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Abstract This paper proposes a neurogenetic-based optimi-
zation scheme for predicting localized stable cutting param-
eters in inward turning operation. A set of cutting experiments
are performed in inward orthogonal turning operation. The
cutting forces, surface roughness, and critical chatter locations
are predicted as a function of operating variables including
tool overhang length. Radial basis function neural network is
employed to develop the generalization models. Optimum
cutting parameters are predicted from the model using binary-
coded genetic algorithms. Results are illustrated with the data
corresponding to four work materials, i.e., EN8 steel, EN24
steel, mild steel, and aluminum operated over a high speed
steel tool.
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Nomenclature

v Cutting speed (m/min)
f Feed rate (mm/rev)
d Depth of cut (mm) = DOC
l Tool overhang length (mm)
HSS High speed steel
CCL (Cc) Critical chatter length(mm)

Fx, Fy, Fz Cutting forces in x, y, and z directions in
Newton

Vo Optimum cutting speed (m/min)
fo Optimum feed rate(mm/rev)
do Optimum depth of cut (mm)
fw Flank wear (mm)
Ra Surface roughness (μm)

1 Introduction

The most detrimental phenomenon to productivity is
unstable cutting. This reduces tool life and surface quality
of workpiece. Many theoretical investigations are available
in literature for prediction of stable and unstable cutting
states in orthogonal cutting. In most of the cases, the stability
lobe diagram is generated from an analytical linear model, by
varying one operating parameter at a time. In orthogonal
turning, it is well known that the cutting forces depend on
the operating variables such as feed, depth of cut, and speed.
These variables are often used to control the forces or
machining stability by establishing appropriate regression
relations. Recently, it is found that other parameters such as
tool geometry [1], tool wear [2], variations in shear angle [3],
and compliance of workpiece [4–6] have great influence on
cutting dynamics. To distinguish stability states of cutting,
the output features such as surface roughness [7, 8] and type
of chips [9] can be employed effectively in addition to
cutting force data and stability states. In practice, there are
several other operating parameters like tool overhanging
length and type of material that may also have influence on
the critical operating conditions. For example, variation of
tool overhang length changes the stiffness of tool holder,
which in turn alters the tool wear and life during unstable
conditions. Likewise, the effects of cutting fluids on the
surface roughness and tool wear have been predicted [10]. In
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another work [11] studied the overall influence of amount of
lubrication along with cutting speed and feed rates on the
surface roughness and specific cutting forces which in turn
directly affect the stability of the process. In this paper, the
cross-section dimension of the workpiece, tool stiffness, and
damping ratios effect on dynamics of the system is neglected
because the effect of all the parameters is explained in [12].

In this paper, the effects of cutting parameters in
orthogonal turning operation including tool overhang
length on the critical chatter lengths over the workpiece
and the static cutting forces on the tool are studied. A series
of cutting experiments are carried out using four different
work materials, i.e., EN24 steel, EN8 steel, mild steel, and
aluminum at various operating speeds, feeds, and depths of
cut. In all cases, dynamic cutting forces, surface roughness,
and critical chatter lengths are measured. Relations between
the input and output parameters are established using
radial-basis function (RBF) neural network model and it is
further employed to arrive at the optimized machining data
within the operating constraints using genetic algorithms
(GA). Brief description of proposed neural network model
and optimization scheme through GA is presented in
Section 3 and the numerical results and discussions are
given in Section 4. The following section briefly describes
the experimental analysis to obtain the parametric data.

2 Experimental analysis

In present analysis, a series of cutting experiments are
carried out on a workshop center lathe in order to find the
critical stability state in inward turning. Figure 1 show the
experimental setup employed in the present work. Cutting
is performed from the collar end of the workpiece.

The cutting operation is carried out for short cutting
length only and operation is inward turning operation. The
cutting speed (v), feed rate (f), depth of cut (d), and tool

overhang length (l) are progressively varied to obtain the
cutting forces (feed force, radial force, and tangential
force), surface roughness, and critical chatter lengths
(CCL) on the workpiece. The measured critical chatter
lengths are taken from the free end of the workpiece and
tail stock support is taken in every experiment. Ranges of
each cutting parameter and their associated levels are
depicted in Table 1. In all the cases, 50-mm-diameter
workpieces are employed and tool material is HSS S-200.
An attached tool post strain gauge dynamometer platform is
used to measure the cutting forces in three directions. The
required feed rate is chosen from the lathe preset arrange-
ment. In this study, the influence of tool overhanging length
on the cutting forces developed, surface roughness
obtained, and critical chatter length during turning opera-
tion was evaluated. In order to examine the influence of
tool overhanging length, turning tests are carried out on
EN24 steel, EN8 steel, mild steel, and aluminum work-
pieces using four different tool overhanging lengths. The
turning tests at each tool overhanging length were con-
ducted at three different cutting speeds while depth of cut,
feed rate, and tool angles were constant. Here, experiments
are conducted at four different overhanging lengths and
three different cutting speeds of 7, 14, and 22 m/min.
Dynamometer is calibrated before applying loads on lathe.
Calibration is done individually for horizontal and vertical
forces with reference to proving ring and microvolt indicated
on bridge balance unit is recorded with respect to definite
known loading. Graph was plotted load verses microvolts for
calibration of horizontal and vertical forces separately after
multiplying with multiplication factor, i.e., 1 kg equal to 23.4
and 20.3 μV, respectively.

3 Proposed neurogenetic approach

Relationship between several operating variables and the
output parameters is first obtained from the neural network
model. For the last one decade, several works have been
reported on the use of neural networks in modeling of
turning process. Few recent applications of neural networks
in turning operation include extraction of surface roughness
information [13–16] and prediction of workpiece motions
from cutting tool vibration signals [17]. There are many types
of neural networks in common use. Main advantage of using
neural networks is that the entire experimental data could be
consolidated into few cutting parameters known as weights
and centers. Figure 2 shows the schematic diagram of the
proposed approach of obtaining the critical operating varia-
bles. Thus, function approximation module is used to obtain
the relationship between the input and output data. After
establishing the neural network model, it is employed to
minimize the cutting forces under a range of input variables.Fig. 1 Experimental setup
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3.1 RBF neural network

Of the available architectures, RBF neural network has
principal advantages such as single hidden layer, training
requiring at only output layer, and comparatively rapid
convergence. RBF model has three layers: an input layer, a
hidden layer of radial basis neurons, and an output layer of
linear neurons [18]. The hidden layer consist of an array of
computing units called hidden nodes. Each hidden node j
contains a center vector Cj that is a parameter vector of the
same dimension as the input data vector X and calculates
the Euclidean distance between the center and the network
input vector X defined by: X � Cj

�� ��. The results are then
passed through a nonlinear activation function (known as
radial basis function) φj, to produce the output from the
hidden nodes. A popular choice of the activation function is
the Gaussian basis function:

φj tð Þ ¼ exp � X � Cj

�� ��2
2s2

j

" #
j ¼ 1; 2; 3;::::::;M ð1Þ

where σj is a positive scalar that is called the width and M is
the number of hidden units. It is often assumed that the
number of hidden units is significantly less than the number
of the data points. The constant width parameter of hidden
unit controls the smoothness property of the activation
function. When the width is small, the corresponding area
of the representation space becomes small. Hence, a high

number of centers will be required during the process of
training. This results in overparameterization. On the
contrary, the area of the representation space may be too
extensive when the width σ is large. For both cases, the
generalization capabilities of the network will be poor.
Often σj is selected from the relation: s j ¼ dmaxffiffiffiffiffi

2M
p , where dmax

is the maximum distance between the centers of hidden
units. The center vector Cj is obtained from the K-means
clustering algorithm in which all the input sets are arranged
into clusters whose centers are initially chosen randomly
from all the input sets. The output layer consists of p
neurons and it is fully connected to the middle layer. Each
linear output neurons forms the weighted sum of these
radial basis functions. In other words, the network output:

byi ¼
XM
j¼1

wjiφj; i ¼ 1; 2; 3;::::::::p ð2Þ

where φj is the response of the jth hidden unit resulting
from all input data and wji is the connecting weight between
the jth hidden unit and the ith output unit.

In matrix notation, Eq. 2 can be written as

bY ¼ Wf ð3Þ
where

W ¼
w11 w21 ::::: wM1

w12 w22 ::::: wM2

::::: ::::: ::::: :::::
w1p w2p ::::: wMp

2
664

3
775 ð4Þ

and

f ¼ φ1φ2:::::::::::::φM½ �T : ð5Þ

By the end of passing all the input sets (known as epoch
or cycle), a mean square error (MSE) is computed
according to:

MSE ¼ 1

2PAT� p

XPAT
k ¼ 1

Xp

i ¼ 1

yi � byið Þ2 ð6Þ

where PAT refers to the total number of patterns in each
cycle and is the target value at the ith output layer. WeightsFig. 2 Proposed neurogenetic approach

Table 1 Operating parameters and their levels used in the experiments

Workpiece material Cutting speed
v (m/min)

Feed rate f (mm/rev) Depth of cut d (mm) Tool overhang
length l (mm)

EN24 steel 7, 14, and 22 0.1 0.1–0.7 with 0.1 interval 54, 57, 59, and 61

EN8 Steel 7, 14, and 22 0.1 0.1–0.7 with 0.1 interval 53, 57, 60, and 63

Mild Steel 7, 14, and 22 0.1, 0.138, 0.175, 0.2, 0.275, 0.35, and 0.5 0.1 54, 57, 59, and 61

Aluminum 7, 14, and 22 0.1, 0.138, 0.175, 0.2, 0.275, 0.35, and 0.5 0.1 53, 56, 58, and 62
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are updated using recursive least square or gradient descent
algorithm according to

wnew
ji ¼ wold

ji þ aφj yi � _
yi

� �
ð7Þ

where it is the learning parameter whose value is chosen
between 0 and 1. After the learning phase, the network
can be used to obtain the output for any unknown input
pattern.

3.2 Genetic algorithms

GA also known as “evolution strategies” are optimization
algorithms imitating principles of biological evolution. GA
is a probabilistic search process based on natural genetic
system; it is highly parallel and efficient optimization
strategy and believed to be robust. GA is capable of
solving wide range of complex optimization problems
using three genetic operations: selection/reproduction,
crossover, and mutation. The only “fittest” individuals of
every generation survive to obtain the next generation. GA
considers several points in the search space simultaneously
and the chance of convergence to a local optimum is
reduced. GA does not need the knowledge of the gradient
of the fitness functions, which is very suitable for the
optimization problems where an analytical expression for
the fitness function is unknown. In GA, binary coding of
the variables is often employed for convenience. Fitness is
computed for every population before selection of the
mating pairs. For selection of mating variables, either
roulette wheel method or tournament selection can be used.
Single-point crossover is commonly employed. Essentially,

GA is developed for unconstrained single objective
optimization problems. Further details of GA can be found
elsewhere [19]. In the present context, GA is used to obtain
the optimal cutting variables which minimize all the three
cutting forces. The formulation is written as:

Minimize fop v; f ; d; lð Þ ¼ Fx þFy þFz Subjected to

7 � v � 22;

0:1 � f � 0:5;

0:1 � d � 0:4;

53 � l � 63:
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4 Results and discussions

4.1 Effect of cutting parameters on cutting forces
and critical chatter length

The critical chatter length is the distance between the point
where the maximum force attained with violent sound and
free end of the workpiece and this is related to process
stability. The critical chatter length is recognized by the
sudden increase in force which is indicated by the strain
gauge dynamometer and these cutting forces shown in
tables are the maximum values. Figures 3, 4, and 5 depict
the variation of cutting forces as a function of depth of
cut and tool overhang for EN8 steel workpiece operated at
7 m/min. It can be seen that the cutting forces increases,

while the critical chatter length decreases with the depth of
cut and tool overhang. However, the changes are not linear
or uniform. Thus, output parameters are influenced simul-
taneously by the operating variables as well as tool
overhang in nonlinear fashion. The effect of cutting speed,
feed rate, and depth of cut on critical chatter length values
for four workpiece materials is shown in Figs. 6, 7, and 8,
respectively. From the Fig. 6, it is observed that at low-
cutting speed, critical chatter length is high and vice versa.
But from these results, it is observed that chatter depends
on the material properties also. From the Fig. 7, it is
observed that the critical chatter length decreases when the
feed rate was increased. This was attributed to the fact that
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the area of cut substantially increased per cycle of cut;
hence, more shearing had to be done which required more
force and there by decreases the critical chatter length.
From the Fig. 8, it is observed that increasing the depth of
cut generally resulted in a proportional decrease in critical
chatter length.

4.2 Effect of tool overhanging length

Tool overhang is defined as the length by the tool extends
from the tool holder. The length by which the tool extends
from the tool holder is a variable that can be used to tune
the machining process. When chatter occurs, the natural

reflex is to reduce spindle speed, but increasing the speed
may in fact be a more productive response. Another
common response to chatter is to switch to a tool, because
of the seeming stiffness of a shorter tool. Recent and
ongoing experiments in the tool tuning of overhanging
length have had encouraging results. Figure 9 shows the
variation of cutting forces against the different tool
overhanging lengths for EN8 steel and it is observed that
radial cutting force sharply increases when tool overhang-
ing length exceeds 59 mm. From the previous literature, it
is known that large amount of positive radial force is
undesirable. A large positive radial force causes the
workpiece to deflect and there by surface finish deterio-
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rates. Similarly, the influence of tool overhanging length on
cutting forces is shown in Figs. 10, 11, and 12 for EN24
steel, mild steel, and aluminum, respectively. From the
above three figures, it is observed that the cutting force is
increasing along X, Y, and Z directions with an increase in
tool overhanging length.

As tool overhanging is increased, the maximum rough-
ness height increases which means the quality of surface
deteriorates as shown in Fig. 13. Figures 14, 15, and 16
show the variation of surface roughness against the
different tool overhanging lengths for EN24 steel, mild
steel, and aluminum, respectively, at different cutting
conditions and tool angles and thereby, critical chatter
length decreases. On the other hand, critical chatter length

decreases when the tool overhang length increases, i.e.,
instability increases as the tool overhanging length is
increased as shown in Figs. 17, 18, 19, and 20 for EN8
steel, En24 steel, mild steel, and aluminum, respectively.

For each workpiece material, experimental results of 74
cases are selected as learning samples to train the neural
network. The remaining ten sets are used as inputs to verify
the accuracy of the model. Architecture has four input and
five output nodes. Input–output data are first normalized in
MS-Excel and the training and testing data are stored as
text files. Four hidden nodes are selected based on several
trails. The central vectors are obtained from K-means
clustering algorithm. The learning parameter (α) is chosen
as 0.4. Maximum number of cycles is selected as 500.
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Figure 21 shows the progress of network training for σj=1.
As σj is increased, the average predictions are found to be
comparatively poor for EN8 steel. The network centers and
weights are stored at this configuration.

The predicted outputs correspond to all the trained
samples are very close to the target values. Table 2 shows
the accuracy of predictions for all ten cases (data
corresponding to results of experiments #75–84) of work
materials EN8 steel, EN24 steel, mild steel, and aluminum.
Even there is a noticeable deviation in few output variables,
average accuracy of the model is found to be good. This
may be due to the limited number of training cycles. After
the neural network model is established correctly, the GA
procedure is employed to determine the optimum cutting
parameters. For obtaining the mating pairs, tournament

selection approach is employed. In binary coding terminol-
ogy, each population point is represented as a bit string
made up of as many substrings as the number of variables.
Here, each substring length is chosen as 10 (that is 10 b are
used to represent each variable) and a population of 40
individuals is considered in each case. The crossover
probability is considered as 98% and the probability of
mutation is taken as 1%. The number of generations is
selected as 200.The optimum machining parameters and
corresponding maximum and minimum cutting forces as
well as critical chatter lengths are obtained for each work
material.

Table 3 shows some ranges of operating parameters and
corresponding optimized forces Fx, Fy, Fz, and CCL,
optimum cutting conditions vo, do, and lo predicted by GA
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program. As seen from tables, the optimum cutting param-
eters are the extremities of the selected cutting ranges. It is
similar to earlier works in literature.

It is also observed that an increase in feed and depth of
cut along with tool overhang rise the cutting forces, while
the cutting forces in the experimental range has relatively

less influence on the dynamics. Relatively high cutting
forces are observed when mild steel workpiece is
employed. The convergence time for each run to achieve
the desired cycles is 8 s on X86 based PC with 3 GHz
processor. The combined effect of all parameters could lead
to better visualization at the shop floor level.

SL. no Material Fx (N) Fy (N) Fz (N) Ra (μm) CCL (mm)

P T P T P T P T P T

1 EN8 steel 463 484 616 606 764 781 3 3.1 13 12.5

2 524 531 645 641 824 819 3.6 3.6 10 10.4

3 596 585 733 735 858 848 3.9 4.1 8 8.6

4 351 354 410 417 586 576 0.9 1.1 24 22.5

5 404 403 504 505 644 659 1.5 1.3 18 17.4

6 446 451 613 608 690 707 2.8 2.9 15 14.6

7 463 460 677 666 754 746 3.1 3.0 11 11.4

8 514 509 704 713 830 835 3.5 3.7 9 8.5

9 562 568 710 721 890 905 4 4.1 8 7.6

10 648 655 808 810 958 971 4.3 3.9 6 7.9

11 EN24 steel 476 471 675 671 839 842 3.3 3.8 10 11.2

12 539 533 706 711 904 906 3.8 4.1 8 9.4

13 616 612 786 798 942 949 4 4.2 6 6.5

14 371 376 473 479 672 681 1.1 1.4 21 21.4

15 422 425 562 566 719 726 1.7 1.5 19 21.7

16 477 492 666 678 768 785 3.1 3.4 15 16.8

17 483 486 731 735 829 819 3.3 3.5 12 11.8

18 537 539 767 768 908 921 4 4.2 8 9.7

19 589 591 788 792 969 978 4.2 4.3 7 8.4

20 664 672 850 846 1,032 1,046 4.7 4.9 5 6.7

21 Mild steel 685 697 1,071 1,092 1,389 1,354 3.7 3.9 8 7.2

22 743 736 1,094 1,099 1,450 1,467 4.2 4.1 7 7.8

23 819 821 1,186 1,164 1,484 1,498 4.5 4.4 6 6.4

24 579 589 866 868 1,219 1,221 1.4 1.3 13 13.2

25 634 639 955 958 1,267 1,287 2.1 2.2 12 12.8

26 686 702 1,057 1,069 1,320 1,328 3.6 3.8 10 10.4

27 705 713 1,130 1,122 1,380 1,366 3.8 4.1 8 8.2

28 744 749 1,159 1,144 1,442 1,441 4.3 4.2 7 7.3

29 806 808 1,183 1,167 1,507 1,502 4.8 4.4 6 6.2

30 875 888 1,236 1,243 1,572 1,565 5.2 5.6 5 5.8

31 Aluminum 163 164 266 254 429 436 1.2 1.5 14 13.4

32 179 177 282 288 447 452 1.5 1.3 11 10.6

33 197 192 300 309 465 464 1.7 1.8 9 9.8

34 111 115 214 220 379 381 0.6 1.1 25 23.8

35 129 136 232 241 397 402 0.8 0.7 19 18.8

36 143 147 246 256 411 414 0.9 1.0 16 16.4

37 157 159 260 264 425 434 1.1 1.2 12 12.7

38 178 172 281 288 445 446 1.3 1.5 10 10.5

39 194 199 297 306 461 464 1.6 1.9 9 9.6

40 216 223 320 331 482 472 1.8 1.7 7 7.7

Table 2 Comparison of output
values for EN8 steel and EN24
steel

P predicted, M measured
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5 Conclusions

In this paper, a multivariate model of orthogonal turning
operation has been formulated based on series of experi-
ments. Using the experimental data for different workpiece
materials, the cutting dynamics is modeled with radial basis
function neural network. Through neural network model of
function, optimum operating variables namely speed, feed,
depth of cut, and tool overhang lengths are established by
minimizing total cutting force using GA. The corresponding
chatter lengths are also reported. It is found that compared to
speed, feed, depth of cut, and overhang of tool have
profound influence on the cutting forces and critical chatter
locations. Convergence would have been better when the
neural network training is based on error criterion. The

cutting forces are considerably affected by the variation of
any one of the cutting variables. It is observed in the present
investigation that the characteristics of the cutting force
fluctuations in turning vary primarily with feed rate. The
variation in the cutting speed seems to have very little
influence on the cutting force components. In turning
operations, feed rate is the most influential parameter on
surface roughness, cutting depth is the second most one, and
cutting speed is the least influential parameter. The influence
of cutting speed is negligible compared with those of the
other cutting parameters. At low cutting speed, critical
chatter length from the free end of the workpiece is high
that is by increasing the speed chatter comes earlier. But
from this, results observed that chatter depends on the feed
rate, depth of cut, and material properties also. The work can

Table 3 Outputs of GA for different ranges of input variables

Material V (m/min) d (mm) l (mm) Fx (N) Fy (N) Fz (N) SR (μm) CCL (mm) vo (m/min) do (mm) lo (mm)

EN8 steel 7–14 0.1–0.4 53–57 462.6 631.5 723.6 1.46 16.23 7 0.1 56.95

7–14 0.1–0.4 57–63 466.8 631.0 723.8 1.35 16.21 7 0.1 63.00

7–14 0.4–0.7 53–57 542.9 810.8 923.9 2.51 14.27 7 0.4 56.90

7–14 0.4–0.7 57–63 539.3 808.6 923.3 2.45 14.28 7 0.4 62.97

14–22 0.1–0.4 53–57 586.4 760.1 856.7 2.12 18.07 14 0.1 57.00

14–22 0.1–0.4 57–63 591.5 755.4 857.2 2.14 18.12 14 0.1 57.00

14–22 0.4–0.7 53–57 595.4 801.5 964.6 3.21 13.71 14 0.4 56.89

14–22 0.4–0.7 57–63 601.5 785.0 966.5 3.23 13.12 14 0.4 62.95

EN24 steel 7–14 0.1–0.4 52–56 441.6 430.4 725.6 1.49 17.7 7 0.1 55.9

7–14 0.1–0.4 56–62 489.8 513.8 912.5 1.38 14.8 7 0.1 61.9

7–14 0.4–0.7 52–56 504.0 551.1 934.8 2.54 14.2 7 0.4 55.9

7–14 0.4–0.7 56–62 584.0 631.8 921.3 2.49 13.0 7 0.4 62.0

14–22 0.1–0.4 52–56 424.1 615.0 834.7 2.18 16.4 14 0.1 55.9

14–22 0.1–0.4 56–62 430.3 623.3 788.6 2.19 16.2 14 0.1 61.2

14–22 0.4–0.7 52–56 688.6 736.1 989.6 3.29 12.0 14 0.4 55.9

14–22 0.4–0.7 56–62 689.9 737.8 998.7 3.28 12.2 14 0.4 61.5

Mild steel 7–14 0.1–0.3 54–57 598.6 888 1,334.2 1.86 9.64 7 0.1 56.9

7–14 0.1–0.3 57–61 597.3 889 1,339.7 1.92 9.65 7 0.1 61.0

7–14 0.3–0.5 54–57 620.2 1,032 1,443.2 2.96 7.73 7 0.3 56.9

7–14 0.3–0.5 57–61 639.0 1,031 1,442.6 2.98 9.24 7 0.3 61.0

14–22 0.1–0.3 54–57 773.9 1,175 1,556.8 3.85 8.96 14 0.1 56.9

14–22 0.1–0.3 57–61 773.9 1,178 1,557.9 3.89 8.97 14 0.1 60.9

14–22 0.3–0.5 54–57 716.7 1,224 1,587.3 4.67 8.57 14 0.3 56.8

14–22 0.3–0.5 57–61 718.6 1,225 1,589.4 4.81 7.04 14 0.3 60.9

Aluminum 7–14 0.1–0.3 53–56 164.2 236.7 392.6 0.91 12.14 7 0.1 56.0

7–14 0.1–0.3 56–62 164.4 236.8 392.8 0.94 12.06 7 0.1 61.5

7–14 0.3–0.5 53–56 187.2 258.4 428.1 1.13 12.36 7 0.3 55.9

7–14 0.3–0.5 56–62 188.1 258.9 428.6 1.14 12.32 7 0.3 61.8

14–22 0.1–0.3 53–56 208.4 313.2 466.7 1.31 10.83 14 0.1 55.6

14–22 0.1–0.3 56–62 208.7 313.4 466.7 1.31 10.54 14 0.1 61.9

14–22 0.3–0.5 53–56 212.4 319.8 481.2 1.68 10.85 14 0.3 55.9

14–22 0.3–0.5 56–62 212.6 319.9 481.2 1.69 10.89 14 0.3 61.9

688 Int J Adv Manuf Technol (2009) 45:679–689



be extended by considering the feed and depth of cut as
simultaneous variables to obtain more practical model.
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