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Abstract In this paper, we consider two single-machine
scheduling problems with the effect of deterioration
and learning. In this model, the processing times of
jobs are defined as functions of their starting times
and positions in a sequence. For the following two
objective functions, the weighted sum of completion
times and the maximum lateness, this paper gives two
heuristics according to the corresponding problems
without learning effect. This paper also gives the worst-
case error bound for the heuristics and provides compu-
tational results to evaluate the performance of the
heuristics.
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1 Introduction

In classical scheduling problems, the processing times
of jobs are assumed to be constant values. However,
there are many situations where the processing times
of jobs may be subject to change due to deteriora-
tion and/or learning phenomena. Machine scheduling
problems with deteriorating jobs and/or learning ef-
fects have been given more attention in recent years.

L.-Y. Wang (B) · J.-B. Wang · W.-J. Gao · X. Huang
Operations Research and Cybernetics Institute,
School of Science, Shenyang Institute of Aeronautical
Engineering, Shenyang 110136, China
e-mail: wlyhxh@126.com

L.-Y. Wang · E.-M. Feng
Department of Applied Mathematics, Dalian University
of Technology, Dalian, 116024, China

Extensive surveys of research related to scheduling
deteriorating jobs can be found in Alidaee and Womer
[1] and Cheng et al. [2]. An extensive survey of dif-
ferent scheduling models and problems involving jobs
with learning effects can be found in Biskup [3]. More
recent papers that have considered scheduling jobs with
deteriorating jobs and/or learning effect include Wu
et al. [4], Shiau et al. [5], and Eren and Guner [6]. Wu
et al. [4] considered a single-machine total weighted
completion time scheduling problem under linear dete-
rioration. They proposed a branch-and-bound method
and several heuristic algorithms to solve the prob-
lem. Shiau et al. [5] considered two-machine flowshop
scheduling to minimize mean flow time with simple
linear deterioration. Eren and Guner [6] considered
the bicriteria parallel machine scheduling with a learn-
ing effect. They introduced a mixed nonlinear integer
programming formulation for the problem. Lee et al.
[7] and Wang et al. [8] developed a new deterioration
model where the actual job processing time is a function
of jobs already processed. Lee et al. [7] showed that the
single-machine makespan problem remains polynomi-
ally solvable under the proposed model. Wang et al.
[8] showed that the total completion time minimization
problem for a ≥ 1 remains polynomially solvable under
the proposed model, where a denotes the deterioration
rate. For the case of 0 < a < 1, they showed that an op-
timal schedule of the total completion time minimiza-
tion problem is V-shaped with respect to normal job
processing times. They also used the classical smallest-
processing-time-first rule as a heuristic algorithm for
the case of 0 < a < 1 and analyze its worst-case bound.
However, to the best of our knowledge, apart from
the recent papers of Wang et al. [9], Wang et al.
[10], Toksar and Guner [11], Lee [12], Wang [13, 14],
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Wang and Cheng [15], Wang and Cheng [16], Toksar
and Guner [17], and Wang et al. [18], the scheduling
problems with the effects of deterioration and learning
have not been investigated. The phenomena of learning
effect and deteriorating jobs occurring simultaneously
can be found in many real-life situations. For example,
as manufacturing becomes increasingly competitive,
in order to provide customers with greater product
varieties, organizations are moving towards shorter
production runs and frequent product changes. The
learning and forgetting that workers undergo in this
environment have thus become increasingly important
as workers tend to spend more time in rotating among
tasks and responsibilities prior to becoming fully profi-
cient. These workers are often interrupted by product
and process changes, causing deterioration in perfor-
mance, which we will refer to, for simplicity, as for-
getting. Considering learning and forgetting effects in
measuring productivity should be helpful in improving
the accuracy of production planning and productivity
estimation (Nembhard and Osothsilp [19]).

In this paper, we investigate the implications of these
phenomena occurring simultaneously for two sing-
machine scheduling problems. Specifically, we gener-
alize the results of Wang and Cheng [15] to a more
general context.

The remaining part of this paper is organized as fol-
lows: In Section 2, we formulate the model. In Sections
3 and 4, we consider two single-machine scheduling
problems. In Section 5, we present computational ex-
periments to evaluate the performance of the heuristic
algorithms. The last section is the conclusion.

2 Problem formulation

We formulate the problem as follows: There are n
given independent and non-preemptive jobs available
for processing on a single machine. All the jobs will be
processed starting at time t0 ≥ 0 without overlapping
and idle time between them. Associated with each job
j ( j = 1, 2, ..., n), there is a normal processing time
pj, a due date d j, and a weight w j. Let pjr(t) be the
processing time of job J j if it is started at time t and
scheduled in position r in a sequence. As in Wang and
Cheng [15], we assume that the actual processing time
of job j if scheduled in position r is given by

pjr(t) = α j(b + ct)ra, (1)

where α j is the deterioration rate of job J j; a denotes
the learning index with a < 0, b ≥ 0, c ≥ 0. A schedule
is a sequence of jobs that specifies the processing order
of the jobs on the machine. Under a given schedule

π = (1, 2, . . . , n), the completion time of job J j is given
by C j = C j(π). Let

∑
w jC j and Lmax = max{C j −

d j| j = 1, 2, . . . , n} represent the total weighted com-
pletion time and the maximum lateness of a given
permutation. In the remaining part of the paper, the
problem considered will be denoted using the three-
field notation schema α|β|γ introduced by Graham
et al. [20].

3 The weighted sum of completion times
minimization problem

First, we give some lemmas; they are useful for the
following theorems.

Lemma 1 For a given schedule π = [J1, J2, . . . , Jn] of
1|pj(t) = α j(b + ct)ra|γ , if the first job starts at time t0 ≥
0, then the completion time C j of job J j is equal to

C j =
(

t0 + b
c

) j∏

i=1

(1 + cαiia) − b
c

. (2)

Lemma 2 (Zhao et al. [21]) For the problem 1|pj(t) =
α j(b + ct)| ∑ w jC j, an optimal schedule can be ob-
tained by sequencing the jobs in non-decreasing order
of α j

w j(1+α j)
[i.e., the weighted smallest deterioration rate

(WSDR) rule].

From Lemma 2, we can use WSDR rule as a heuristic
algorithm for the general problem 1|pjr(t) = α j(b +
ct)ra| ∑w jC j.

Theorem 1 Let S∗ be an optimal schedule and S be
a WSDR schedule for the problem 1|pjr(t) = α j(b +
ct)ra| ∑w jC j. Then, ρ1 = ∑

w jC j(S)/
∑

w jC j(S∗) ≤
1/na, and the bound is tight.

Proof Without loss of generality, we can suppose that
α1

w1(1+α1)
≤ α2

w2(1+α2)
≤ . . . ≤ αn

wn(1+αn)
. Then, we have

∑
w jC j(S) =

n∑

j=1

w j

[(

t0 + b
c

) j∏

l=1

(1 + cαlla) − b
c

]

≤
n∑

j=1

w j

[(

t0 + b
c

) j∏

l=1

(1 + cαl) − b
c

]

,
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∑
w jC j(S∗)

=
n∑

j=1

w j

[(

t0 + b
c

) j∏

l=1

(1 + cα[l]la) − b
c

]

≥
n∑

j=1

w j

[(

t0 + b
c

) j∏

l=1

(1 + cα[l]na) − b
c

]

≥ na
n∑

j=1

w j

[(

t0+ b
c

) j∏

l=1

(
1

na
+cα[l]

)

− b
cna

]

≥ na
n∑

j=1

w j

[(

t0 + b
c

) j∏

l=1

(1 + cα[l]) − b
c

]

≥ na
n∑

j=1

w j

[(

t0 + b
c

) j∏

l=1

(1 + cαl) − b
c

]

;

hence,

ρ1 =
∑

w jC j(S)/
∑

w jC j(S∗) ≤ 1/na.

It is not difficult to see that the bound is tight since,
if a=0, we have

∑
w jC j(S)

∑
w jC j(S∗) = 1. This result is intuitive

because, when a = 0, the WSDR schedule is optimal.
��

Obviously, ρ1 = ∑
w jC j(S)/

∑
w jC j(S∗) depends

on the parameter values.

4 The maximum lateness minimization problem

Lemma 3 (Zhao et al. [21]) For the problem 1|pj(t) =
α j(b + ct)|Lmax, an optimal schedule can be obtained by
sequencing the jobs in non-decreasing order of d j [i.e.,
the smallest due date (EDD) rule].

Lemma 4 (Wang and Cheng [15]) For the problem
1|pjr(t) = α j(b + ct)ra|Cmax, an optimal schedule can be
obtained by sequencing the jobs in non-decreasing order
of α j [i.e., the smallest deterioration rate (SDR) rule].

In order to solve the problem approximately, from
Lemma 3, we can use the EDD rule as a heuristic for
the problem 1|pjr(t) = α j(b + ct)ra|Lmax. To develop a
worst-case performance ratio for the heuristic, we have
to avoid cases involving nonpositive Lmax. Similar to
Cheng and Wang [22], the worst-case error bound is
defined as follows:

ρ2 = Lmax(S) + dmax

Lmax(S∗) + dmax
,

where S and Lmax(S) denote the heuristic schedule
and the corresponding maximum lateness, respectively,
while S∗ and Lmax(S∗) denote the optimal schedule and
the minimum maximum lateness value, respectively,
and dmax = max{d j| j = 1, 2, . . . , n}.

Theorem 2 Let S∗ be an optimal schedule and S be
an EDD schedule for the problem 1|pjr(t) = α j(b +
ct)ra|Lmax. Then,

ρ2 = Lmax(S) + dmax

Lmax(S∗) + dmax
≤ (t0 + b

c )
∏n

l=1(1 + cαl) − b
c

C∗
max

,

and the bound is tight, where C∗
max is the optimal

makespan of the problem 1|pjr(t) = α j(b + ct)ra|Cmax.

Proof Without loss of generality, supposing that d1 ≤
d2 ≤ . . . ≤ dn, we have

Lmax(S) = max

{(

t0 + b
c

) j∏

l=1

(1 + cαlla) − b
c

− d j| j = 1, 2, . . . , n

}

≤ max

{(

t0 + b
c

) j∏

l=1

(1 + cαl) − b
c

− d j| j = 1, 2, . . . , n

}

= L
′
max(S),

where L
′
max(S) is the optimal value of the problem

1|pj(t) = α j(b + ct)|Lmax.

Lmax(S∗)

= max

{(

t0 + b
c

) j∏

l=1

(1 + cα[l]la) − b
c

− d[ j]| j = 1, 2, . . . , n

}

= max

{(

t0 + b
c

) j∏

l=1

(1 + cα[l]) − b
c

− d[ j]

−
(

t0 + b
c

) j∏

l=1

(1 + cα[l]) + b
c

+
(

t0 + b
c

)

×
j∏

l=1

(1 + cα[l]la) − b
c

| j = 1, 2, . . . , n

}
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≥ max

{(

t0 + b
c

) j∏

l=1

(1 + cα[l]) − b
c

− d[ j]| j = 1, 2, . . . , n

}

−
(

t0 + b
c

)

×
j∏

l=1

(1 + cα[l])+ b
c

+
(

t0+ b
c

)

×
j∏

l=1

(1 + cα[l]la)− b
c

≥ L
′
max(S) −

(

t0 + b
c

) n∏

l=1

(1 + cαl) + b
c

+ C∗
max;

hence,

Lmax(S)−Lmax(S∗)≤
(

t0 + b
c

) n∏

l=1

(1 + cαl)− b
c

− C∗
max,

and so,

ρ2 = Lmax(S) + dmax

Lmax(S∗) + dmax

≤ 1 + (t0 + b
c )

∏n
l=1(1 + cαl) − b

c − C∗
max

Lmax(S∗) + dmax

≤ 1 + (t0 + b
c )

∏n
l=1(1 + cαl) − b

c − C∗
max

C∗
max

≤ (t0 + b
c )

∏n
l=1(1 + cαl) − b

c

C∗
max

,

where C∗
max can be obtained by the SDR rule (see

Lemma 4).
It is not difficult to see that the bound is tight, since,

if a=0, we have Cmax = (t0 + b
c )

∏n
l=1(1 + cαl) − b

c and
ρ2 = Lmax(S)+dmax

Lmax(S∗)+dmax
= 1. This result is intuitive because

when a = 0, the EDD schedule is optimal. ��

5 Computational experiments

Computational experiments were conducted to evalu-
ate the effectiveness of the heuristics of WSDR and
EDD. The heuristic algorithms were coded in VC++
6.0 and ran the computational experiments on a Pen-
tium 4-2.4G personal computer with a RAM size of
1 G. For all the tests, the values t0 = 0. In addition,
the learning curves were taken to be 90%, 80%, and
70%, which yielded a = −0.152, −0.322, and −0.515,
respectively, according to Biskup [23]. For each job
J j, the job deterioration rate α j was generated from a
uniform distribution over [1, 100], and the weight w j

was generated from a uniform distribution over [1, 10].
For each job J j, the due date d j was generated from
a uniform distribution over

[
1, τ b

c

∏n
l=1(1 + cαl) − 1

]
,

Table 1 Computational
results of the heuristics for
τ = 0.25

a n ρ1
1

na ρ2

∏n
l=1(1+αl)−1

C∗
max

Mean Max Mean Max Mean

−0.152 6 1.0002 1.0045 1.3130 1.0001 1.0014 1.0157
7 1.0005 1.0017 1.3442 1.0005 1.0057 1.0255
8 1.0015 1.0026 1.3717 1.0007 1.0214 1.2459
9 1.0004 1.0047 1.3965 1.0006 1.0014 1.2543

10 1.0013 1.0142 1.4191 1.0023 1.0547 2.3541
11 1.0017 1.0067 1.4398 1.0042 1.0746 3.1269
12 1.0067 1.1004 1.4589 1.0056 1.1476 4.2785

−0.322 6 1.0012 1.0035 1.7806 1.0000 1.0001 1.1452
7 1.0013 1.0045 1.8712 1.0013 1.0045 1.6748
8 1.0015 1.0672 1.9534 1.0019 1.0267 2.3587
9 1.0017 1.0369 2.0289 1.0016 1.0287 4.1254

10 1.0013 1.0268 2.0989 1.0013 1.0534 6.3248
11 1.0019 1.0216 2.1644 1.0035 1.0654 12.3645
12 1.0095 1.0324 2.2259 1.0125 1.0961 24.9564

−0.515 6 1.0011 1.0128 2.5162 1.0007 1.0658 1.3026
7 1.0012 1.0394 2.7241 1.0026 1.0086 2.2547
8 1.0015 1.0523 2.9180 1.0037 1.0095 3.9564
9 1.0027 1.0025 3.1005 1.0032 1.0098 9.9835

10 1.0029 1.0169 3.2734 1.0059 1.0123 26.3248
11 1.0041 1.0093 3.4381 1.0046 1.0267 66.0234
12 1.0102 1.0125 3.5957 1.0014 1.0054 158.1248



Int J Adv Manuf Technol (2010) 46:715–720 719

Table 2 Computational
results of the heuristics for
τ = 0.5

a n ρ1
1

na ρ2

∏n
l=1(1+αl)−1

C∗
max

Mean Max Mean Max Mean

−0.152 6 1.0003 1.0154 1.3130 1.0007 1.0137 1.2376
7 1.0007 1.0245 1.3442 1.0012 1.0113 1.3579
8 1.0011 1.0243 1.3717 1.0019 1.0123 1.5678
9 1.0038 1.0398 1.3965 1.0023 1.0159 2.0345

10 1.0025 1.0565 1.4191 1.0029 1.0985 2.3654
11 1.0037 1.0755 1.4398 1.0036 1.0132 3.2670
12 1.0074 1.0856 1.4589 1.0045 1.0254 4.2540

−0.322 6 1.0004 1.0019 1.7806 1.0068 1.0269 1.1657
7 1.0005 1.0043 1.8712 1.0124 1.0789 1.9854
8 1.0010 1.0087 1.4121 1.0089 1.0885 2.6845
9 1.0020 1.0096 2.0289 1.0027 1.0138 4.6120

10 1.0034 1.0098 2.0989 1.0065 1.0241 7.2587
11 1.0047 1.0189 2.1644 1.0000 1.0000 12.6523
12 1.0114 1.0241 2.2259 1.0000 1.0000 25.1212

−0.515 6 1.0008 1.0031 2.5162 1.0127 1.0245 1.3017
7 1.0018 1.0056 2.7241 1.0005 1.0028 2.1577
8 1.0035 1.9857 2.9180 1.0035 1.0076 4.0245
9 1.0007 1.0087 3.1005 1.0038 1.0103 9.2256

10 1.0097 1.0099 3.2734 1.0018 1.0029 22.3578
11 1.0106 1.0155 3.4381 1.0000 1.0000 62.1312
12 1.0138 1.0208 3.5957 1.0000 1.0000 160.3542

where τ ∈ {0.25, 0.5, 1} and b = c = 1. For each heuris-
tic, seven different job sizes, n = 6, 7, 8, 9, 10, 11, and
12, were used. As a consequence, 42 experimental
conditions were examined and 20 replications were
randomly generated for each condition. A total of 840
problems were tested.

In order to study the effects of these parameters, as
well as to construct accurate and easily implemented

algorithms, two heuristic algorithms are presented in
this section. Each algorithm consists of two phases; the
first phase involves generating an initial solution in a
simple way, and the second phase further improves the
quality of the solution by a neighborhood search, which
provides good solutions and offers possibilities to be
enhanced [24]. In the first step, jobs are sorted in non-
decreasing order of the ratio α j

w j(1+α j)
and d j to obtain

Table 3 Computational
results of the heuristics for
τ = 1

a n ρ1
1

na ρ2

∏n
l=1(1+αl)−1

C∗
max

Mean Max Mean Max Mean

−0.152 6 1.0000 1.0000 1.3130 1.0013 1.0045 1.1234
7 1.0005 1.0027 1.3442 1.0021 1.0100 1.2755
8 1.0012 1.0103 1.3717 1.0013 1.0114 1.3245
9 1.0023 1.0523 1.3965 1.0020 1.0466 2.1128

10 1.0017 1.0571 1.4191 1.0011 1.0215 2.4573
11 1.0039 1.0455 1.4398 1.0030 1.0221 3.2314
12 1.0082 1.0492 1.4589 1.0022 1.0119 4.2359

−0.322 6 1.0000 1.0000 1.7806 1.0002 1.0011 1.2453
7 1.0013 1.0056 1.8712 1.0015 1.0214 1.6547
8 1.0025 1.0059 1.9534 1.0019 1.0324 2.7842
9 1.0033 1.0109 2.0289 1.0015 1.0128 4.3549

10 1.0097 1.0234 2.0989 1.0019 1.0391 7.4785
11 1.0117 1.0359 2.1644 1.0000 1.0000 12.5897
12 1.0187 1.0721 2.2259 1.0000 1.0000 27.1246

−0.515 6 1.0006 10034 2.5162 1.0000 1.0000 1.3547
7 1.0059 1.0246 2.7241 1.0003 1.0087 2.5412
8 1.0105 1.0227 2.9180 1.0019 1.0103 4.3248
9 1.0112 1.0564 3.1005 1.0021 1.0126 10.8759

10 1.0096 1.0376 3.2734 1.0000 1.0000 22.4457
11 1.0109 1.0447 3.4381 1.0000 1.0000 61.2247
12 1.0201 1.0924 3.5957 1.0000 1.0000 180.2457
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an initial solution. The second step is to improve the
initial solution by using pairwise interchanges. In order
to study the impact of the parameters, the mean and
maximum of the ratio of the optimal solution and the
WSDR (EDD) solution and the worst-case error bound
are reported in Tables 1, 2, and 3. It is observed from
Tables 1, 2, and 3 that the mean and maximum of the
ratio of the optimal solution and the WSDR solution
and the worst-case error bound for WSDR algorithm
increase as the learning effect is stronger. It is noticed
from Tables 1, 2, and 3 that the mean and maximum of
the ratio of the optimal solution and the EDD solution
decrease as the tardiness factor τ becomes larger. It is
also found that the minimum and mean ratios equal
one for some cases. In these cases, it is very easy to
find a schedule such that all jobs can be finished before
their due dates, yielding zero maximum tardiness. In
addition, the ratio of the two solutions increases as the
job size increases. This phenomenon is due to the fact
that the learning effect becomes even stronger as the
number of processed jobs grows.

6 Conclusions

We have considered in this paper two single-machine
scheduling problems with the effect of deterioration
and learning. For the weighted sum of completion
times minimization problem and the maximum lateness
minimization problem, we gave two heuristics accord-
ing to the corresponding problems without learning
effect. We also gave the worst-case error bound for
the heuristics. Computational results show that the
heuristic algorithms are very effective and efficient in
obtaining near-optimal solutions. Future research may
focus on determining the computational complexity of
these two problems as they remain open, or proposing
more sophisticated heuristics.
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