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Abstract Camshaft grinding is more complex comparing
with the ordinary cylindrical grinding. Since its quality is
mostly influenced by more factors, how to select process
parameters quickly and accurately becomes the key to
improve its quality and processing efficiency. In this paper,
a hybrid artificial neural network (ANN) and genetic
algorithm (GA) model is proposed to optimize the process
parameters. In this method, a BP neural network model is
developed to map the complex nonlinear relationship
between process parameters and processing requirements,
and a GA is used in order to improve the accuracy and
speed based on the ANN model. The results show that the
hybrid ANN/GA model is an effective tool for the process
parameters optimization in NC camshaft grinding.

Keywords Genetic algorithm . Neural network . Camshaft
grinding . Uniform design . Process parameters optimization

1 Introduction

Camshaft is a key part of the automobile engine and other
internal combustion engines. Its quality and processing
efficiency have a direct influence on the quality of
automotive and the development of the entire automotive

industry. Comparing with the ordinary cylindrical grinding,
the camshaft’s cam profile is usually complex, and the
linear velocity of each point on the cam profile is variable
when a camshaft rotates with a constant angular velocity.
When machining, it is easy to form greater stress and
metamorphic layer for the actual performance of fatigue
cracks, wear, and parts failure in cam surface. Thus,
ensuring the accuracy of a camshaft is difficult [1, 2].
Currently, many manufacturers are still using copying–
grinding machines to product the camshaft. The accuracy of
master form has a direct effect on the camshaft profile
accuracy. Therefore, it is far from easy to ensure the
consistency of the accuracy of the master forms.

As the merits of NC grinding and some requirements of
the camshaft grinding including high accuracy, efficiency,
and flexibility, it is an inevitable trend that traditional
grinding methods are being replaced by NC grinding.
However, more difficult technical problems have appeared
in NC grinding; process parameters optimization is a
particularly important one which is mainly achieved by
the experience of skilled workers to ensure the accuracy of
the camshaft.

Therefore, it is necessary to make further study about
process technology of NC camshaft grinder. Because the
characteristics of the camshaft grinding are different from
other grinding methods, it is unpractical to use traditional
methods for process parameters optimization in the cam-
shaft grinding. With the powerful data processing capacity
of computer and artificial intelligence technology, the
camshaft grinding process will be better analyzed to meet
its maximum technology characteristics.

Artificial neural network (ANN) and genetic algo-
rithm (GA) are two of the most promising natural
computation techniques. In recent years, ANN is widely
applied, especially back propagation (BP) neural net-
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work [3–5]. BP algorithm has the advantage of optimiza-
tion accuracy, but at the same time, there are some
shortcomings, the most important of which is that it will
easily fall into a local minimum, slow convergence, and
oscillations [6]. As GA has strong macro-search capability
and great probability in finding global optimal solution [7,
8], using GA to complete the initial search can better
overcome the shortcomings of BP algorithm [9, 10]. The
article combines the neural networks and the genetic
algorithm to form a hybrid training algorithm to optimize
process parameters in NC camshaft grinding. Neverthe-
less, this study was inspired by the very limited or no
work on the application of genetic algorithm and neural
network in this field.

2 The mathematical model of the camshaft grinding
by constant linear velocity

The camshaft grinding is a special noncircular grinding. The
typical machining motions are shown in Fig. 1. When
the headstock drives the camshaft with rotation motion, the
grinding carriage drives the grinding wheel with translational
motion simultaneously. As the lift range is changing, the
grinding conditions except the part of base circle are
correspondingly changing. The linear velocities of grinding
points on the cam profile and the material removal rates are
variable when the camshaft rotates with constant angular
velocity, which leads to grinding burn and waviness, so the
camshaft grinding is totally different from the ordinary
cylindrical grinding.

In the grinding process, the cam grinding depth b and
width ap are fixed variables, so the instantaneous linear
velocity vω of the grinding point decides the material
removal rate; vω can be made a constant value by

controlling the headstock to achieve the constant material
removal rate grinding.

From the literature [11], when grinding by constant
linear velocity, the rotational velocity of the headstock ωc

and the translational velocity of the grinding carriage Vx

are:

wϕ ¼ r0 � w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ dr

dϕ

h i2r ð1Þ

wc ¼ wϕ þ w3
ϕ � r � cos b þ Rw

S2x
� 1

r0 � w0ð Þ2

� dr
dϕ

� r � d
2r

dϕ2

� �
ð2Þ

Vx ¼ � r � sin b � Rw

S2x
� w3

ϕ � 1
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� dr
dϕ

� r � d
2r

dϕ2

� �
ð3Þ

b ¼ arctan � dr
r � dϕ

� �
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where r0 is the base radius of the camshaft, Rw the base
radius of the grinding wheel, ω0 the rotational velocity of
the base circle, ρ(φ) the polar equation of the cam profile,
Sx the center distance between cam and grinding wheel
when grinding.

By Eqs. 2 and 3, we can see that the rotational velocity of
the headstock and the translational velocity of the grinding
carriage are variable except the part of base circle when
grinding by a constant linear velocity. In camshaft grinding
process, the movement between the headstock and the
grinding carriage is a coupling movement, so controlling the
movement of headstock can achieve the grinding carriage’s.

2.1 The model of camshaft grinding process parameters
optimization

For the camshaft grinding, the process parameters optimi-
zation is influenced by a variety of factors. Using the
nonlinear mapping capabilities of BP neural network and
selecting the appropriate parameters affecting the character-
istics of grinding, a neural network model was developed
based on processing requirements and parameters. It can
use past empirical data to study, automatically finding the
governing relationships in the dataset by adjusting the
weights between its nodes.
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Fig. 1 The typical machining motions of camshaft grinding
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Genetic neural network combines the advantages of
neural network with genetic algorithm, particularly applied
to handling the models which are unknown or cannot be
accurately described. If genetic neural network technology
is applied to NC camshaft grinding process parameters
optimization, it can analyze the relations among external
factors, internal factors, processing accuracy, and surface
quality. External factors include grinding wheel model, type
of grinding, rotational velocity of cam, and feed rate.
Internal factors include the properties of a camshaft to be
processed. By the way, the more proper grinding process
parameters, the more stable the camshaft process. Certainly
the grinding burn and the error of lift range will be
eliminated.

2.2 Experimental device

Grinding experiments were performed upon a NC camshaft
grinder (Type CNC8312A) developed by the National
Engineering Research Center for High Efficiency Grinding
in China. The numerical control (NC) system of the grinder
is siemens 840D, and 611D digital servo motor is used to
control the grinding carriage-axis(X axis), the working
table-axis (Z axis) and the headstock-axis (C axis). NC cam
grinding without master form can be achieved through the
linkage of X axis and C axis. Furthermore, coarse grinding,
precision grinding, finish grinding, and no-spark grinding
can be once finished after clamping the workpiece. The
grinder whose spindle bearing stiffness is not less than
100 kg/μm is also equipped with an on-machine dynamic
balancer (Type SBS4500). Thus, the camshaft machined
by the grinder has the high precision including the error
of adjacent point less than 0.01 mm, the maximum error
of lift range no more than 0.04 mm, surface roughness
Ra≤0.4 μm.

Surface roughness was measured by a surface coarseness
profiling instrument (Type Homel18000) made in Germany.
Grinding burn was detected by a metallographic micro-
scope (Type 5 XB-PC) and a magnetic detector. Cam
waviness and error of lift range were observed by visual
detection and a cam error measuring instrument (Type
TL500), respectively.

2.3 Grinding process parameters optimization

Because of the complexity of the process of camshaft
grinding, the process parameters are affected by a lot of
factors, such as dimensions of the camshaft, cam base circle
diameter, cam surface roughness, accuracy, grinding allow-
ance, size of grinding wheel, type of grinding wheel, depth
of grinding wheel dressing, interval of dressing, number of
dressing, linear velocity of dressing, translational speed of
dressing and type of coolant, and so on. To simplify, when

processing the same type of pieces, the other parameters are
only considered except wheel type, depth of grinding wheel
dressing, number of dressing, linear velocity of dressing,
translational speed of dressing, interval of dressing, and
type of coolant.

In order to reduce the complexity of network topology,
experiments were conducted based on Table 1. Through
qualitative analysis for the quality, “√” and “×” stand for
the qualified and unqualified separately. After several
rounds of tests, from Table 1, it can be seen that the best
results of grinding will be achieved when depth of grinding
wheel dressing, number of dressing, linear velocity of
dressing, and translational speed of dressing are equal to
0.009 mm, 3, 50 m/s, and 600 mm/min, respectively. So at
each stage, dressing depth will be set to 0.003 mm. Also,
the conclusion can be proven by reference [12].

Among them, the rotational velocity of wheel and the
camshaft and the feed rate of the grinding carriage have a
great influence on its quality and processing accuracy [13].
Using a constant linear velocity to control grinding is to
ensure that the material removal quantity is constant in unit
interval. The material removal quantity in unit interval is
defined as the material removal rate which is related to the
rotational velocity and the feed rate of the camshaft.
Certainly, a larger change of material removal rate is not
conducive to improving the accuracy of the camshaft. To
sum up, it can be initially set to the main process
parameters reflecting the characteristics of the camshaft
grinding: velocity of grinding wheel, rotational velocities of
the camshaft in the three stages (coarse grinding stage,
precision grinding stage, and finish grinding stage), feed
rates in the three stages, grinding allowances in the three
stages, and turns of no-spark grinding.

When using a constant linear velocity to control grinding,
rotational velocity of the camshaft always changes by Eq.2,
so it could not be accurately forecasted by the network. But
when the grinding wheel radius, the base circle radius and
cam lifts are the same; rotational velocities of points on the
other parts can be obtained by converting rotational velocity
of point on the base circle of cam profile.

After analyzing previous experimental data, there is an
approximate ratio among the rotational velocities of point on
the base circle of cam profile in the three stages. For example,
in the actual production of a batch of camshafts, they were set
to be 120, 80, and 60 rpm. So in this paper, the rotational
velocities of the camshaft in other stages can be converted
from rotational velocity of the camshaft in the finish grinding
stage that is only set. During the machining course, a series of
changes aroused from the effect caused by variable material
removal rate are ignored. For the same camshaft to be
processed, its total grinding allowance is a constant, so the
grinding allowance in the coarse grinding stage can be
calculated when grinding allowances in other stages are set.
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In a word, in this paper, the network input
parameters are simplified and only consist of: surface
roughness, waviness, maximum error of lift range,
degree of burn, and maximum adjacent error. The
network output parameters consist of: linear velocity
of wheel, rotational velocity of the camshaft in the
finish grinding stage, feed rates in the three stages
(coarse grinding stage, precision grinding stage and
finish grinding stage), grinding allowances in the
precision grinding stage and finish grinding stage, and
turns of no-spark grinding. The network model is
illustrated schematically in Fig. 2.

2.4 The samples of neural network based on uniform design

Establishing neural network model needs a series of
samples. A reasonable sample size and distribution can
accurately show the nonlinear mapping relations of the
model. If using orthogonal experimental design, the number
of experiments will be greater than the number n shown in
the following equations:

n ¼ s q� 1ð Þ þ 1

2
s s� 1ð Þ q� 1ð Þ2 ð5Þ

Where s is the number of experimental factors and q the
number of experimental levels. For this experiment, when

Table 1 Different results of processing determined by different dressing parameters

Linear velocity
of dressing (m/s)

Translational speed
of dressing (mm/min)

Depth of
dressing
(mm)

Number
of
dressing

Surface
roughness
Ra

Degree
of burn

Waviness Maximum
error of lift
range

Maximum
adjacent
error

20 100 0.002 3 × × × √ ×

20 200 0.004 3 × × × √ ×

20 300 0.006 3 × × × √ ×

20 400 0.008 3 × × × √ ×

20 500 0.010 3 × √ × √ ×

30 200 0.002 3 × × × √ ×

30 300 0.004 3 × √ √ √ ×

30 400 0.006 3 × √ √ √ √
30 500 0.008 3 × √ × √ √
30 600 0.010 3 × √ √ √ √
40 300 0.003 3 √ √ × √ ×

40 400 0.006 3 √ √ × √ ×

40 500 0.009 3 √ √ × √ √
40 600 0.012 3 √ √ √ √ √
40 700 0.015 3 √ √ √ √ √
50 400 0.009 3 √ √ √ √ √
50 500 0.009 3 √ √ √ √ √
50 600 0.009 3 √ √ √ √ √
50 700 0.009 3 √ √ √ √ √
50 800 0.009 3 √ √ √ √ √
50 900 0.009 3 √ √ √ √ √
50 1000 0.009 3 √ √ √ √ √

precision grinding allowances (∆r2) 
Degree of burn (dbn)

Waveness (wv)

Turns of no-spark grinding (r) 

Feed rate in the precision grinding stage (fr2)

Feed rate in the finish grinding stage (fr3) 

Finish grinding allowances (∆r3) 

Feed rate in the coarse grinding stage (fr1)

Linear velocity of wheel (vs)
Rotational velocity in the finish grinding 
stage (nw3) 

Surface roughness (Ra)

Neural network Maximum error  
of lift range (mel)

Maximum  adjacent 
error (mae)

Fig. 2 Schematic model of neu-
ral network for camshaft grind-
ing process parameters
optimization
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choosing six testing levels for each of the eight factors, the
total number of experiments is 740, that is, difficult in the
sense of experimental data collection, performing, and
analysis.

But the uniform design is another such efficient
fractional factorial design. By using the uniform design
of experiments, the number of experiments is substantially
reduced on the premise of the experimental effect
guaranteed [14].

In order to improve the pertinence of the experiments,
the spans of eight experimental factors are appropriately
enlarged on the basis of the earlier empirical data. Their
spans and units are [50, 80] (m/s), [60,180] (rpm), [0.005,
2] (mm/min), [0.1, 0.5] (mm), [0.005, 1.6] (mm/min),
[0.01, 0.2] (mm), [0.005, 1] (mm/min), [0, 10], respectively.
The type of the uniform design table for these experiments
is U60(6

8) [15]. The table is six levels for each of the eight
factors and contains 60 samples. Table 2 shows the values
of six levels for each of the eight factors.

2.5 Condition of the grinding experiments

Combining the above analysis, the condition of the grinding
experiments was established on the choice of the following
ways in CNC8312A camshaft grinder.

The grinding wheel whose specification is 14A1 500×
24×160×5 CBN120A150 was dressed by an electroplated
diamond roller dresser (Type S-DC-C-110×12×28) in
down dressing mode with the way marked in Table 1.
The interval of dressing was also set to 120 min. During
grinding, a 3% solution of water-based coolant (Type W20)
was applied. The properties of the camshaft to be processed

are shown in Table 3. Its chemical compositions are given
in Table 4.

3 Training model combining GA with BP

3.1 BP neural network

In theory, a three-layer BP model containing one hidden
layer can realize any nonlinear mapping when the number
of hidden layer is not limited. Neurons are located in the
three types of layers: the input layer, the hidden layer, and
the output layer. In this study, BP was used to achieve the
nonlinear mapping relations between processing require-
ments (input) and process parameters (output), usually
including a transfer function to calculate the output for each
neuron except the input neurons. A tangent function was
used for this transfer function. Each neuron’s output was
modified by the tangent transfer function, i.e., each hidden
neuron’s output was calculated using Eq.6 while the output
neuron’s output was calculated using Eq.7.

f Xj

� � ¼ tan h
Xn
i¼1

Xiwij � qij

 !
ð6Þ

f Xkð Þ ¼ tan h
Xn
j¼1

Xjwjk � qjk

 !
ð7Þ

In Eqs.6 and 7, Xi is the value of the input variable, wij

and wjk connection weights between the input and hidden
neuron and between the hidden neuron and output neuron,
θij and θjk bias terms for the jth and kth neuron respectively,

Factor Levels

vs (m/s) 50 56 62 68 74 80

nw3 (rpm) 60 84 108 132 156 180

fr1 (mm/min) 0.005 0.405 0.805 1.205 1.605 2

△r2 (mm) 0.1 0.18 0.26 0.34 0.42 0.5

fr2 (mm/min) 0.005 0.325 0.645 0.965 1.285 1.6

△r3 (mm) 0.01 0.05 0.09 0.12 0.16 0.2

fr3 (mm/min) 0.005 0.205 0.405 0.605 0.805 1

r 0 2 4 6 8 10

Table 2 The values of six
levels

Table 3 The properties of the camshaft to be processed

Material 20CrNiMo Total grinding allowance(mm) 2

Degree of hardness HRC30~HRC37 Base radius(mm) 14.2

Maximum lift range of inlet cam (mm) 9.0882 Maximum lift range of exhaust cam (mm) 8.8823

Number of inlet cam 3 Number of exhaust cam 6

Total length (mm) 602.8 Total number of cam 9

Int J Adv Manuf Technol (2009) 45:859–866 863



and i, j, and k the number of neurons for the layers,
respectively.

The training process was performed 2,000 epochs or
until the test data’s mean squared error calculated by Eq.8 is
less than the error set by user.

MSE ¼
Pn
i¼1

Oi � Tð Þ2i
n

ð8Þ

where Oi is the desired output for training data or testing
data i, Ti the network output for training data or testing data
i, and n the number of data in the training dataset or testing
dataset.

There were no appropriate rules to determine the number
of hidden neurons. According to experience, the number of

hidden neurons can be designed referring to the following
formula [16].

n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ n0

p þ a ð9Þ
where n is the number of hidden neurons, ni the number of
input neurons, n0 the number of output neurons, a a
constant between 1 and 10.

By Eq. 9 and compiling a program, the number of
hidden neurons was optimized and its result was 12. By this
way the neural network was established, which had five
input neurons and eight output neurons. The structure of the
neural network model was identified 5×12×8.

As the waviness and the degree of burn are described by
the ambiguous words, they are unidentifiable if they are
given to the network directly. So by using fuzzy compre-

Element C Si Mn S P Cr Ni Cu Mo

wt.(%) 0.21 0.32 0.84 0.021 0.027 0.65 0.72 0.30 0.28

Table 4 The chemical compo-
sition of the camshaft to be
processed (wt%)

N

Y

Is the stopping  
criterion satisfied?  

Stop

Predefine a feasible BP neural network’s 
architecture and genetic operators 

Start

Create the initial value of parameters  
randomly (weights and bias terms) 

Translate parameters into the  
predefined neural network’s  

architecture 

Using training data to train the neural  
network

Evaluate neural network 
Extract the chromosomes from the  

current population by using  
roulette wheel selection 

Select two chromosomes  
randomly from intermediate  

population, perform  

Perform mutation with  
probability

Using testing data to test the neural  
network

Fig. 3 The flowchart of GA-BP
network
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hensive evaluation methods, it is defined as V={infrequent,
mild, moderate, severe}, and they are replaced by the set
{0, 0.3, 0.7, 1} in the network.

The spans of samples are too large especially the
velocity of grinding wheel and the rotational velocity of
the camshaft. So, the data normalization treatment was used
to speed up the convergence.

3.2 The model of GA-BP network

GA algorithm is a kind of stochastic search algorithm
inspired by the mechanics of natural evolution, including
survival of the fittest, reproduction, crossover, and muta-
tion. GA algorithm is based on Darwinian survival of the
fittest strategy and works with a population of individuals,
each of which represents a potential solution to a given
problem. The basic operations in GA algorithm are
selection (reproduction), crossover, and mutation. Although
BP algorithm can surely obtain the final convergence of the
network learning course, its evident weakness is that time
of learning and training is too long and it is easy to
converge on local optimal value. The capability of GA
algorithm to obtain global optimal value is very great, but it

is difficult to overcome the shortcomings of similar
exhaustive search. However, the model combining GAwith
BP can effectively solve the above-mentioned problems. As
the GA-BP network can easily select optimal point within
the solution space. It is a fast, reliable method. Its algorithm
steps are shown in Fig. 3 [17, 18].

The basis of GA is the continual improvement of the
fitness of the population by means of genetic operators, as
individuals are passed from one generation to the next.
After a number of generations, the population evolves to a
solution close to optimal. In this study, the roulette wheel
selection based on ranking algorithm was applied in the
reproduction. Chromosomes were selected in quantities
according to their relative fitness after ranking in the
roulette wheel operator, and then they were put into the
intermediate population. The population size was 100.
Uniform crossover and uniform mutation operators were
used and the probability of crossover and mutation
operators were 0.7 (Pc) and 0.03 (Pm), respectively.

4 Experimental results and discussions

After training the network using the samples that were
designed by uniform design, six samples were collected
from previous machining process to test the network. The
details about six samples are given in Table 5.

The percentage error of the GA-BP network was
calculated as the percentage difference between the exper-
imental and predicted values (the network’s relative inputs).

Table 5 Samples to test the network

Sample Input Output

Ra dbn wv mel mae vs nw3 fr1 △r2 fr2 △r3 fr3 r

1 0.62 Infrequent Mild 0.052 0.035 60 60 0.084 0.06 0.06 0.06 0.04 3

2 0.54 Infrequent Infrequent 0.056 0.035 80 70 0.062 0.06 0.06 0.04 0.04 4

3 0.5 Infrequent Infrequent 0.045 0.037 80 80 0.062 0.08 0.06 0.02 0.03 4

4 0.32 Infrequent Infrequent 0.033 0.006 70 90 0.048 0.06 0.02 0.02 0.02 4

5 0.40 Infrequent Moderate 0.034 0.071 60 100 0.062 0.12 0.04 0.04 0.04 4

6 0.20 Infrequent Infrequent 0.015 0.002 80 80 0.048 0.06 0.02 0.04 0.01 3

Error (%) 

Fr
eq

ue
nc

y 

Min= -14.25 

Max=17.44 

Mean= -0.05 

StDev=7.46 

Fig. 4 Error distribution of the GA-BP network for mapping between
the inputs and the outputs

Table 6 The experimental and the network’s relative inputs

Sample Ra dbn wv mel mae

1 0.25 Infrequent Infrequent 0.02 0.006

1′ 0.24 Infrequent Infrequent 0.018 0.007

2 0.32 Infrequent Mild 0.025 0.008

2′ 0.30 Infrequent Mild 0.027 0.006

Int J Adv Manuf Technol (2009) 45:859–866 865



The error distribution of the GA-BP network for mapping
between the inputs and the outputs shown in Table 5 is
presented in Fig. 4. The error has a uniform distribution
pattern about zero with a mean value and standard
deviation of −0.05% and 7.46%, respectively. The absolute
maximum error is less than 17.44%. The result shows that
85.42% of the predicted values have the percentage error
ranging between ±10%. It can be seen that the network can
achieve better mapping between the inputs and the outputs.

On this basis, the following two samples generated
randomly like samples 1 and 2 were entered into the
network. Then the outputs of the network were used to
control the camshaft grinding and the results of measure-
ments like sample 1′and 2′are shown in Table 6 by
comparing with the network’s relative inputs.

By Table 6 it can be seen that the errors between the
experimental and predicted value are small. GA-BP
network model provides a powerful tool in process
parameters optimization in NC camshaft grinding, and has
the ability of optimizing grinding process parameters.

Through the above analysis, it is obvious that applying
the GA-BP network model in process parameters optimi-
zation in NC camshaft grinding is correct and effective in
this paper. It is a reference for other grinding of multi-
parameters.

5 Conclusions

In this study, the GA-BP network in process parameters
optimization in NC camshaft grinding is modeled and
experimentally tested. This hybrid approach is aimed to
find an integrated solution to the existing problem of
analyzing camshaft grinding processes for which using
traditional methods for process parameters optimization is
not straightforward. The nonlinear mapping relations
between processing requirements (input) and process
parameters (output) were achieved with a 5×12×8 config-
uration. The errors to test the network by six testing data
have a uniform distribution pattern about zero with a mean
value and standard deviation of −0.05% and 7.46%,
respectively. The result shows that 85.42% of the
predicted values have the percentage error ranging
between ±10%. It can be seen that the network can
achieve better mapping between the inputs and the
outputs. So the hybrid ANN/GA model is an effective
tool for the process parameters optimization in NC
camshaft grinding.
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