
Int J Adv Manuf Technol (2009) 45:1007–1016
DOI 10.1007/s00170-009-2032-9

ORIGINAL ARTICLE

Calculating a near time-optimal jerk-constrained
trajectory along a specified smooth path

Jan Mattmüller · Damian Gisler

Received: 17 November 2008 / Accepted: 24 March 2009 / Published online: 19 April 2009
© Springer-Verlag London Limited 2009

Abstract This article presents a near time-optimal
and jerk-constrained trajectory planner. The presented
work is an extension to the “proximate time-optimal
algorithm” (Pardo-Castellote and Cannon, IEEE Int
Conf Robot Autom 2:1539–1546, 1996), which is used
to determine smooth and near time-optimal path-
constrained trajectories, to problems where not only
the velocity and the acceleration but also the jerk are
explicitly constrained. It is shown that the constraint
on the jerk translates into limits for the curvature of
the phase-space velocity. As high-speed motion systems
become more and more accurate, the trend goes clearly
towards jerk-constrained trajectory calculation to avoid
large deviations from the planned trajectory during the
complete move. The proposed algorithm is nonpertur-
bative and its calculation time is linear with respect to
the length of the path.

Keywords Path planner · Motion control ·
Jerk-constrained · Trajectory · Time-optimal

1 Introduction

A modern micromanipulator is able to perform com-
plex moves over a distance from start to end point of

J. Mattmüller (B) · D. Gisler
Oerlikon Assembly Equipment AG,
Hinterbergstrasse 32, 6330 Cham, Switzerland
e-mail: janma@edpnet.be

Present Address:
J. Mattmüller
ICOS VISION SYSTEMS NV, Research Park Haasrode
Zone 1, Esperantolaan 8, 3001 Leuven, Belgium

several millimeters with a path following accuracy in
the micrometer range. Dozens of motion sequences in
an arbitrary dimensional space, defined by the motion
axes, are performed per second. Start and end position
of those are often determined by camera systems only
milliseconds before the move has to start.

The fact that the placement accuracy of a modern
micromanipulator has to be in the submicron range has,
of course, implications on the control system of the ma-
nipulator. One possibility to decrease the deviation of
the manipulator from the planned path during its moves
is to consider the motor-constraints for the calculation
of the trajectory. Even though this may sound trivial, its
implementation is less straightforward than expected.

The goal of this work was to develop and implement
an algorithm that is able to compute a near time-
optimal trajectory for an almost arbitrary smooth path.
This paper presents an extension of the “proximate
time-optimal algorithm,” which was presented in [6].
One of the advantages of this algorithm is its com-
putational efficiency, which is based on the fact that
the method is nonperturbative. The proximate time-
optimal algorithm had already been successfully ap-
plied to problems with constrained velocity and accel-
eration, but not yet to systems that are also explicitly
subjected to a limited jerk. This paper describes how
this modification can be incorporated in the mentioned
algorithm and shows that it leads to excellent results.

2 Problem statement

Given a specified smooth geometric path and a manip-
ulator moving along this path, the problem consists in
finding a trajectory that minimizes the necessary time

1008 Int J Adv Manuf Technol (2009) 45:1007–1016

along the path without violating the given constraints of
the motor that drives the manipulator. This is a classical
robotic trajectory/motion-planning problem, namely,
a time parameterization of a geometric path (see
Section 3). Assuming the path to be given as xp(s),
whereas xp = (x, y, z) denotes a vector in the three-
dimensional space with parameterization s ∈ [s0, s f],
the goal is now to find a function s(t) that minimizes
the time

T =
∫ s f

s0

1

ṡ(s)
ds (1)

with ṡ = ds
dt denoting the time derivative of s (see [1, 8]).

A lot of work has already been done in this field
[2, 6, 10], and multiple solutions exist for the case with
constrained velocity v and acceleration a.

vmin ≤ dxp

dt
(t) ≤ vmax ∀t (2)

amin ≤ d2xp

dt2
(t) ≤ amax ∀t (3)

In this work, a further constraint is considered, which
increases the complexity of the solution to the problem
noticeably: A specific maximum and minimum jerk
must not be violated.

jmin ≤ d3xp

dt3
(t) ≤ jmax ∀t (4)

For example (see also Section 5):

vmax = (0.8, 0.8, 0.8) m/s = −vmin (5)

amax = (100, 100, 400) m/s2 = −amin (6)

jmax = (80,000, 80,000, 40,000) m/s3 = −jmin (7)

The reasons and benefits of applying a finite jerk as
an additional constraint are manifold:

– To minimize the deviation from the planned path
– To minimize the excitation of vibrations in general
– To ensure that the motor is able to provide the

requested current fast enough

The constraint in jerk is intrinsic to many actuator
systems, especially when they are based on voice-coil
motors. As the jerk is the change of acceleration per
time, it corresponds to the change of current per time
if disturbances and internal losses are negligible. It is
evident that the current cannot reach a certain level
immediately. Therefore, it is important to take the
constraint on the jerk into account especially when the
maximum tolerated deviation from the planned path is
very small.

In addition to the higher complexity due to the jerk-
constraint, the algorithm should be rather efficient in
order to be useful for a fully programmable and vision-
guided micromanipulator. In the best case, the comput-
ing would be real-time, which means, in this case, that a
smooth path of a few millimeters should be computable
in a few milliseconds.

3 Existing solutions

As mentioned above, the problem is a classical robotic
problem, and many solutions have been proposed to
solve it. Here, only a very brief overview over some
publications that dealt with the decoupled approach is
given. In the decoupled approach, the geometric path
is assumed to be fixed. Only the velocity with which
the path is followed is optimized but not the path itself.
Dubowsky et al. [2] and Shin and McKay [7] showed
how the time-optimal problem can be solved. Shin
and McKay [8] and Constantinescu and Croft [1] then
extended the solution to problems with jerk constraints,
but in contrast to this work, they used a perturbative ap-
proach and the flexible tolerance method, respectively.
All solutions to the time-optimal problem turned out
to require massive computational effort. Slotine and
Young [9] and Ecker et al. [3], among others, worked
on the efficiency of the proposed algorithms. However,
the needed computing time and power are not in favor
of this approach. For CNC machining applications, [4]
and [5] use somewhat similar approaches in which the
feedrate is constructed out of a set of several different
basic segments. Nam and Yang [5] used a recursive ap-
proach, which is not attractive for our application. Lin
et al. [4] worked on a problem that was very similar to
the one discussed here. The major shortcoming of their
approach is the fact that the feedrate is, to a certain
extent, limited by the shape of the basic profiles, while
our algorithm is more general and, thus, closer to the
constraints defined by the machine and the trajectory.
This might not be critical for machining, where the
feedrate is typically 50 mm/s, but it becomes a serious
penalty for high-speed motion systems where accelera-
tions are 100 times higher than in machining. In addi-
tion, it seems difficult to adapt [4] to include different
acceleration and jerk constraints for the different axes,
which is a requirement for high-speed motion systems.

More promising as a starting point for our purpose
is [6], which used the so-called proximate time-optimal
algorithm, which is shown to consume very little com-
puting time to solve the problem. This approach will be
adapted in order to consider constraints not only on the
velocity and the acceleration but also on the jerk.

Int J Adv Manuf Technol (2009) 45:1007–1016 1009

4 Algorithm

4.1 The phase space (s, ṡ)

The proximate time-optimal approach and most of the
other proposed methods transform the problem from
the three-dimensional “normal space” to the phase
space. There are two major advantages in doing so:

1. Not only the starting point (s0, ṡ0), but also the end
point of the move (s f , ṡ f), and thus, the boundaries
for the integration, are fixed and known in advance.
Alternatively, the end point of the move in the
normal space (x(t f), t f) is not known in advance
because t f is precisely a result of the algorithm.

2. Instead of having to find an optimum in the four-
dimensional (x, t) space, one can work in the two-
dimensional phase space.

The phase space (s, ṡ) is, thus, a very useful represen-
tation. The parameter s describes the motion along the
path. It starts at s0, normally set equal to 0, and ends
at s f , which corresponds to the length of the total path.
The parameter ṡ describes the velocity along the path.
The goal is therefore to find a curve in (s, ṡ) starting
typically at (0, 0) and ending at (s f , ṡ f), which, some-
what simplified, follows the highest possible values for
ṡ while respecting the given constraints.

Because the near time-optimal phase space velocity
curve will be constructed in (s, ṡ), the gradient m in
the phase space is needed. It is defined as long as the
manipulator is in motion (ṡ �= 0):

m(s, ṡ) := dṡ
ds

= d
ds

ds
dt

= dt
ds

· d
dt

ds
dt

= s̈
ṡ

(8)

It can be interpreted as the acceleration along the curve
divided by the velocity along the curve.

4.2 Constraints

As mentioned in Section 1, the constraints for velocity
v, acceleration a, and jerk j are as follows:

vmin ≤ dxp

dt ≤ vmax (9)

amin ≤ d2xp

dt2 ≤ amax (10)

jmin ≤ d3xp

dt3 ≤ jmax (11)

In order to be useful in the phase space, those con-
straints need to be transformed.

4.2.1 The velocity

The above inequality (Eq. 9) is not very useful because
xp(t) is unknown in the real system and it is, in fact, the
solution to the whole problem. However, the velocity
can be transformed as follows:

dxp

dt
= dxp

ds
· ds

dt
= xp

′ · ṡ (12)

This, on the other hand, is useful, because xp
′ can be

easily calculated a priori: xp(s) is part of the definition
of the problem. This, together with Eq. 9, leads to
conditions for ṡ (one per axis and side of Eq. 9), which,
in case of a three-dimensional space, leads to:

ṡlim,negvel,1(s), ṡlim,posvel,1(s), ...
ṡlim,negvel,2(s), ṡlim,posvel,2(s), ...
ṡlim,negvel,3(s), ṡlim,posvel,3(s)

with

ṡlim,negvel,1(s) = v1,min

x1
′ (13)

and the other constraints, respectively.
At each position s, those constraints form an upper

and lower limit for the phase space velocity ṡ

ṡmax(s) = Min
(
ṡlim,posvel,1(s), ..., ṡlim,posvel,3(s)

)
(14)

ṡmin(s) = Max
(
ṡlim,negvel,1(s), ..., ṡlim,negvel,3(s)

)
(15)

4.2.2 The acceleration

The acceleration along the path in the position–time–

space d2xp

dt2 will be transformed to the parameter space
in analogy to the velocity:

d2xp

dt2
= d2xp

ds2
·
(

ds
dt

)2

+ dxp

ds
· d2s

dt2
≡ xp

′′ · ṡ2 + xp
′ · s̈

(16)

This, again, is of use because xp
′′ can also easily be

calculated a priori. In order to visualize the constraints
it is helpful to have a look at it in the (ṡ, s̈) space. In
this space, for a certain value of s, Eq. 10 corresponds
to a pair of parabolas per dimension, which confine the
allowed values of (ṡ, s̈). The borders of this area define

s̈min,acc,1(s, ṡ), s̈max,acc,1(s, ṡ), ...
s̈min,acc,2(s, ṡ), s̈max,acc,2(s, ṡ), ...
s̈min,acc,3(s, ṡ), s̈max,acc,3(s, ṡ),

1010 Int J Adv Manuf Technol (2009) 45:1007–1016

with

s̈min,acc,1(s, ṡ) = a1,min − x1
′′ · ṡ2

x1
′ (17)

and the other constraints, respectively.
At each position (s, ṡ), those constraints form an

upper and a lower boundary for the phase space accel-
eration s̈

s̈max(s, ṡ) = Min(s̈max,acc,1(s, ṡ), ..., s̈max,acc,3(s, ṡ)) (18)

s̈min(s, ṡ) = Max(s̈min,acc,1(s, ṡ), ..., s̈min,acc,3(s, ṡ)) (19)

4.2.3 The jerk

Finally, also the jerk along the path d3xp

dt3 has to be
transformed:

d3xp

dt3
= d3xp

ds3
·
(

ds
dt

)3

+ 3
d2xp

ds2
· ds

dt
· d2s

dt2 + dxp

ds
· d3s

dt3

≡ xp
′′′ · ṡ3 + 3xp

′′ · ṡ · s̈ + xp
′ · ...

s (20)

It can be shown that

...
s = ṡ ·

(
dṡ
ds

)2

+ ṡ2 · d2ṡ

ds2 (21)

As long as ṡ �= 0

...
s
ṡ2

= m2

ṡ
+ d2ṡ

ds2 (22)

This leads with Eqs. 11 and 20 to

jmin

ṡ2
≤ xp

′′′ · ṡ + 3xp
′′ · s̈

ṡ
+ xp

′ ·
...
s
ṡ2

≤ jmax

ṡ2
(23)

jmin

ṡ2
≤ xp(s)′′′ · ṡ + 3xp(s)′′ · m(s, ṡ)

+ xp(s)′ · m(s, ṡ)2

ṡ
+ xp(s)′ · d2ṡ

ds2 ≤ jmax

ṡ2
(24)

This is the main equation of this work and can now
be used to construct the time-optimal path without
violating a jerk constraint. It was demonstrated that
the velocity constraint results in an upper and lower
limit for the phase space velocity and the acceleration
constraint results in a maximum and minimum phase
space velocity gradient. Finally, Eq. 24 shows that the
jerk constraint leads to a maximum and minimum cur-
vature d2 ṡ

ds2 of the phase space velocity. At each point
in the phase space, this equation allows us to trans-
form the jerk constraints to calculate the maximum and
minimum allowed curvature.

4.3 Step-by-step calculation of ṡ(s)

In order to construct the time-optimal phase space ve-
locity, the trajectory is discretized along its path. Mov-
ing along the trajectory, the above elaborated formulas
and constraints are applied at certain discrete positions.
The increment Δs = sn − sn−1 depends on the available
time for calculation, the processing power, the cycle-
time of the motion controller, and the tolerable devi-
ation from the trajectory. The discrete equations below
hold only for the limes Δs → 0. The idea is to start at
(s, ṡ) = (s0, ṡ0) and to move step-by-step to s1, s2, and
so on, determining at each step the maximum allowed
ṡ1 ≡ ṡ(s1), ṡ2 ≡ ṡ(s2), ... according to the criteria elabo-
rated in Section 2. As shown, the velocity constraints
introduce an upper boundary for ṡ. The acceleration
constraints were transformed into a maximum gradient
for each step:

ṡn ≡ ṡ(sn) = lim
Δs→0

ṡn−1 + (sn − sn−1) · m(sn−1, ṡn−1)

= lim
Δs→0

ṡn−1 + (sn − sn−1) · mn−1 (25)

mmax,acc(s, ṡ) = s̈max(s, ṡ)
ṡ(s)

(26)

Additionally, the jerk constraints lead to upper and
lower boundaries for d2 ṡ

ds2 . This term describes the curva-
ture of ṡ(s). It is, thus, helpful to state that the curvature
at the position sn is

d2ṡ

ds2 = lim
Δs→0

ṡn+1 − 2ṡn + ṡn−1

Δs2 (27)

Inserting Eqs. 26 and 27 into Eq. 24 leads readily to
conditions for

ṡn+1,max

= f (jmin, jmax, ṡn, ṡn−1, ds, m(sn, ṡn), xp
′, xp

′′, xp
′′′)

(28)

where xp
′, xp

′′, xp
′′′ each depend on sn.

This last equation contains all constraints. The con-
straints on the jerk are transformed into the curvature
xp

′′(sn) and jmin, jmax. The constraints on the accelera-
tion manifest themselves in m(sn, ṡn) and xp

′′(sn). For
each step, ṡn+1,max is chosen so that none of the condi-
tions are violated.

The same procedure can be applied at the same time
in the reverse direction, starting at (s, ṡ) = (s f , ṡ f) and
moving step-by-step to s f−1, s f−2, In this case, be
aware that the maximum allowed phase space-velocity
ṡ(s) is still a boundary that must not be violated, but
for the step-by-step calculation, the minimum allowed
gradient and curvature have to be used in order to
construct the time-optimal phase space velocity curve.

Int J Adv Manuf Technol (2009) 45:1007–1016 1011

Depending on the path and the constraints, this
method will lead to one of three possible situations:

– Meet point
– Split point
– Forbidden point

which will be explained in the following sections. Meet
and split points also occur without jerk constraints
and have already been treated in [6]. However, the
forbidden points can only occur in problems where the
acceleration and the jerk are constrained, and their
treatment is, thus, a result of this work. The flowchart
in Fig. 1 summarizes the described process.

4.4 Meet points

Assuming that the actuator has to move only a rela-
tively short distance, the phase space velocity will not
come close to its limits. The phase space acceleration (s̈)

Load path

Determine velocity
constraints

Determine
candidate point for

next step

Forbidden
point?

Absolute start
and end point

in phase space

New pair of
start and end

points

Split point?

Meeting
point?

Yes

Yes

Yes

No

No

No

Smooth phase
space velocity at

meeting point

Integrate phase
space velocity

v(s) v(t)

Calculate jerk table

Fig. 1 Flowchart of the algorithm

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Phase Diagram

Distance along path [mm]

V
el

oc
ity

 a
lo

ng
 p

at
h

[m
/s

]

v_limit
v_forward
v_backward

Fig. 2 Typical meetpoint for a simple straight path

and jerk (
...
s) and, thus, the gradient and the curvature in

the phase space are the only constraints. In this case, the
phase space velocity can be constructed without prob-
lems. As it is being constructed simultaneously from the
beginning and the end, the two parts will intersect at
some point. The resulting phase space velocity reflects
at that moment the fastest possible way to move along
the given path without violating the constraints. The
only point where the jerk constraints are violated is
the point where the two parts meet, the so-called meet
point. At that point, the gradient changes abruptly from
its allowed maximum value at that point to its minimum
value. Therefore, the jerk, which is correlated to the
curvature, is violated at that point (see Fig. 2).

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Phase Diagram

Distance along path [mm]

V
el

oc
ity

 a
lo

ng
 p

at
h

[m
/s

]

v_limit
v_forward
v_backward

Fig. 3 Typical phase space curve without jerk violation at the
meetpoint

1012 Int J Adv Manuf Technol (2009) 45:1007–1016

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Phase Diagram

Distance along path [mm]

V
el

oc
ity

 a
lo

ng
 p

at
h

[m
/s

]

v_limit
v_forward
v_backward

Fig. 4 Example for a case where the constructed phase space
velocity intersects with the maximum phase space velocity

In order to solve that problem, the following proce-
dure is proposed: Go a few steps back on both sides
and reconstruct the phase space velocity again, but this
time with the minimum allowed gradient and curvature
for the forward part and maximum allowed gradient
and curvature for the backward part. If the phase space
jerk is still violated at the meet point, go further back
and restart again. Do that until the left and the right
sides have a common tangent. This tangent serves as a
connection between the two parts (see Fig. 3).

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Phase Diagram

Distance along path [mm]

V
el

oc
ity

 a
lo

ng
 p

at
h

[m
/s

]

v_limit
v_forward
v_backward

Fig. 5 A split point has been introduced, which splits the
original problem into two separate problems that were solved
independently

0 2 4 6 8 10 12 14 16 18
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Velocity per Axis

Time [ms]

V
el

oc
ity

 [m
/s

]

horizontal
vertical

Fig. 6 It can be seen that the constraint on the maximum velocity
vmax = 0.5 m/s is not violated

4.5 Split points

There are different cases where it is helpful to split
up the construction of the phase space velocity. If the
maximum phase space velocity has a local minimum
somewhere, it can become impossible for the two parts
to intersect because they would both first intersect with
the limit of the phase space velocity.

In such a case, an additional starting point for the
forward and backward construction of the phase space
velocity is introduced. The idea is that the final solu-
tion of the phase space velocity will need to go below

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Phase Diagram

Distance along path [mm]

V
el

oc
ity

 a
lo

ng
 p

at
h

[m
/s

]

v_forward
v_backward

Fig. 7 Example for a case where the constructed phase space
velocity reached a forbidden point (on the right side at around
s = 5.9 mm, at the end of the blue curve)

Int J Adv Manuf Technol (2009) 45:1007–1016 1013

5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4

0.3

0.35

0.4

0.45

0.5
Phase Diagram

Distance along path [mm]

V
el

oc
ity

 a
lo

ng
 p

at
h

[m
/s

]

v_forward
v_backward

Fig. 8 If a forbidden point is reached, an artificial split point
is introduced, which splits the problem into a left and a right
part. Blue: original construction of phase space velocity, red: after
introduction of a split-point, green: final phase space velocity after
having taken into account the jerk constraint

the minimum of the limitation. Therefore, a point
(ssplit, ṡsplit) can be defined directly below the minimum
and carry on the construction from there. To the left,
the backward construction is carried on toward s0, and
to the right, the forward construction is carried on
toward s f . In this way, the split point is transformed
into a start/end point and the original problem is sep-
arated into two new problems, which can be treated
independently of each other.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4
Path

Horizontal direction [mm]

V
er

tic
al

 d
ire

ct
io

n
[m

m
]

Aequidistant in time

Fig. 9 This is the corresponding trajectory with the final parame-
terization (constant time-steps)

Table 1 Motor-constraints which were used for the example

Horizontal axis Vertical axis

Maximum velocity [m/s] 0.8 0.8
Maximum acceleration [m/s2] 100 400
Maximum jerk [m/s3] 80,000 400,000

Even if the limit of the phase space velocity does not
have a local minimum, it is possible that the constructed
phase space velocity intersects with the limit of the
phase space velocity, which makes an introduction of
a split point useful also. The split point transforms the
original problem with potential violation of the phase
space velocity into two parts. One of them definitely has
no violation, while the other one remains to be solved
(see Figs. 4, 5, and 6).

4.6 Forbidden points

There is one additional case that needs special attention
and treatment. It is possible that the combination of
acceleration and jerk constraints leads to a situation in
which the next step of the construction is not possible
anymore. It is possible that there is a position s, de-
noted sviol, where ṡmin,jerk(s) > ṡmax,acc(s) or ṡmax,jerk(s) <

ṡmin,acc(s). In this case, the phase space velocity has to
be artificially lowered to ensure that a solution can
be found. Again, at the position sviol, a new start/end
point is defined that lies a certain distance below the
originally constructed phase space velocity. Thus, the
forbidden point is transformed into a starting point
and the original problem is once more split into two
separate problems, which can be treated independently
of each other (see Figs. 7, 8, and 9).

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3
Input Path

Horizontal direction [mm]

V
er

tic
al

 d
ire

ct
io

n
[m

m
]

Aequidistant along curve

Fig. 10 Input path for the calculation x(s)

1014 Int J Adv Manuf Technol (2009) 45:1007–1016

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Phase Diagram

Distance along path [mm]

V
el

oc
ity

 a
lo

ng
 p

at
h

[m
/s

]

v_forward
v_backward

Fig. 11 Construction of the phase space velocity ṡ(s), taking into
account the jerk constraints

4.7 Integration

At this point, the phase space velocity that corresponds
to the velocity along the curve is constructed. ṡ(s) is
known. The next step is now to integrate over its in-
verse in order to find t(s).

t(s∗) =
∫ s∗

0

1

ṡ(s)
ds (29)

If t(s) is known, s(t) can be calculated, which gives
the solution to our problem, because now, xp(s) is
known and allows us to calculate the position for each
time step via xp(t) = xp(s(t)). A spline interpolation
method was chosen for the implementation, which was
used for the example presented in the next section.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Integration of the final phase-space velocity

P
ha

se
-s

pa
ce

 v
el

oc
ity

 d
s/

dt
 [m

/s
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

14

Distance along path: s [mm]

T
im

e
[m

s]

Fig. 12 Integration of the phase space velocity

0 1 2 3
-1

0

1

2

3

4

Input Path

Horizontal direction [mm]

V
er

tic
al

 d
ire

ct
io

n
[m

m
]

Aequidistant along curve

0 1 2 3
-1

0

1

2

3

4

Output Path

Horizontal direction [mm]

Aequidistant in time

Fig. 13 Calculation of the final result x(t)

5 Example

Finally, the complete calculation process will be illus-
trated with a two-axis motion and constraints as defined
in Table 1. The figures in this section illustrate the
calculations in one example. Figure 10 shows the input
to the problem: the path that has to be followed as
fast as possible. Figure 11 shows the construction of
the phase space velocity via forward and backward
integration in the phase space. The maximum allowed
phase space velocity depends mainly on the velocity
constraints for the motor. Based on the resulting phase
space velocity, which can be seen in the upper part of
Fig. 12, the final moving distance per time-step can be

0 2 4 6 8 10 12 14
-1

0

1

2

3

4
Position per Axis

P
os

iti
on

 [m
m

]

horizontal
vertical

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1
Velocity per Axis

Time [ms]

V
el

oc
ity

 [m
/s

]

horizontal
vertical

Fig. 14 Verification of the result: The horizontal and vertical
velocities do not violate the constraints

Int J Adv Manuf Technol (2009) 45:1007–1016 1015

0 2 4 6 8 10 12 14
-400

-200

0

200

400
Acceleration per Axis

A
cc

el
er

at
io

n
[m

/s
2]

horizontal
vertical

0 2 4 6 8 10 12 14
-4

-2

0

2

4
x 105 Jerk per Axis

Time [ms]

Je
rk

 [m
/s

3]

horizontal
vertical

Fig. 15 Verification of the result: acceleration and jerk. It can be
seen that neither the limits for the acceleration nor those for the
jerk are violated and that, during the whole trajectory, there is
always one constraint on one axis at its limit

calculated via integration. The lower part of Fig. 12
shows the duration of the move t(s) as a function of the
position along the path.

Based on t(s) (lower part of Fig. 12) and x(s) (left
part of Fig. 13), x(t) can be calculated (right part of
Fig. 13). This is the main result of the whole calculation.
Based on x(t), the position as a function of the time,
the jerk, acceleration, and velocity are readily calcu-
lated for verification. This is shown in Fig. 14, where
the position as a function of the time (top) and the
resulting velocity (bottom) are shown separately for
the horizontal and the vertical axes. Likewise, Fig. 15
shows the resulting acceleration (top) and the jerk
(bottom). It can be seen that the acceleration follows
its boundaries (central dotted lines for the horizontal
axis, outer dotted lines for the vertical axis) for almost
the complete move and that the jerk never violates its
constraints.

Table 2 compares the obtained result with what
the standard proximate time-optimal algorithm without
jerk constraints would give. It can be seen that the
presented enhancement of the proximate time-optimal
algorithm substantially reduces the maximum jerks on

Table 2 Comparison of the results obtained with and without
consideration of the jerk constraints

Without jerk With jerk Change
constraints constraints

Move time 12.8 ms 13.0 ms +1.6%
Max. horizontal jerk 508,830 m/s3 75,208 m/s3 −85.2%
Max. vertical jerk 2,470,800 m/s3 335,330 m/s3 −86.4%

the system while only minimally affecting the total
move time.

6 Conclusion and outlook

It has been shown that the “proximate time-optimal
algorithm” can be extended to take into account con-
straints on the jerk. This allows us to calculate near
time-optimal jerk-constrained trajectories along three
times differentiable paths in a nonperturbative way.
It could be shown that the jerks on the system can
be substantially reduced while almost maintaining the
total move time. This allows us to considerably reduce
the vibration in the overall system with a minimal speed
penalty. The presented method can, for example, be
applied to fast modern micromanipulators to calcu-
late the near-optimal acceleration and jerk profiles. As
the systems become faster and the required accuracy
higher, it is more and more important to take the jerk
constraints into account a priori.

As the trajectories also become more complex, it will
become important to optimize the algorithm even fur-
ther. In this paper, all calculations, considerations, and
examples are based on a time-continuous approach.
In a real application with a micromanipulator, whose
motion controller has a certain cycle-frequency, it turns
out that the time-discrete approach results in equations
that can be processed faster and, thus, allows us to
realize the computation of the paths for a fast modern
micromanipulator without an overall time penalty for
the system.

Acknowledgements This work was done during my employ-
ment at Oerlikon Assembly Equipment AG and would not have
been possible without the courtesy of both Oerlikon and Icos
Vision Systems NV. I am especially indebted to Marit Seidel;
Daniel Bolliger; and, of course, Francisca Scharpé, who were
always very supportive.

References

1. Constantinescu D, Croft EA (2000) Smooth and time-
optimal trajectory planning for industrial manipulators along
specified paths. J Robot Syst 17(5):233–249

2. Dubowsky S, Bobrow JE, Gibson JS (1985) Time-optimal
control of robotic manipulators along specified paths. Int J
Rob Res 4(3):3–17

3. Ecker JG, Kupferschmid M, Marin SP (1994) Performance
of several optimization methods on robot trajectory planning
problems. SIAM J Sci Comput 15(6):1401–1412

4. Lin M-T, Tsai M-S, Yau H-T (2007) Development of a
dynamics-based NURBS interpolator with real-time look-
ahead algorithm. Int J Mach Tools Manuf 47(15):2246–2262

1016 Int J Adv Manuf Technol (2009) 45:1007–1016

5. Nam S-H, Yang M-Y (2004) A study on a generalized para-
metric interpolator with real-time jerk-limited acceleration.
Comput Aided Des 36(1):27–36

6. Pardo-Castellote G, Cannon Jr RH (1996) Proximate time-
optimal algorithm for on-line path parameterisation and
modification. IEEE Int Conf Robot Autom 2:1539–1546

7. Shin KG, McKay ND (1985) Minimum-time control of
robotic manipulators with geometric path-constraints. IEEE
Trans Automat Contr 30(6):531–541

8. Shin KG, McKay ND (1986) Minimum-time trajectory plan-
ning for industrial robots with general torque constraints.
IEEE Int Conf Robot Autom 1:412–415

9. Slotine J-JE, Yang HS (1989) Improving the efficiency of
time-optimal path-following algorithms. IEEE Trans Robot
Autom 5(1):118–124

10. Timar SD, Farouki RT, Smith TS, Boyadjieff CL (2005)
Algorithms for time-optimal control of CNC machines along
curved tool paths. Robot Comput Integr Manuf 21(1):37–53

	Calculating a near time-optimal jerk-constrained trajectory along a specified smooth path
	Abstract
	Introduction
	Problem statement
	Existing solutions
	Algorithm
	The phase space (s,)
	Constraints
	The velocity
	The acceleration
	The jerk

	Step-by-step calculation of (s)
	Meet points
	Split points
	Forbidden points
	Integration

	Example
	Conclusion and outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

