took about 3 h with a microcomputer which
uses Intel® Core 2 CPU 6400 microprocessor operating at
2.13 GHz.

The operational parameters of the ANN are presented in
Table 1. The training was repeated with five to 45 nodes
located at the single hidden layer. The minimum estimation
errors were observed when ten nodes were used. The
average estimation errors for the Raasmt were 0.4% and 5%
for the training and test cases, respectively. Estimation errors
for the Rasmt were slightly higher with 0.5% for training and
7% for testing.

Cutting speed (Vc, meter per minute), feed rate (f,
millimeter per minute), depth of cut (ap, millimeter), and
surface roughness (Rasymt and Raasmt, micrometer) relations
are presented in Figs. 8, 9, 10, and 11. The x axis is the depth
of cut, y axis the feed rate, and z axis the cutting speed. The
color indicates the surface roughness. Experiment results are
presented in Figs. 8a, 9a, 10a, and 11a ANN presentations.

The performances of the eight 3 input–1 output neural
networks were evaluated on the training data. Their perfor-
mance is outlined by listing the average estimation errors in
Table 5 for the training cases. The inputs were cutting speed
(Vc), feed rate (f), and depth of cut (ap). The eight outputs of
eight neural networks were surface roughness (Rasym and
Raasym) and cutting force (Fxasymt, Fyasymt, Fzasymt, Fxsymt,
Fysymt, and Fzsymt).

Optimization was performed many times and reasonable
estimations were obtained. The display of the GONNS is
presented for three cases. The minimization of the z
direction force was requested for asymmetrical face-
milling operation in Fig. 12 and acceptable surface rough-
ness, and x and z direction average forces were inputted.
The GONNS made reasonable suggestions for the cutting
speed, feed rate, and depth of cut. In Fig. 13, symmetrical
face milling was considered. Minimization of the surface
roughness was requested and the ranges of the acceptable
forces were presented.

The optimal values (maximum and minimum) of each
output and the corresponding operational parameters
including depth of cut, feed rate, and cutting speed were
calculated by using the GONNS and listed in Table 6. The
boundaries of the outputs other than the optimized one and

Fz (%) Fy (%) Fx (%) Surface roughness (%)

Symmetric 0.5167 0.3658 0.6428 0.9792

Asymmetric 0.1605 0.3744 0.04769 0.3643

Table 5 Total absolute
percentage error

Fig. 11 Surface roughness estimation performance of the three input–
one output ANN for asymmetric face-milling operations, testing cases.
a Measured surface roughness. b ANN estimation
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the operational parameters were the full range either used or
observed in the experiments.

If the user wants to see how the optimum cutting
conditions change at different wear levels, the experimental
data may be collected with the worn tools. GONNS may
have one more input or one of the current input parameters
may be removed by fixing that parameters. As we
mentioned earlier, GONNS may deal with more than three
input parameters; however, the number of the needed

experiments will drastically increase and estimation accu-
racy may suffer.

6 Conclusions

In this study, extensive data were collected during the face
milling of Stellite 6 superalloy. The data were mainly used
to evaluate the feasibility of the GONNS for selection of the

Fig. 12 The recommended
operating conditions by
the GONNS to minimize
the z direction cutting force
in the asymmetrical face-milling
operation

Fig. 13 The recommended
operating conditions by
the GONNS to minimize the
surface roughness in the
symmetrical face-milling
operation
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optimal machining parameters. In addition, accuracy of the
ANN estimations was tested when they represented the
machining operations.

Inspection of the experimental data indicated that the
surface roughness improves with increasing cutting speed
and decreasing feed rate as expected. Symmetrical cutting
generally had better surface roughness values. A consistent
relationship was observed between the operational param-
eters and the outputs of the machining operation: surface
roughness and cutting forces. This relationship was repre-
sented by the ANNs. When the ANN estimated the surface
roughness from the operational parameters, the accuracy
was better for the asymmetric milling operation with 0.4%
and 5% for training and testing cases, respectively. For the
symmetric milling operations, slightly higher estimation
errors, around 0.5% and 7% for the training and testing,
were observed.

The ANNs of the GONNS learned the characteristics of
the forces and surface roughness with less than 1% error
during their training. The estimations of the GA were very
similar to a human operator, who would carefully evaluate
the trends and select the operating conditions. GONNS
was found to be an effective multipurpose optimization
tool in the study. Elimination of the need for either
development of an analytical model or estimation of an
empirical expression was the most important advantage of
the method.

Appendix

Table 7 Asymmetric experiment cutting force results

Trail no. ap, mm f, mm/min Vc, m/min Fz, N Fy, N Fx, N

1 0.25 60 30 150 110 120

2 0.25 70 30 200 100 120

3 0.25 80 30 200 100 110

4 0.25 90 30 260 120 120

5 0.25 100 30 270 140 150

6 0.25 60 35 250 100 130

7 0.25 70 35 255 90 140

8 0.25 80 35 250 120 130

9 0.25 90 35 270 130 160

10 0.25 100 35 320 150 180

11 0.25 60 40 225 175 140

12 0.25 70 40 260 150 165

13 0.25 80 40 300 210 180

14 0.25 90 40 330 240 200

15 0.25 100 40 355 260 225

16 0.5 60 30 250 255 200

17 0.5 70 30 275 260 225T
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Trail no. ap, mm f, mm/min Vc, m/min Fz, N Fy, N Fx, N

18 0.5 80 30 350 300 230

19 0.5 90 30 350 325 245

20 0.5 100 30 375 330 250

21 0.5 60 35 375 250 300

22 0.5 70 35 450 275 250

23 0.5 80 35 475 300 310

24 0.5 90 35 525 325 320

25 0.5 100 35 530 350 325

26 0.5 60 40 325 225 170

27 0.5 70 40 350 250 185

28 0.5 80 40 375 270 210

29 0.5 90 40 480 300 225

30 0.5 100 40 490 310 250

31 0.75 60 30 250 200 250

32 0.75 70 30 325 200 260

33 0.75 80 30 400 210 275

34 0.75 90 30 400 225 280

35 0.75 100 30 415 250 310

36 0.75 60 35 375 250 175

37 0.75 70 35 400 270 150

38 0.75 80 35 425 300 150

39 0.75 90 35 450 310 200

40 0.75 100 35 500 330 220

41 0.75 60 40 320 300 200

42 0.75 70 40 450 320 220

43 0.75 80 40 475 345 225

44 0.75 90 40 500 375 250

45 0.75 100 40 525 400 275
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